Parallel Numerical Linear Algebra
for Future Extreme Scale Systems

H2020-FETHPC-2014: GA 671633

D2.1

One-sided Matrix Factorizations

April 2017

NLAFET D2.1: One-sided Matrix Factorizations

DOCUMENT INFORMATION

Scheduled delivery 2017-04-31
Actual delivery 2017-04-27
Version 1.0
Responsible partner UNIMAN

DISSEMINATION LEVEL

PU — Public

REVISION HISTORY

2017-04-18 | Samuel Relton | Final 1.0 Incorporated reviewer suggestions.
2017-03-27 | Samuel Relton | Draft 0.1 Initial version of document produced.

AUTHOR(S)

Negin Bagherpour (UNIMAN)
Jack Dongarra (UNIMAN)
Samuel Relton (UNIMAN)
Mawussi Zounon (UNIMAN)

INTERNAL REVIEWERS

Mirko Myllykoski (UMU)
Nicholas Higham (UNIMAN)
Vedran Novakovi¢ (STFC)

COPYRIGHT

This work is (©by the NLAFET Consortium, 2015-2018. Its duplication is allowed only
for personal, educational, or research uses.

ACKNOWLEDGEMENTS

This project has received funding from the Furopean Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/17

NLAFET D2.1: One-sided Matrix Factorizat

ions

Table of Contents

1 Introduction

2

Tile-based one-sided factorization

Runtime systems

Experimental setup

Cholesky factorization

LU factorization

@R factorization

Symmetric indefinite factorization

Conclusions

List of Figures

1
2

DAG for a small Cholesky factorization.
[Mustration of matrix division in square tiles as is the case in tile algorithms.
This helps working at a finer granularity to keep the maximum number of
COTes BUSY.
Performance of Cholesky factorization on NUMA node. The top row has
double complex precision on the left and double precision on the right. The
bottom row has complex precision on the left and single precision on the

Performance of Cholesky factorization on the KNL. The top row has double
complex precision on the left and double precision on the right. The bottom
row has complex precision on the left and single precision on the right.
Performance of LU factorization on NUMA node. The top row has double
complex precision on the left and double precision on the right. The bottom
row has complex precision on the left and single precision on the right.
Performance of LU factorization on the KNL. The top row has double
complex precision on the left and double precision on the right. The bottom
row has complex precision on the left and single precision on the right.
Performance of QR factorization on NUMA node. The top row has double
complex precision on the left and double precision on the right. The bottom
row has complex precision on the left and single precision on the right.
Performance of QR factorization on the KNL. The top row has double
complex precision on the left and double precision on the right. The bottom
row has complex precision on the left and single precision on the right.
Performance of symmetric-indefinite factorization on NUMA node. The
top row has double complex precision on the left and double precision on
the right. The bottom row has complex precision on the left and single
precision on the right. o o

10

11

12

11

12

13

14

15

http://www.nlafet.eu/

NLAFET D2.1: One-sided Matrix Factorizations

10 Performance of symmetric-indefinite factorization on the KNL. The top row
has double complex precision on the left and double precision on the right.
The bottom row has complex precision on the left and single precision on
theright. o 17

List of Tables

1 Architecture details for the Intel Broadwell NUMA node and the Intel
Xeon Phi (KNL). Note that gcc is used for compatibility with the KStar
source-to-source compiler. Lo 8

http://www.nlafet.eu/ 3/17

NLAFET D2.1: One-sided Matrix Factorizations

1 Introduction

The Description of Action (DoA) document states for deliverable D2.1:

“D2.1: One-sided matriz factorizations

Report on tile algorithms and new experimental algorithms for matrix factor-
izations (LU, Cholesky, symmetric indefinite, and QR). Includes reporting on
and documentation of prototype code developed.”

This deliverable is in the context of Task 2.1 (Linear System Solvers).

The primary use of high-performance linear algebra software in scientific applications
is in solving linear systems. Whether one needs to solve a system arising from the dis-
cretization of a partial differential equation, fit a model to some data in a least-squares
sense, or solve a KKT system in an optimization problem, there will undoubtedly be
linear systems to solve. As applications have evolved these systems have become larger,
necessitating the use of high-performance linear algebra routines to solve them in a rea-
sonable amount of time. Usually such dense systems are solved using the Cholesky, LU,
QR, or symmetric-indefinite factorizations (collectively known as the one-sided factoriza-
tions). The LAPACK names for these factorizations are POTRF, GETRF, GEQRF, and
(SY/HE)TRF, respectively.

