

H2020-FETHPC-2014: GA 671633

NLAFET Working Note 10

Towards Highly Parallel and Compute-Bound
Computation of Eigenvectors of

Matrices in SchurForm

Björn Adlerborn, Carl Christian Kjelgaard Mikkelsen,
Lars Karlsson, and Bo Kågström

April, 2017

NLAFET Working Note

http://www.nlafet.eu/ 2/2

Document information
This preprint report is also published as Report UMINF 17.10 at the Department of Computing
Science, Umeå University, Sweden.

This version: May 30, 2017.

Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/

Towards Highly Parallel and Compute-Bound
Computation of Eigenvectors of Matrices in Schur

Form ∗

Björn Adlerborn,
Carl Christian Kjelgaard Mikkelsen,

Lars Karlsson,
Bo K̊agström

May 30, 2017

Abstract

In this paper we discuss the problem of computing eigenvectors for matrices in
Schur form using parallel computing. We develop a new parallel algorithm and
report on the performance of our MPI based implementation. We have also im-
plemented a new parallel algorithm for scaling during the backsubstitution phase.
We have increased the arithmetic intensity by interleaving the compution of several
eigenvectors and by merging the backward substitution and the back-transformation
of the eigenvector computation.

Contents

1 Introduction 2

2 Formal problem description 3

3 Computation of a single eigenvector 3
3.1 A scalar algorithm . 5

3.1.1 Robust scalar divisions . 6
3.1.2 Robust linear updates . 6
3.1.3 Robust scalar backward substitution 7

3.2 A block algorithm . 9
3.2.1 Robust block solve . 10
3.2.2 Robust block update . 10
3.2.3 Robust block backward substitution 10

3.3 Parallel algorithms . 12

∗NLAFET Working Note 10. Report UMINF 17.10, Dept. Computing Science, Ume̊a University, SE
901 87 Ume̊a, Sweden.

1

4 Computation of multiple eigenvectors 12
4.1 Simultaneous backward substitution . 12
4.2 Simultaneous back-transformation . 13
4.3 Simultaneous substitution and gradual transformation 13
4.4 Robust simultaneous computation of several eigenvectors 14

5 MPI-based parallel algorithm 14
5.1 Data distribution and memory layout . 14
5.2 Overview of the algorithm . 15
5.3 Main kernels . 16

5.3.1 Solve . 17
5.3.2 Transform . 17
5.3.3 Update . 17

5.4 Tunability . 17

6 Numerical experiments 17
6.1 Computer system . 18
6.2 Experimental methodology . 18
6.3 Software requirements . 18
6.4 Single threaded execution . 18
6.5 Scalability . 19

6.5.1 Weak scalability . 19
6.5.2 Strong scalability . 20

7 Conclusion and future work 21

1 Introduction

Given a dense, non-Hermitian, matrix A ∈ Cn×n and a Schur decomposition A = UTUH

of A, we seek to compute the eigenvectors of A corresponding to a user-defined subset
Λ containing m of the n eigenvalues λ(A) of A. For a given eigenvalue λ, a non-trivial
solution x of the singular system (T−λI)x = 0 is computed. This vector is an eigenvector
of T corresponding to the eigenvalue λ. The transformation x ← Ux converts x into an
eigenvector of A.

In the latest version of LAPACK (version 3.7.0), the entire procedure is accomplished by
the routines labeled xTREVC3. There is support for both real and complex flavors. In the
latest version of ScaLAPACK (version 2.0.2) the complex case is implemented as PCTREV

and PZTREV, but with no protection against overflow as this is nontrivial to accomplish in
a parallel context. There is no support for real flavors in ScaLAPACK.

The ultimate goal our work is develop a novel task based algorithm which guards
against overflow and is available in both real and complex flavors.

We focus on the following challenges:

1. Robustness. The matrix T − λI can be ill-conditioned and therefore the solver for
the linear system needs to be robust against overflow.

2. Cache reuse. Computing just a single eigenvector is a memory-bound operation. As
soon as multiple eigenvectors are computed, there is potential to increase the cache
reuse and transform the operation into a compute-bound one.

2

In the immediate future we will focus on the following problem

3. Scalability. The algorithm needs to be expressed in terms of a fine-grained task
graph and scheduled according to the data flow in order for the computation to
scale to a potentially heterogeneous distributed memory system.

The rest of the paper is organized as follows. A formal description of the problem of
computing eigenvectors is given in Section 2. The problems associated with the robust
computation of a single eigenvector is discussed in 3. We develop sequential, blocked and
parallel algorithms for this problem. It is also possible to interleave the computation of
several eigenvectors in order to improve the arithmetic intensity. This and related issues
are discussed in Section 4. In Section 5 we describe relevant aspects of our current MPI
implementation. The results of our numerical experiments are presented in Section 6.
Finally, in Section 7 we summaries our findings and outline our future plans.

2 Formal problem description

Let A ∈ Cn×n be a non-symmetric matrix and let A = UTUH be a Schur decomposition
of A, i.e. U ∈ Cn×n is a unitary matrix and T ∈ Cn×n is an upper triangular matrix.
Let S = {s1, s2, . . . , sm} be a strictly increasing subset of {1, 2, . . . , n} which identifies
the user’s selection of eigenvalues by their position on the diagonal of T . The eigenvalue
associated with the index si is λi = tsi,si . The goal is to compute the columns of a matrix
X =

[
x1, x2, . . . , xm

]
∈ Cn×m such that xi ∈ Cn is an eigenvector for A associated with

the eigenvalue λi, i.e. Axi = λixi for i = 1, 2, . . . ,m.
There are several variations of this problem that are important to support in library

software. For example:

• No back transformation. The user may only require the eigenvectors of T and
chooses not to execute the back transform.