In this work we compare different implementations of these routines using the novel
task-based programming paradigm. Whilst this has existed for a number of years in the
runtimes described in section 3, it has only recently been supported in OpenMP, since
version 4.0. Our efforts in applying OpenMP to this problem are collated in the new
release of the PLASMA library [1] which aims to implement the entire of the LAPACK
standard [3] in this fashion.

The task-based programming paradigm breaks each linear algebra problem into a
series of tasks operating on blocks of data. These tasks can depend on one another: for
instance in a typical panel factorization algorithm the tasks used to factorize the panel
need to be completed before the tasks to update the trailing matrix can begin. Typically
these interdependencies are expressed using a directed acylic graph (DAG), which is also
known as a task-graph. The nodes of the graph are functions to be computed and the
edges denote dependencies between the output of one task to the input of another. As an
example, the DAG for a small Cholesky factorization is shown in Figure 1.

The red, blue, purple, and green tasks correspond to SPOTRF, STRSM, SSYRK,
and SGEMM tasks whilst the arrows show the dependency between tasks. Fach task
will (usually) be performed by a single core and each completed task leads to further
tasks becoming available. Once the dependencies for a task have been fulfilled it can
immediately be assigned to a core. Some more detail on this model of programming used
in a linear algebra context is given in section 2.

The goal of this report is to compare implementations of the four factorizations men-
tioned above using a variety of runtime systems in a multi-core environment. Each sys-
tem is utilizing the same DAG and differs only in the way that tasks are assigned to
the available cores. We also compare against reference Intel MKL for completeness. The
performance of each implementation is measured on modern computer architectures: an
Intel Broadwell NUMA node and the Intel Xeon Phi (codenamed Knights Landing).

The rest of this document is arranged as follows. Section 2 gives an introduction
to the use of tile-based algorithms and task-based programming in linear algebra. In

http://www.nlafet.eu/ 4/17

NLAFET D2.1: One-sided Matrix Factorizations

Figure 1: DAG for a small Cholesky factorization.

section 3 we give a brief summary of the capabilities of the various runtime systems used
to implement the four factorizations. Section 4 gives more detail on the software libraries
and architectures used in our experiments. Sections 5-8 then contain the experimental
results for the four one-sided factorizations. Finally we summarize the results and give
some conclusions in section 9.

2 Tile-based one-sided factorization

While LAPACK [3] linear algebra factorization algorithms were successful in exploiting
early cache-based architectures, they have shown significant performance limitations on
modern many/multi-core architectures and many well-tuned LAPACK-style kernels fail
to achieve satisfactory performance on these architectures [2]. As reported by Dongarra
et al. in [8], three factors contribute to this performance penalty.

The first factor is the fork-join parallelism model appearing in LAPACK when it is
linked with multi-threaded BLAS. This model induces a high overhead on massively par-
allel architectures since it introduces many unnecessary synchronization points, keeping
many computational resources frequently idle. Secondly, LAPACK processes data at a
coarse granularity, typically working on the block-column level (also known as a panel),
which fails to exhibit enough parallelism to keep all the cores busy. Finally, while all
factorization algorithms in LAPACK are based on a recursive panel factorization followed
by an update to the corresponding trailing matrix, the panel factorization uses memory-
bound operations (i.e. level-1 and level-2 BLAS operations).

In order to use modern many/multi-core architectures at full efficiency, a new gen-
eration of linear algebra libraries such as PLASMA [6] have cast LAPACK panel-based
algorithms into tile algorithms. Tile algorithms enjoy the property of addressing each
of the three drawbacks that keep LAPACK from providing a reasonable performance on
modern massively parallel architectures. In fact, tile algorithms operate at a finer gran-

http://www.nlafet.eu/ 5/17

NLAFET D2.1: One-sided Matrix Factorizations

ularity by dividing the whole matrix into small square tiles which are more likely to fit
into fast memory, such as the L2 cache of a CPU, as illustrated in Figure 2.

(a) Initial matrix. (b) 5 x5 tile matrix. (c) Many kernels operating
on different tiles in parallel.

Figure 2: Illustration of matrix division in square tiles as is the case in tile algorithms.
This helps working at a finer granularity to keep the maximum number of cores busy.