• Left eigenvectors. Instead of or (in addition to) computing a subset of the right
eigenvectors, the user may also want to compute a subset of the left eigenvectors.

• Real Schur form. If the matrix A is real instead of complex, then it is usually
reduced to real Schur form. Here U is a real orthogonal matrix and T is a real
upper quasi-triangular matrix with 1 × 1 and 2 × 2 blocks on the diagonal. The
2 × 2 blocks represent complex conjugate pair of eigenvalues and require special
treatment.

• Generalized eigenvalue problem. The goal is to compute a generalized eigenvector x
for a generalized eigenvalue pair (λ, β) such that λAx = βBx.

In this paper we focus on the standard eigenvalue problem for complex matrices.
Next, we will extend our new results to real matrices and further extend the results to
counterparts of the generalized eigenvalue problem.

3 Computation of a single eigenvector

Consider a selected eigenvalue λ at position s along the diagonal of the upper triangular
T of size n× n. We seek to find a non-zero solution x to the singular linear system

(T − λI)x = 0. (1)

3

After the subsequent back-transformation x← Ux we get an eigenvector x for the eigen-
value λ such that Ax = λx.

Let us find a non-trivial solution to (1). Partition the system into a 3×3 block system
such that the eigenvalue λ is exposed at position (s, s):T11 t12 T13

0 λ tT23

0 0 T33

− λ
I 0 0

0 1 0
0 0 I

x1

x2

x3

 =

0
0
0

 .
The third block equation reads (T33− λI)x3 = 0 and has the trivial solution x3 = 0. The
choice of x3 = 0 ensures that the second block equation is satisfied. Substituting x3 = 0
into the first block equation gives

(T11 − λI)x1 = −x2t12. (2)

Note that there are s degrees of freedom (the s− 1 components of x1 plus the scalar x2)
but only s−1 equations. If we assume that the eigenvalues of T are simple, then T11−λI
is guaranteed to be non-singular and the solution x1 is therefore unique and computable
once we have chosen a value for x2. Setting x2 = 0 implies that x1 = 0 and by extension
x = 0, which results in the undesirable trivial solution. We must therefore choose x2 6= 0,
which is sufficient to ensure that x 6= 0, and then solve (2) for x1.

Algorithm 1: x = ComputeEigenvector(U, T, s)

Data: A Schur decomposition A = UTUH and the position s along the diagonal of
T of a selected eigenvalue.

Result: An eigenvector x of A associated with the simple eigenvalue λ such that
Ax = λx.

// Set up the linear system (R− λI)x1 = x2b
1 λ← T (s, s);
2 b← −T (1 : s− 1, s);
3 R← T (1 : s− 1, 1 : s− 1);
4 x2 ← any non-zero value;
// Solve the linear system

5 Solve for x1 in (R− λI)x1 = x2b;
// Assemble the eigenvector

6 x←

 x1

x2

0n−s

;

// Back-transform the eigenvector

7 x← Ux;
8 return x;

In summary, Algorithm 1 computes an eigenvector x of A for a given eigenvalue λ
at position s along the diagonal of T . The algorithm spends Θ(s2) flops on solving the
linear system and Θ(ns) flops on the back-transformation provided that the structure of
x is utilized. By simply applying the algorithm to each s ∈ S, we completely solve the
problem. However, this approach is inefficient for the following reasons:

1. The solve can overflow. To resolve this issue, we gradually develop robust solvers in
Section 3.1 (scalar), Section 3.2 (block), and Section 3.3 (parallel).

4

2. The solve is memory-bound. To resolve this issue, we develop a compute-bound
solver that simultaneously solves for several selected eigenvalues in Section 4.1.

3. The back-transformation is memory-bound. To resolve this issue, we review a
technique to obtain a compute-bound back-transformation by simultaneously back-
transforming eigenvectors for several selected eigenvalues in Section 4.2.

3.1 A scalar algorithm

In this section we present a robust algorithm for solving the scaled upper triangular linear
system

(T − λI)x = αb (3)

Our algorithm is almost identical to the algorithm implemented in LAPACK as the functions
xLATRS [1]. Our contribution is to simplify and extend the analysis. The majority of this
work is contained in the technical report [2] which deals exclusively with special case of
λ = 0. In this note we simply adapt our earlier results to the general case.

The upper triangular linear system

(T − λI)x = b (4)

can be solved using scalar back-substitution; see Algorithm 2 ScalarBackSolve.

Algorithm 2: x = ScalarBackSolve(T, λ, b)

Data: A non-singular upper triangular matrix T − λI of size n× n, a vector b of
size n× 1.

Result: The solution x of the linear system (T − λI)x = b.
1 x = b;
2 for j = n, n− 1, . . . , 1 do
3 xj ← xj

tjj−λ ;

4 for i = 1, 2, . . . , j − 1 do
5 xi ← xi − tijxj;

6 return x

We observe that ScalarBackSolve consists of a sequence of scalar divisions

x← b/(t− λ), t− λ 6= 0 (5)

and scalar updates
y ← y − tx. (6)

In the following sections, Ω represents a large positive number smaller than the largest
representable floating point number. Our purpose it to prevent all intermediate results
from exceeding this threshold. A word of caution is inserted here. It is entirely possible
to engineer a situation where the scaling factors underflow in floating point arithmetic. If
we limit ourselves to powers of 2 and use 64 bits integers, then we can represent scalings
as small as 2−(264−1) ≈ 10−5.55×1018 . This dramatically reduces the chance of the scaling
underflowing. The details are omitted here.

5

3.1.1 Robust scalar divisions

In general, the scalar division (5) cannot exceed the overflow threshold Ω if

|b| ≤ |t− λ|Ω.

Algorithm 3 shows how to compute a scalar α, such that the scaled division

x← αb

t− λ
(7)

cannot exceed the overflow threshold Ω. Moreover, all inequalities can be evaluated
without exceeding the overflow threshold. We refer to [2] for an analysis of this algorithm.

Algorithm 3: α = ProtectDivision(b, t, λ)

Data: Numbers b and t such that |b| ≤ Ω and t 6= λ.
Result: A scaling factor α ∈ (0, 1] such that the scaled division (7) cannot exceed

the overflow threshold.
1 α← 1;
2 if |t− λ| < Ω−1 then
3 if |b| > |t− λ|Ω then

4 α← |t−λ|Ω
|b| ;

5 else
6 if |t− λ| < 1 then
7 if |b| > |t− λ|Ω then
8 α← |b|−1;

9 return α;

3.1.2 Robust linear updates

In this section we consider the more general problem of computing a scalar ξ, such that
the scaled linear matrix transformation

Z ← ξY − C(ξX) (8)

cannot exceed the overflow threshold.
The following theorem gives a condition which ensures that the linear transformation

Z ← Y − CX. (9)

cannot exceed the overflow threshold.

Theorem 1. Let Y,C,X be matrices such that Z = Y − CX is defined. If

‖Y ‖∞ + ‖C‖∞‖X‖∞ ≤ Ω, (10)

then overflow is impossible in the calculation of Z regardless of the order of the necessary
arithmetic operations.

6

Proof. The proof consists of an elementary application of the triangle inequality. The
details are given in [2].

Algorithm 4 ProtectUpdate shows how to compute a scalar ξ, such that the scaled
linear matrix transformation

z ← ζY − C(ζX) (11)

can not exceed the overflow threshold. We refer to [2] for an analysis of this algorithm.

Algorithm 4: ζ = ProtectUpdate(ynorm, cnorm, xnorm)

Data: Non-negative real numbers cnorm, xnorm and bnorm such that

‖Y ‖∞ ≤ ynorm ≤ Ω, ‖C‖∞ ≤ cnorm ≤ Ω, ‖X‖∞ ≤ xnorm ≤ Ω,

Result: A scaling factor ζ such that

ζ (ynorm + cnormxnorm) ≤ Ω

which implies that the scaled linear update (11) cannot exceed the
overflow threshold.

1 ζ ← 1;
2 if xnorm ≤ 1 then
3 if cnormxnorm > Ω− bnorm then
4 ζ ← 1/2;

5 else
6 if cnorm > (Ω− bnorm)/xnorm then
7 ζ ← 1/(2xnorm);

8 return ζ;

3.1.3 Robust scalar backward substitution

It is now straightforward to formulate a robust algorithm for solving the scaled upper tri-
angular linear system (3); see Algorithm 5. At this point the reader is encouraged to briefly
pause and consider the problem of parallelizing Algorithm 5 RobustScalarBacksolve.

7

Algorithm 5: (α, x) = RobustScalarBacksolve(T, λ, b)

Data: A non-singular upper triangular matrix T − λI ∈ Cn×n and b ∈ Cn, such
that

‖T − λI‖∞ ≤ Ω, ‖b‖∞ ≤ Ω

and numbers cj satisfying

‖T1:j−1,j − λI‖∞ ≤ cj, j = 2, 3, . . . , n.

Result: A scaling factor α ∈ (0, 1] and the solution of the scaled linear system

(T − λI)x = αb,

where the scaling factor ensures that the computation of x cannot flow.
1 α← 1, x← b, xmax ← ‖x‖∞;
2 for j ← n, n− 1, . . . , 1 do
3 β = ProtectDivision(xj, λ, tjj);
4 if β 6= 1 then
5 x← βx;
6 α← βα;

7 xj ← xj
tjj−λ ;

8 if j > 1 then
9 β = ProtectUpdate(xnorm, cj, |xj|);

10 if β 6= 1 then
11 x← βx;
12 α← βα;

13 x1:j−1 ← x1:j−1 − T1:j−1,jxj;
14 xmax ← ‖x1:j−1‖∞;

15 return α, x;

8

3.2 A block algorithm

It is difficult to parallelize the sequential Algorithm 5 RobustScalarBackSolve. The
fundamental problem is the need for global communication when recomputing the value
of xmax at the end of every iteration. Moreover, every re-scaling of x also requires global
communication. It is clear that another approach is required.

To this end we consider the problem of solving the linear system (4) using a blocked
algorithm. First we partition the system conformally, and write

(T − λI)x =

T11 T12 . . . T1N

T22 . . . T2N

. . .
...

TNN

− λI

x1

x2
...
xN

 =

b1

b2
...
bN

 = b. (12)

This system can be solved using block back-substitution as in Algorithm 6 BlockBackSolve.
In order to obtain a robust algorithm we must replace the back solve and update kernels

f(T, λ, b) = (T − λI)−1b, g(y, C, x) = y − Cx (13)

with robust variants.

Algorithm 6: x = BlockBackSolve(T, λ, b)

Data: A non-singular upper triangular matrix T − λI and a vector b partitioned
conformally as in equation (12).

Result: The solution x of the linear system T − λIx = b
1 x = b;
2 for j = N,N − 1, . . . , 1 do
3 xj ← f(Tjj, λ, bj);
4 for i = 1, 2, . . . , N do
5 xi ← g(xi, Tij, xj);

6 return x;

We require the following definition.

Definition 1. An augmented vector 〈α, x〉 consists of a scalar α ∈ (0, 1] and a vector
x ∈ Cn and represents the vector y = α−1x. Two augmented vectors 〈α, x〉 and 〈β, y〉 are
equivalent if they represent the same vector, i.e.