The order of execution of the tasks in tile algorithms are commonly represented in the
form of a DAG in which each node represents a task, while the edges represent the data
dependencies between the tasks. These tasks are then scheduled by a runtime system
that checks the dependencies and takes care of launching tasks on appropriate cores.

The superiority of the tile layout algorithms over traditional approaches has been
demonstrated conclusively through a one-sided factorization benchmark suite [2].

In the last few years, the PLASMA development team dedicated their full energy to
designing highly efficient tile algorithms for one-sided factorizations. In 2008, Buttari et
al. [7], introduced the first algorithm for parallel tiled QR factorization for multicore ar-
chitectures. This algorithm was extended in 2010 by Hadri et al. [9] to present a new fully
asynchronous method for computing a QR factorization of tall and skinny matrices. The
Cholesky and LU factorization versions are studied in [6], while the algorithm to compute
the LDLT factorization of symmetric indefinite matrices is discussed in [5] (though we
add Aasen pivoting in the implementations compared here).

This work revisits the state-of-the-art tile algorithms for one-sided factorizations and
provides an efficient task-based OpenMP implementation for comparison with other run-
time systems.

3 Runtime systems

Each runtime system used in this report has a variety of features that makes them unique.
In this section we will describe the unique features of each runtime system that we com-
pare. Even though this report focuses on multi-core environments, some of the runtime
systems also support the use of accelerators and can scale to distributed architectures
with minimal effort. The runtime systems that we will use are

e OpenMP!,
e Quark, and
e StarPU.

http://www.openmp.org

http://www.nlafet.eu/ 6/17

NLAFET D2.1: One-sided Matrix Factorizations

OpenMP is the standard way to parallelize code over a multi-core architecture. The
pragma #pragma omp parallel for is a well-known method for parallelizing loops over
the available cores. However, it is only recently that OpenMP began to support task-
based programming. This is the main drawback of using task-based OpenMP currently:
advanced features, such as assigning a priority to critical tasks or choosing from a variety
of different task scheduling strategies, are either not in the current OpenMP standard or
have not been widely implemented. This is due to the relative immaturity of task-based
programming within OpenMP. Meanwhile, the benefits to using OpenMP are its wide
availability and lightweight framework (meaning there are few significant overheads when
using the task-based paradigm). As is well known, current OpenMP implementations do
not widely support the use of accelerators and OpenMP is not designed for distributed
memory computation.

Quark is a research project implementing task-based programming produced by ICL
at the University of Tennessee?. It was one of the first frameworks to support this style
of programming and as such does not follow all of the standards defined by the OpenMP
Standardisation Committee. Since Quark is a fairly old research project it is not under
current development: at the moment it is still highly relevant but this will of course fade in
the coming years as OpenMP evolves. Quark does not support accelerators or distributed
memory.

StarPU is a runtime system built by Inria Bordeaux [4]. The system supports the
use of both GPUs and distributed memory computation, though neither of these features
are used in this report to ensure a fair comparison. Another key advantage of StarPU
over the other runtime systems is the incorporation of multiple different task scheduling
strategies. In this report we will use the “eager”, “dmda”, and “ws” strategies.

First, in the “eager” strategy, each core draws tasks independently from a centralised
queue whenever they become idle. This strategy does not allow for data prefetching since
the scheduling decision is taken as late as possible. Meanwhile, the “dmda” (deque model
data aware) strategy uses an estimate of the runtime based on a database of previous
runs (and memory transfer time) of each task to schedule them into multiple queues for
each core, aiming to minimize the overall runtime. The downside to this strategy is the
more complicated scheduling required, which may lead to overheads in task scheduling;
these overheads would be insignificant on larger distributed computations where data
transfer times dominate, though it remains to be seen how it performs on a single node.
Each run of the computation using the “dmda” strategy gives the scheduling system more
information upon which to base its future decisions. Finally, the “ws” (work-stealing)
strategy allows each core to steal work from the other cores when they become idle. This
is designed to keep all cores busy at all times.

There are a number of other scheduling strategies implemented within StarPU but
these are the ones best-suited to operation on a single node. Unfortunately the “prio”
scheduler using task priorities cannot be used in this report, since a native StarPU imple-
mentation is required to make use of task priority features: we use the KStar source-to-
source compiler in this work, which automatically converts OpenMP task-based programs
to StarPU programs®. The downside to StarPU is the additional overhead in task schedul-
ing as a result of the numerous advanced features supported. However, the support for
accelerators and distributed memory means that StarPU is readily applicable to hetero-
geneous computing environments.