〈α, x〉 ∼ 〈β, y〉 ⇔ α−1x = β−1y.

Two augmented vectors 〈α, x〉 and 〈β, y〉 are consistently scaled if α = β.

We will use augmented vectors to represent vectors which would otherwise exceed
the overflow threshold. Augmented vectors which are consistently scaled can be added,
although their sum might exceed the overflow threshold, unless an additional scaling is
applied. In general, vectors should be consistently scaled before addition are attempted.

9

3.2.1 Robust block solve

Consider the problem of solving a linear shifted linear system

(T − λI)(α−1x) = β−1b, (14)

where the right hand side is not given explicitly, but is represented by an augmented
vector 〈β, b〉. We seek an augmented vector 〈α, x〉, where the scaling factor α must be
chosen to ensure that the computation of x does not overflow.

Algorithm 7: 〈α, x〉 = RobustBlockSolve(T, λ, 〈β, b〉)
Data: A non-singular matrix T − λI and an augmented vector 〈β, b〉.
Result: An augmented vector 〈α, x〉 such that

(T − λI)(α−1x) = β−1b

where the scaling α ensures that the computation of x cannot overflow.
1 〈α, x〉 = RobustScalarBackSolve(T, λ, b);
2 α← βα;
3 return 〈α, x〉;

It is straightforward to verify that Algorithm 7 RobustBlockSolve accomplishes its
task. The call to Algorithm 7 RobustBlockSolve in line 1 returns an augmented vector
〈α, x〉 such that

(T − λI)x = αb. (15)

It follows immediately that
(T − λI)(αβ)−1 = β−1b (16)

which explains why the line 2 is correct.

3.2.2 Robust block update

Now consider a pair of augmented vectors 〈α, x〉 and 〈β, y〉, representing the vectors α−1x
and β−1y, and a matrix C such that the transformation

z ← y − Cx

is defined. We seek an augmented vector 〈ν, z〉 such that

ν−1z = β−1y − C(α−1x) (17)

and where the scaling ν prevents overflow during the computation of z. This problem
is solved by Algorithm 8. While the central calculation is completed by Algorithm 4
ProtectUpdate, it is still important to appreciate the effect of the first three steps. These
instructions replace 〈α, x〉 and 〈β, y〉 with a pair of augmented vectors which are consis-
tently scaled and represent the vectors α−1x and β−1y.

3.2.3 Robust block backward substitution

We can now given a robust block algorithm for solving a shifted partitioned linear system.
This is Algorithm 9 RobustBlockBackSolve. It is virtually identical to Algorithm 6. We
have simply replaced the central kernels which operate on vectors with robust kernels
which perform equivalent operations on augmented vectors.

10

Algorithm 8: 〈α, x〉 = RobustBlockUpdate(〈α, x〉, C, 〈β, y〉)
Data: Augmented vectors 〈α, x〉, 〈β, y〉 and a matrix C such that the linear

transformation
z = y − Cx

is defined.
Result: An augmented vector 〈ν, z〉 such that

ν−1z = β−1y − C(α−1x),

where the scaling ν ensures that the computation of z cannot overflow.
1 γ = min{α, β};
2 x← (γ/α)x;
3 y ← (γ/β)y;
4 ξ ← ProtectUpdate(‖y‖∞, ‖C‖∞, ‖x‖∞);
5 z ← ξy − C(ξx);
6 ν = ξγ;
7 return 〈ν, z〉;

Algorithm 9: 〈α, x〉 = RobustBlockBackSolve(T, λ, b)

Data: A block partitioned, non-singular, upper triangular linear system
(T − λI)x = b.

Result: An augmented vector 〈α, x〉 such that (T − λI)x = αb.
1 for i = 1, . . . , N do
2 〈αi, xi〉 ← 〈1, bi〉;
3 for j = N,N − 1, . . . , 1 do
4 〈αj, xj〉 ← RobustBlockSolve(Tjj, λ, 〈αj, xj〉);
5 for i = 1, 2, . . . , j − 1 do
6 〈αi, xi〉 ← RobustBlockUpdate(〈αi, xi〉, Tij, 〈αj, xj〉)

7 α = min{α1, α2, . . . , αN};
8 for i = 1, 2, . . . , N do
9 xi ← (α/αi)xi;

10 return 〈α, x〉;

11

3.3 Parallel algorithms

Any run-time system such as StarPU which can execute the partitioned Algorithm 6
BlockBackSolve can also execute the robust variant Algorithm 9 RobustBackSolve. It
is simply a matter of replacing the standard kernels with robust kernels operating on
augmented vectors. The communication patterns will be identical, save for a single global
communication needed to enforce a consistent scaling at the end the of the computation.
The messages exchanged during the backward substitution must each be augmented with
a single number, the scaling factor, but this is a modest price to pay.

4 Computation of multiple eigenvectors

In this section we discuss how to accelerate the computation of eigenvectors. The fun-
damental problem is that the computation of a single eigenvector is memory bound.
Specifically, if we seek an eigenvector x of the upper triangular matrix T corresponding
to the eigenvalue λ = tss, then we have to solve a triangular linear system of dimension
s − 1. We have to complete O(s2) arithmetic operations on O(s2) data. If we wish to
back-transform the computed eigenvector x, i.e apply the transformation x ← Ux, then
a further O(ns) arithmetic operations must be performed on O(ns) data. We observe
that the arithmetic intensity is O(1). It is therefore impossible to execute this problem
efficiently on modern computer architectures with deep memory hierarchies, which favor
codes with high arithmetic intensities. However, if multiple eigenvectors are required,
then it possible to organize the computations in an efficient manner.

4.1 Simultaneous backward substitution

Consider the matrix A for which a triangular Schur form T has been computed. We
now seek to determine the eigenvectors of T corresponding to a subset of the eigenvalues
of A. We are also interested in back-transforming the computed eigenvectors of T to
eigenvectors of A.

It is entirely possible to consider a general subset of the eigenvalues, but there is a
certain clarity associated with the special case where all eigenvectors are sought. Strictly
speaking, the general case can be reduced to this special case by reordering the eigenvalues
of T , but this is beside the point. For the sake of simplicity we now assume that all
eigenvalues are distinct. In this case Algorithm 10 can be used to simultaneously compute
all eigenvectors.

Algorithm 10: X=ScalarSimEigenvector(T)

Data: An m by m upper triangular matrix T with distinct diagonal entries.
Result: A matrix X =

[
x1 x2 . . . xm

]
of eigenvectors of T such that

Txj = tjjxj.
1 X ← Im for j = m,m− 1, . . . , 1 do
2 for k = j + 1 : m do

3 X(j, k)← X(j,k)
T (j,j)−T (k,k)

4 X(1:j−1, j : m)← X(1:j−1, j:m)− T (1:j−1, j)X(j, j:m)

5 return X;

12

Algorithm 10 loops backwards through the m triangular systems to be solved. The
inner iteration computes a single row of X and the linear update has rank 1. As a result,
the arithmetic intensity is very low.

It is straight forward to transform this algorithm into a block algorithm; see Algorithm
11 BlockSimEigenvector. This algorithm utilizes a pair of arrays first and last to keep
track of the partitioning of T . Specifically, the first (last) row of the Jth block has global
row index first(J) (last(J)). The algorithm loops backwards over the systems which
are to be solved and it computes one block row of X per iteration. The variable k is
always the dimension of the next linear system to be solved. It is worth stressing that
each of the diagonal blocks of T are read several times from cache memory, but only read
once from main memory. The linear update at the end of each iteration has the same
rank k as the dimension of the current diagonal block.

Algorithm 11: X=BlockSimEigenvector(T)

Data: An m by m upper triangular matrix T partitioned as an M by M block
matrix, arrays first and last describing the partitioning.

Result: A matrix X whose columns are eigenvectors of T such that
TX = Xdiag(T).

1 X ← Im;
2 for J = M,M − 1, . . . , 1 do
3 f ← first(J);
4 l← last(J);
5 for j = f + 1 : l do
6 k ← j − f ;
7 Xf :j−1,j ← −(Tf :j−1,f :j−1 − tjjIk)−1Tf :j−1,j;

8 k ← l − f + 1;
9 for j = l + 1 : m do

10 Xf :l,j ← (Tf :l,f :l − tjjIk)−1Xf :l,j;

11 X1:f−1,f :m ← X1:f−1,f :m − T1:f−1,f :lXf :l,f :m;

12 return X;

4.2 Simultaneous back-transformation

The matrix X of eigenvectors of T can be be transformed into eigenvectors of A = UTUT

by the transformation X ← UX. This can either be done efficiently, several columns at a
time, or inefficiently, one column at a time. There is however, an third option which we
explore in the next section.

4.3 Simultaneous substitution and gradual transformation

Algorithm 11 BlockSimEigenvector computes the components of the matrix X of eigen-
vectors of T one block row at a time. It is therefore possible to execute the back-transform
X ← UX gradually. This is done in Algorithm 12. The advantage of this approach is
that freshly computed entries of X are utilized at once and do not have to be read from
memory until X has been fully computed. We stress that the transformation matrix is
read gradually one block column at a time and only once.

13

Algorithm 12: X=BlockSimEigenvectorBackTransform(T,U)

Data: An m by m upper triangular matrix T partitioned as an M by M block
matrix, arrays first and last describing the partitioning. An orthonormal
matrix U representing the back-transformation.

Result: A matrix X of eigenvectors of A = UTUT such that AX = Xdiag(T).
// Initialize X as the identity and zero out Y .

1 X ← Im;
2 Y ← Om×m;
3 for J = M,M − 1, . . . , 1 do
4 f ← first(J);
5 l← last(J);
6 for j = f + 1 : l do
7 k ← j − f ;
8 Xf :j−1,j ← −(Tf :j−1,f :j−1 − Ik)−1Tf :j−1,j;

9 k ← l − f + 1;
10 for j = l + 1 : m do
11 Xf :l,j ← (Tf :l,f :l − tjjIk)−1Xf :l,j;

12 X1:f−1,f :m ← X1:f−1,f :m − T1:f−1,f :lXf :l,f :m;
13 Y1:m,f :m ← Y1:m,f :m + Y1:m,f :lXf :l,f :m;

14 X ← Y ;
15 return X;

4.4 Robust simultaneous computation of several eigenvectors

It is possible to simultaneously compute several eigenvectors in a robust manner. In
Algorithm 11 it is simply a matter of replacing the linear updates and linear solves with
robust variants operating on augmented vectors. It is critical to appreciate that we need
a scaling factor for each block row of each column of the matrix of eigenvectors of T .

5 MPI-based parallel algorithm

The previous sections describe how to robustly and efficiently compute eigenvectors in
parallel. Here we discuss aspects of our current MPI implementation. A task based
implementation will be developed in the immediate future. Here we expect to capitalize
on the lessons learned writing the MPI implementation.

Our current implementation use point-to-point messages via synchronous MPI send
and receive operations. The limited number of broadcasts and reductions are efficiently
executed using scatter and gather operations.

5.1 Data distribution and memory layout

The input matrices T and U must be identically distributed across the Pr × Pc process
grid using a standard two-dimensional block-cyclic distribution with the same block size
nb in both dimensions; see the left of Figure 1 for an example.