2More information available at http://icl.utk.edu/quark/ as of 23rd March 2017.
3Downloaded from http://kstar.gforge.inria.fr on 23rd March 2017.

http://www.nlafet.eu/ 7/17

NLAFET D2.1: One-sided Matrix Factorizations

Table 1: Architecture details for the Intel Broadwell NUMA node and the Intel Xeon Phi
(KNL). Note that gcc is used for compatibility with the KStar source-to-source compiler.

Platform | Xeon E5-2690 v4 Xeon Phi 7250
Cores | 2 x 14 (2.6GHz) 68 (1.4GHz)
On-chip Memory | L1 32KB (per core) L1 32KB (per core)
L2 256KB (per core) L2 512KB (per core)
L3 35MB (per NUMA island) | MCDRAM 16GB
Main Memory | 128GB DDRA4 320GB DDR4
Bandwidth | 76.8 GB/s 115.2 GB/s
Compiler | gce 5.4.0 gee 6.1.0
MKL version | 17.0.1 17.0.2

There are also other runtime systems that could be considered, in particular ParSec
(also from ICL at the University of Tennessee)?. ParSec supports the use of accelerators
and distributed memory machines, but is currently rather difficult to use due to the
different way the DAG is described. The ParSec team is currently working on a simplified
interface, similar to that used by StarPU, along with a similar source-to-source compiler
for converting OpenMP code.

4 Experimental setup

Each of our experiments covering the four one-sided factorizations will be performed on
two different architectures, to show the level of performance that can be expected on
modern multi-core platforms. In Table 1 we describe each architecture in more detail and
list the compilers and versions of MKL used but, briefly, we have:

e a 2-socket NUMA node with Intel Broadwell processors, and
e the new Intel Xeon Phi (codenamed Knights Landing, i.e. KNL).

Note that, on the Intel KNL, we are using the DDR4 memory as opposed to the MC-
DRAM. Using the MCDRAM explicitly can result in much higher performance rates, but
the amount of available memory is limited.

In each scenario we will compare a number of different software libraries for the factor-
izations which, in each case, will be linked with Intel MKL BLAS. Therefore, the software
libraries differ only in their implementation of the routines at the LAPACK level of ab-
straction, along with the scheduling system used in the task-based libraries. The libraries
used are:

e Intel MKL (versions given in Table 1),
e PLASMA 2.8.0 (Quark),

e PLASMA 17 (OpenMP), and

e PLASMA KStar (StarPU).

4 Available from https://bitbucket.org/icldistcomp/parsec as of 23rd March 2017.

http://www.nlafet.eu/ 8/17

NLAFET D2.1: One-sided Matrix Factorizations

First, we use the vendor optimized versions of LAPACK to compute each operation.
The second and third libraries are different versions of the PLASMA library, one of which
uses the Quark runtime whilst the other uses OpenMP to schedule the tasks. Both libraries
use a task-based programming model and involve splitting large matrices into tiles, upon
which sequential BLAS operations occur. Computing multiple tasks simultaneously is the
major source of parallelism within these two libraries. Finally, we have used the KStar
source-to-source compiler to automatically convert the OpenMP version of PLASMA to
use StarPU. This allows us to use the advanced scheduling strategies implemented in
StarPU: we use the “eager”, “dmda’,” and “ws” strategies in our experiments as discussed
in the previous section. Due to some issues with the automatic conversion of the source
code, in particular the way certain memory locations are accessed during pivoting, we are
unable to use PLASMA KStar for all routines: we can use PLASMA KStar only for the
Cholesky and QR factorizations.

For each of the one-sided factorizations, and on each architecture, we will test the
performance of each implementation as the matrix size increases: typically performance
increases with the size of the matrix until some maximal data-throughput rate is reached.

At this point, it is worth reiterating that the goal of this report is to compare the run-
time systems themselves and not the actual performance obtained. We are using untuned
versions of PLASMA in these experiments, meaning that much better performance can
be obtained after autotuning of the tile size, which is the subject of NLAFET deliverable
D6.4. Therefore comparisons with MKL at this point may be considered rather prema-
ture, though we feel it is important to compare these preliminary implementations with
state-of-the-art vendor releases.