The matrix X, is distributed using a 1-dimensional block-cyclic distribution with a row
block size nb. The column block size is equal to the the number of selected eigenvalues,

14

(0,0) (0,1) (0,2) (0,0) (0,1)

(1,0) (1,1) (1,2) (1,0) (1,1)

(0,0) (0,1) (0,2) (0,0) (0,1)

(1,0) (1,1) (1,2) (1,0) (1,1)

(0,0) (0,1) (0,2) (0,0) (0,1)

n

n

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(0,0) (0,1) (0,2)

nsel

Figure 1: Left: Block cyclic data distribution of the T and U matrices, n×n, exemplified
using a 2 × 3 grid, where the residence for each of the 25 matrix blocks is given by its
process coordinate (Pr, Pc) with 0 ≤ Pr < 2 = Pr and 0 ≤ Pc < 3 = Pc. Right: Block
cyclic data distribution of the X and W matrices, n × nsel, exemplified using a 2 × 3
grid, where the replicated residence of the 5 matrix blocks is given by process coordinates
(Pr, Pc) with 0 ≤ Pr < 2 = Pr and 0 ≤ Pc < 3 = Pc.

nsel. Normally, one would store each block row on a single process, for example on the first
column process for each process row, but in order to improve parallelism all processors in
a process row must allocate space for the full block row. See the right of Figure 1 for an
example.

Thus, the total storage requirement for X is n ·nsel ·Pc. Internally, memory is required
for the storage of right-hand-sides W . This matrix has the same distribution and memory
requirements as X. To update W in parallel using a delayed update technique, we also
need storage for concurrently computed solutions Xsol. To this end, each process will
allocate nsel ·(n/nb)/min(Pr, Pc) for Xsol, or in total nsel ·max(Pr, Pc)·(n/nb). In summary,
the total memory requirements are O(2n(n + nsel · Pc)). For very large problems with a
large fraction of selected eigenvalues this might not be feasible. We could reduce the
memory requirement at the expense of efficiency.

5.2 Overview of the algorithm

The parallel algorithm is based and extends upon the serial blocked version; see Algo-
rithm 9 RobustBlockBackSolve. It implements the suggested scaling technique for both
the solve and update parts.

The algorithm loops backwards over the block columns and backwards over the columns
of each block. As it passes the column containing a selected eigenvalue, the eigenvalue
becomes active and the corresponding system is added to the set of systems which are
being solved.

After we have solved all the linear systems represented by a single nb × nb diagonal
block and all active eigenvalues, we use the new information to update nearby right-hand-
sides only, and postpone the remaining updates. The goal is to remove all dependencies
for the next few diagonal blocks. The algorithm for controlling the update process is
complicated and a specific example is given in Figure 2.

15

Figure 2: Reference pattern in T illustrated in a 10× 10 block matrix, distributed over a
4× 4 grid. After a diagonal block has been solved, the blocks that are referenced for the
following update of the right-hand-sides are marked in the same color.

Algorithm 13 ParaEigVecSolve summarizes how the eigenvectors of given matrix T
is computed in parallel. Here we assume that all eigenvectors are wanted.

The algorithm is based on 7 functions:

• The function Reduce is an MPI based reduction that performs summation of a
vector/matrix over a process column.

• The sequential function Solve accepts as input a sequence of linear systems, one
system for each active eigenvalue. It uses a robust backward substitution algorithm
and returns each solution as an augmented vector with a seperate scaling factor.

• The function Broadcast is an MPI based one-to-all communication, over a process
row or column that replicates data.

• The sequential function Transform performs a partial back-transform of X using
current solutions and U .

• The sequential function Update performs a robust linear update of right-hand-sides.

• The function Solving returns true if the caller is solving a block.

• The function Reducing returns true if the caller is taking part in the reduction of
right-hand-sides.

The functions Solve, Transform, and Update are briefly described in the next section.

5.3 Main kernels

In this section we describe the main kernels used in Algorithm 13 ParaEigVecSolve.

16

5.3.1 Solve

The sequential function Solve accepts as input a sequence of the linear systems of the
from (Tii−λjI)x = bj, where Tii is a diagonal block and {λj} is the set of active eigenvalues
and bj is the appropropriate right hand side vectors. The process owning the block Tii

performs the solves, as described in Algorithm 9 RobustBlockBackSolve, and stores the
solutions in a vector, with scalings appended at the end of the vector. The vector is
broadcasted along current mesh-row, so that all processes along the mesh row receives
both solutions and scalings. Each selected eigenvector renders a unique solution, of size
nb, and a scaling factor. For each block there are at most nb selected eigenvalues, which
limits the amount of data broadcasted to n2

b + nb.

5.3.2 Transform

The function Transform applies a block column of U to at most nb solutions, using a
GEMM(level 3) operation, and stores the back-transformed solutions in X. This is done
without communication, as each process owning part of the block column of U already
has the required nb solutions and stores the computed result in their own copy of X.
However, the scalings used might differ, so the already back-transformed data in X and
solutions are forced to be consistently scaled before they are merged.

5.3.3 Update

The function Update operates on a block of Tij and updates the corresponding right-hand-
sides with computed solutions using Algorithm 8 RobustBlockUpdate. This function
requires no communication, as solutions and scalings were distributed during earlier solves.
The result is stored locally, and later combined during the Reduce operation before the
next Solve. Internally GEMV(level 2) operations are used to perform the actual linear
transformation. A new scale is produced that is tied to the locally computed right-hand-
side, one for each selected eigenvalue.