5 Cholesky factorization

Figure 3 gives the performance results for computing a Cholesky factorization on the
NUMA node in each of the four standard precisions. In all four precisions we see that
StarPU with the “eager” strategy gives the best performance over essentially all matrix
sizes. This is closely followed by the “ws” strategy and Quark. In double complex preci-
sion the “eager” strategy gives the best performance until matrices with n > 13000 are
considered, after which MKL and OpenMP perform the factorization faster.

In Figure 4 we perform the same experiment on the KNL. In all cases we see that Quark
and StarPU with the “eager” scheduler are the best amongst the PLASMA implementa-
tions, and the best overall until the largest test matrices are used. OpenMP appears to be
lagging behind the other implementations in performance most of the time, but does not
suffer the same stagnation as Quark and StarPU. Indeed MKL and OpenMP scale well as
the matrix size increases: the performance of the other PLASMA-based implementations
begins to stagnate whilst MKL and OpenMP keep increasing. With further autotun-
ing described in NLAFET deliverable D6.4 we will be able to increase the performance
substantially.

6 LU factorization

Next we look at the LU factorization. The KStar source-to-source compiler was unable to
convert the OpenMP implementation into StarPU here, due to the coding style utilized,
so the various StarPU versions do not appear in this section.

http://www.nlafet.eu/ 9/17

NLAFET D2.1: One-sided Matrix Factorizations

zpotrf_broadwell dpotrf_broadwell

800
700
600

1000

800

600 500

Z MKL Z MKL
& g 400
oo Quark = Quark
C 400 OpenMP O 300 OpenMP
StarPU_eager 200 StarPU_eager
200 StarPU_dmda StarPU_dmda
StarPU_ws 100 StarPU_ws
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
n n
cpotrf_broadwell spotrf_broadwell
2000 1600
1400 MKL
Quark
1500 1200 OpenMP
1000 StarPU_eager
Z MKL Z .
= 1000 Qe S 800 StarPU_dmda
= uar = StarPU_ws
o OpenMP © 600
500 StarPU_eager 400
StarPU_dmda
StarPU_ws 200
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
n n

Figure 3: Performance of Cholesky factorization on NUMA node. The top row has
double complex precision on the left and double precision on the right. The bottom row
has complex precision on the left and single precision on the right.

In Figure 5 we plot the results from the NUMA node. Here we see that MKL and Quark
give relatively similar performance, though Quark is significantly slower for the larger
matrices in our experiments. In all cases OpenMP lags behind all other implementations:
this is due to the way that task-dependencies have been expressed in the new PLASMA
implementation, leading to less parallelism being expressed, and should not be considered
a deficiency of the runtime itself. The PLASMA development team are currently exploring
options to rectify the situation which will be released imminently.

In Figure 6 we perform the same experiment on the KNL system. As before, the MKL
implementation scales well whilst the performance of Quark stagnates and even decreases
slightly for very large matrices. Meanwhile, the lower level of parallelism expressed by
the OpenMP implementation, due to the issues mentioned above, leads to an enormous
performance hit on the KNL: the large number of cores need lots of parallelism to be
utilised efficiently. When the OpenMP version is reimplemented we expect to see per-
formance similar to that of MKL. One interesting feature of these plots is that for the
smaller matrices in our tests, Quark is significantly faster than both MKL and LAPACK.

7 QR factorization

The third factorization we consider is QR. The KStar source-to-source compiler was able
to generate StarPU code for this particular routine so all runtimes are present.

In Figure 7 we have the performance of the different implementations on the NUMA
node for all four precisions. For double and double complex precision on the top row,

http://www.nlafet.eu/ 10/17

NLAFET D2.1: One-sided Matrix Factorizations

zpotrf_knl dpotrf_knl
700 400
MKL MKL
350
600 Quark Quark
500 OpenMP 300 OpenMP
400 StarPU _eager ~250 StarPU_eager
= StarPU_dmda = 200 StarPU_dmda
] =]
= 300 StarPU_ws = StarPU_w§
&} O 150
200 100
100 50
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
n n
cpotrf_knl spotrf_knl
1400 700
1200 MKL 600 MEL
Quark Quark
1000 OpenMP 500 OpenMP
) StarPU _eager A StarPU_eager
g 800 StarPU_dmda § 00 StarPU_dmda
= StarPU_$ = StarPU_ws
5 600 5 300 ws
400 200
200 100
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
n n

Figure 4: Performance of Cholesky factorization on the KNL. The top row has double
complex precision on the left and double precision on the right. The bottom row has
complex precision on the left and single precision on the right.

we see that initially StarPU with the “eager” and “ws” strategies perform best, closely
followed by Quark. However, after matrices of size 8000-10000 (depending upon the
precision) are considered, MKL takes the lead whilst the performance of the other runtimes
begin to stagnate. OpenMP is often the worst performer in these cases, and also stagnates
when larger matrices are used. For complex and single precision the behaviour is rather
similar, though StarPU with the “eager” scheduler is competitive until matrices of size
larger than 10000 are used.