5.4 Tunability

The block size, nb, is the only tunable parameter that can have effect on the parallel
performance. We have determined that nb = 100, by measuring execution time where
we have varied the block size between 50 and 200 in steps on 10, is close to optimal on
Kebnekaise. In general, execution time goes down the smaller nsel gets. However, its more
beneficial to have several selected eigenvalues in close range rather than having a few very
scattered.

6 Numerical experiments

In this section we report on a sequence of experiments performed to test our new parallel
algorithm. We give a brief description of the hardware, the test matrices, the experimental
methodology before presenting the results. We report on the single threaded execution
time, the weak and the strong scaling performance of our current implementation.

17

6.1 Computer system

All experiments were executed on the machine Kebnekaise1 system at HPC2N, Ume̊a
University. Each compute node contains 28 Intel Xeon E5-2690v4 cores organized in 2
NUMA islands with 14 cores each. The nodes are connected with a FDR Infiniband
Network. Each compute core has 32kb L1 data cache, 32 kb L1 instruction cache and
256 kb L2 cache. Moreover, for every NUMA island there is 35 MB of shared L3 cache.
There is 128 GB of RAM per compute node. A schematic representation of a compute
node as shown in Figure 3.

Figure 3: Schematic representation of a compute node on the Kebnekaise system.

6.2 Experimental methodology

The high-resolution function GetTimeOfDay was used to measure execution time, and the
median execution time of three runs yielded reproducible numbers.

6.3 Software requirements

Our parallel algorithm is built using level 2 and 3 BLAS, as well as MPI calls. The user
must provide libraries for both of those. We have linked all our tests against Intel MKL
2017.1.132 and Intel MPI 2017.1.132.

6.4 Single threaded execution

In Figure 4 our MPI based algorithm is compared against the LAPACK ztrevc3 solver
for

n ∈ {10000, 20000, 30000, 40000}. (18)

All right eigenvectors are computed from a random upper triangular T , and being back-
transformed using a dense unitary transformation matrix as input.

The single core run-times are quite similar and our MPI version is marginally better.
However, the MPI version has significant overhead, even when using a single MPI rank.

1https://www.hpc2n.umu.se/resources/hardware/kebnekaise

18

1 2 3 4

Problem size #104

0

0.5

1

1.5

2

2.5

3

3.5

E
xe

cu
tio

n
tim

e

#104 Execution time on a single core on Kebnekaise

MPI version
LAPACK ztrevc3

Figure 4: Execution time for our MPI based algorithm and ztrevc3 from LAPACK for
n ∈ {10000, 20000, 30000, 40000}.

A serial implementation of the algorithm, without the overhead gives a run-time of 13835
secs for n = 40000, roughly half of what the MPI based implementation requires for
completion. The LAPACK routine ztrevc3 deals with potential overflow by working with
one column of T completely before moving on to next the column of T . The the blocking
strategy we propose is clearly beneficial as it allows for cache reuse.

6.5 Scalability

The scalability of a program measures its response to an increase in the number of proces-
sors. In the context of high performance computing we are interested in weak and strong
scalability. In both cases we report on the parallel efficiency ρ given by

ρ =
Ts
pTp

, (19)

where Ts is the serial execution time and Tp is the parallel execution time using p processing
units.

6.5.1 Weak scalability

Weak scalability refers to keeping problem size per processor constant as the number of
processors is increased.

The weak scalability was measured by scaling up the problem size n with the number
of cores to keep the memory required per core constant. Specifically, for a problem of size
n1 on P1 MPI ranks, the problem size nP on PP cores was set to n1

√
PP/P1.

The results of the weak scalability experiments, with n1 = 15000 and P1 = 16 are
shown in Figure 5.

19

0 5 10 15 20 25 30 35 40

Number of MPI units

1

2

3

4

5

6

7

8

9

S
pe

ed
up

Eigenvector computation - Weak scaling on Kebnekaise.

0 5 10 15 20 25 30 35 40

Number of MPI units

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

Eigenvector computation - Weak scaling on Kebnekaise.

Figure 5: Speedup(left) and efficiency(right) gained when running weak scalability per-
formance test using up to 36 MPI units. One MPI unit consists of 16 MPI ranks.

6.5.2 Strong scalability

Strong scalability refers to keeping the problem size constant as the number of processors
is increased. Here we report on strong scalability efficiency. The results of the strong
scalability experiments are shown in Figure 6. The strong scalability of the parallel algo-
rithm was measured in terms of speedup relative to the parallel implementation running
on one core for problems of size

n ∈ {10000, 20000, 30000, 40000} (20)

and meshes of size Pr × Pc for

Pr = Pc ∈ {1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 28, 32} (21)

0 200 400 600 800 1000 1200

Number of MPI ranks

0

10

20

30

40

50

60

70

S
pe

ed
up

Eigenvector computation - Strong scaling on Kebnekaise.

n=40000
n=30000
n=20000
n=10000

0 200 400 600 800 1000 1200

Number of MPI ranks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

Eigenvector computation - Strong scaling on Kebnekaise.

n=40000
n=30000
n=20000
n=10000

Figure 6: Speedup(left) and efficiency(right) gained when running strong scalability per-
formance test using up to 1024 MPI ranks for four problem sizes.

20

As expected, the strong scalability increases with larger problem sizes. The parallel
efficiency drops dramatically when the number of cores is increased. This is hardly sur-
prising as even the largest problem size (n = 40, 000) is tiny with respect to such a large
number of cores.

7 Conclusion and future work

In this section we detail the lessons learned and our plans for the next few moths.
We know how to protect against overflow when solving triangular linear systems.

Our scalar algorithm is similar to the algorithm implemented in LAPACK as xLATRS. So
far, our main contribution is to simplify and extend the analysis. We have derived a
new blocked robust algorithm using the concept of augmented vectors. Our blocked
robust algorithm can be parallilized in different settings. Any run-time system which
can execute a task-based backward substitution routine can execute a task based robust
backward substitution routine. It is simply a matter of replacing the two central kernels
with our robust variants which operate on augmented vectors. The parallel overhead
imposed by scaling to protect against overflow is minimal. In particular, the number of
messages transmitted during the solve is unchanged. Each segment of each right hand side
must be augmented with a single word containing the scale factor. After the backward
substitution is completed, global communication is required to obtain a global consistent
scaling. However, the necessary communication can be amortized over all right hand
sides.

We know how to interleave the computation of several eigenvectors. This improves
the arithmetic intensity and reduces the solve time. We know how to interleave the
computation of the eigenvectors with the gradual back-transform of the eigenvectors of S
to eigenvectors of A.

Our MPI implementation incorporates all of these features. However, we are not
satisfied with the memory consumption and the parallel performance. We have come to
realize that while the standard 2D block cyclic distribution used by ScaLAPACK can still
be used we need to reorganize the work flow. In particular the following changes will be
investigated:

1. Broadcast all eigenvectors to all ranks.

2. Broadcast all diagonal blocks along each process row.

When this information is available, all shifted linear solves can be executed locally. Com-
munication is needed only to update the right hand sides and the partial back-transform.
Please refer to Algorithm 12 BlockSimEigenvectorBacktransform when considering the
accuracy of this claim.

As for the robust solution of triangular linear systems the following questions will be
investigated:

1. Complete a standard error analysis for backward substitution with a separate scaling
factor for each block row of the solution.

2. What is the exact relationship between overflow in backward substitution routine
and the systems condition number?

3. In particular, is it possible to calculate the condition number from the scaling fac-
tors?

21

4. What is the real value of scaling to prevent overflow?

In practice, we can check for overflow between any two points of the code, by investi-
gating a flag set by the runtime system, but tracking down the exact point and column
where overflow first occurred appears expensive. Personally, we would prefer to have code
which execute to completion without overflowing, returning a list of scaling factors which
identifies the location of any problems.

We will also investigate the following related questions

5. How do we implement scalings which are limited to negative powers of 2? Currently
it is possible to engineer a situation where the scaling factors underflow. Using 64
bit words will allow us to represent scalings as small as 2−(264−1). The probabilty of
underflow in this context is small.

6. How do we apply scalings when dealing with real Schur forms in parallel?

While pursuing an MPI implementation of the algorithm for computing eigenvectors
we have also implemented a new task based algorithm for the problem of reordering
eigenvalues for matrices in real Schur form. Here we are using the run-time system StarPU

to execute our code. We expect to capitalize on the lessons learned in this process when
transforming our new algorithm for computing eigenvectors to a task based algorithm.

Acknowledgements

This project has received funding from the European Unions Horizon 2020 research and
innovation programme under grant agreement No. 671633. Support has also been received
from eSSENCE, a collaborative e-Science programme funded by the Swedish Government
via the Swedish Research Council (VR). All experiments have been conducted using the
computing resources available at High Performance Computing Center North(HPC2N),
Ume̊a University.

References

[1] Edward Anderson. Robust Triangular Solves for Use in Condition Estimation.
LAWN 36, Cray Research Inc., August 1991.

[2] Carl Christian Kjelgaard Mikkelsen and Lars Karlsson. Robust Solution of Triangular
Linear Systems. Technical Report UMINF-17-09, Ume̊a University, 2017. Also as
NLAFET Working Note 9.

22

Algorithm 13: X = ParaEigVecSolve(T, U, n, nb)

Data: A non singular upper triangular matrix T , a unitary transformation matrix
U , problem size n, and a blocking factor nb. T and U are assumed to be
uniformly distributed using a two-dimensional block-cyclic distribution,
using nb as blocking factor in both row and column dimension.

Result: X holds the computed eigenvectors. X is distributed using a
one-dimensional block-cyclic distribution with a row block factor nb, such
that row block Xi is stored at process holding block Ti,i.

// Calculate the number of blocks

1 nB ← d(n/nb)e;
// Initialize the right-hand-side W as the strictly upper part of T.

W is distributed using a one-dimensional block-cyclic

distribution with a row block factor nb, such that row block Wi is

stored at process holding block Ti,i.
2 W ← upper(T);
3 for i = nB, nB − 1, . . . , 1 do
4 if i 6= nB then
5 Reduce Wi to process holding Ti,i along current mesh row;

6 Execute Soli ← Solve(i) using Ti,i and Wi;
7 if i 6= 1 then
8 Broadcast Soli along current mesh column;

9 Execute Transform(i) using U∗,i and Soli;
// Now perform updates of W, starting at next row block

10 CurrUpdRowk ← i− 1;
11 for k ← i, i+ 1, . . . , nB do
12 if CurrUpdRowk > 0 then
13 Execute Update(CurrUpdRowk, k) using TCurrUpdRowk,k and Solk;
14 CurrUpdRowk ← CurrUpdRowk − 1;

// Do more updates, if not involved in next row block solve

15 if not Solving(i− 1) and not Reducing(i− 1) then
16 for k ← i, i+ 1, . . . , nB do
17 Cnt← 0;
18 while CurrUpdRowk > 0 and Cnt < Pr − 1 do
19 Execute Update(CurrUpdRowk, k) using TCurrUpdRowk,k and Solk;
20 CurrUpdRowk ← CurrUpdRowk − 1; Cnt← Cnt+ 1;

21 for i = nB, nB − 1, . . . , 1 do
22 Reduce Xi to process holding Ti,i along current mesh row;

23

	NLAFET-WN10-1st-page
	eigenvectors-note