We perform the same experiment on the KNL in Figure 8. Here we see that all
runtimes except for MKL stagnate very quickly and give relatively poor performance by
comparison. These issues may well be resolved by utilising the autotuning described in
NLAFET deliverable D6.4. Even though the performance leaves much to be desired, we
can see that StarPU with the “eager” strategy and Quark perform significantly better
than the other PLASMA-based implementations.

8 Symmetric indefinite factorization

Finally, we look at the symmetric indefinite factorization. Unfortunately, KStar could not
generate a StarPU version of this function so we can only compare OpenMP and Quark
MKL in this scenario.

The results obtained on the NUMA node are given in Figure 9. We see that clearly
MKL is performing very well, but OpenMP is significantly better than Quark. Interest-
ingly, none of the implementations are stagnating when the larger matrices are used.

http://www.nlafet.eu/ 11/17

NLAFET D2.1: One-sided Matrix Factorizations

zgetrf_broadwell dgetrf_broadwell
1200 900
1000 MKL 800 MKL
Quark 700 Quark
OpenMP OpenMP
800 600
% w0 £ 500
D
B £ 400
] 3
400 300
200
200
100
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
n n
cgetrf_broadwell sgetrf_broadwell
2500 1600
MKL 1400 MKL
2000 Quark Quark
OpenMP 1200 OpenMP
1500 1000
< <
& £ 800
S 1000 S 600
400
500
200
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
n n

Figure 5: Performance of LU factorization on NUMA node. The top row has double
complex precision on the left and double precision on the right. The bottom row has
complex precision on the left and single precision on the right.

The corresponding results on the KNL are shown in Figure 10. The behaviour is very
similar to the previous experiment although Quark appears to be stagnating in some of
these experiments.

9 Conclusions

It is clear from our experiments that our current implementations in Quark, OpenMP, and
StarPU are not optimal. In order to catch up with MKL for larger matrices a significant
amount of autotuning will need to be performed (see deliverable D6.4). However, the
main goal of this report was to compare the various runtime systems.

It is clear that, when KStar was able to generate a StarPU version of our code, that
StarPU with either the “eager” or “ws” strategies outperformed OpenMP and Quark.
Since StarPU also supports GPUs and distributed memory computation, it is the clear
winner in our runtime comparison.

In further work we hope to compare against ParSec, once its source-to-source com-
piler is completed. We would also like to recompare the PLASMA-based implementations
against LAPACK and MKL once the autotuning from deliverable D6.4 has been incorpo-
rated.

http://www.nlafet.eu/ 12/17

NLAFET D2.1: One-sided Matrix Factorizations

zgetrf_knl dgetrf_knl
1000 600
MKL MKL
800 Quark 500 Quark
OpenMP OpenMP
400
» 600 -
~ ~
§' ‘_é‘ 300
G 400 3
200
200 100
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
n n
cgetrf_knl sgetrf_knl
2000 900
MKL 800 MKL
Quark Quark
1500 700
OpenMP OpenMP
600
B 1000 2500
£ £ 400
&) &}
300
300 200
100
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
n n

Figure 6: Performance of LU factorization on the KNL. The top row has double complex
precision on the left and double precision on the right. The bottom row has complex
precision on the left and single precision on the right.

References

1]

Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien
Langou, Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical linear algebra
on emerging architectures: The PLASMA and MAGMA projects. Journal of Physics:
Conference Series, 180(1), 2009.

Emmanuel Agullo, Bilel Hadri, Hatem Ltaief, and Jack Dongarrra. Comparative study
of one-sided factorizations with multiple software packages on multi-core hardware. In
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, page 20. ACM, 2009.

E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra,
J. J. Du Croz, A. Greenbaum, S. J. Hammarling, A. McKenney, and D. C. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, third edition, 1999.

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
StarPU: A unified platform for task scheduling on heterogeneous multicore archi-
tectures. Concurrency and Computation: Practice and Experience, 23(2):187-198,
February 2011.

Dulceneia Becker, Mathieu Faverge, and Jack J Dongarra. Towards a parallel tile LDL
factorization for multicore architectures. Technical report, INRIA, 2011.

http://www.nlafet.eu/ 13/17

NLAFET D2.1: One-sided Matrix Factorizations

zgeqrf_broadwell dgeqrf_broadwell
900 900
800 800
700 700
600 600
% 500 MKL g 500 MKL
g‘i 400 Quark ui.) 400 Quark
o
300 OpenMP 300 OpenMP
’ StarPU_eager) StarPU _eager
00 StarPU_dmda 00 StarPU_dmda
100 StarPU_ws 100 StarPU_ws
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
n n
cgeqrf_broadwell sgeqrf_broadwell
2000 1600
1400
1500 1200
1000
§ MKL g MKL
L% 1000 Quark 'u% 800 Quark
o OpenMP © 600 OpenMP
500 StarPU_eager 400 StarPU_eager
StarPU_dmda StarPU_dmda
StarPU_ws 200 StarPU_ws
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
n n

Figure 7: Performance of QR factorization on NUMA node. The top row has double
complex precision on the left and double precision on the right. The bottom row has
complex precision on the left and single precision on the right.

[6] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class of parallel
tiled linear algebra algorithms for multicore architectures. CoRR, abs/0709.1272, 2007.

[7] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. Parallel tiled QR
factorization for multicore architectures. Concurrency and Computation: Practice and
Ezperience, 20(13):1573-1590, 2008.

[8] Jack J Dongarra, Mathieu Faverge, Hatem Ltaief, and Piotr Luszczek. Achieving
numerical accuracy and high performance using recursive tile LU factorization. 2011.

[9] Bilel Hadri, Hatem Ltaief, Emmanuel Agullo, and Jack Dongarra. Tile QR factor-
ization with parallel panel processing for multicore architectures. In Parallel € Dis-
tributed Processing (IPDPS), 2010 IEEE International Symposium on, pages 1-10.
IEEE, 2010.

http://www.nlafet.eu/ 14/17

NLAFET D2.1: One-sided Matrix Factorizations

zgeqrf_knl dgeqrf knl
800 ecd 600 gcd
MKL MKL
700
Quark 500 Quark
600 OpenMP 400 OpenMP
500 StarPU_eager) StarPU_eager
g 400 StarPU_dmda § 300 StarPU_dmda
% StarPU_ws. % StarPU_ws
300 200
200
100 100
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
n n
cgeqrf_knl sgeqrf_knl
1800 £cd 1200 £cd
1600 MKL MKL
1400 Quark 1000 Quark
1200 OpenMP 800 OpenMP
) StarPU _eager) StarPU_eager
= 1000 StarPU_dmda = 60 StarPU_dmda
S 3
= 800 StarPU-ws = StarPU_ws
O &)
600 400
400
200
200
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
n n

Figure 8: Performance of Q)R factorization on the KNL. The top row has double complex
precision on the left and double precision on the right. The bottom row has complex
precision on the left and single precision on the right.

http://www.nlafet.eu/ 15/17

NLAFET D2.1: One-sided Matrix Factorizations
zhetrf_broadwell dsytrf_broadwell
1000 450
MKL 400 MKL
800 Quark 350 Quark
OpenMP OpenMP
300
» 000 2250
& &
S 400 g 200
150
200 100
50
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 2000 4000 6000 8000 10000 12000 14000 16000
n n
chetrf_broadwell ssytrf_broadwell
1800 1000
1600 MKL MKL
1400 Quark 800 Quark
OpenMP OpenMP
1200
<1000 o 600
& &
g 800 3 400
600
200

0

0 2000 4000 6000 8000 10000 12000 14000 16000

n

2000 4000 6000 8000 10000 12000 14000 16000

n

Figure 9: Performance of symmetric-indefinite factorization on NUMA node. The top row
has double complex precision on the left and double precision on the right. The bottom
row has complex precision on the left and single precision on the right.

http://www.nlafet.eu/

16/17

NLAFET D2.1: One-sided Matrix Factorizations
zhetrf_knl dsytrf_knl
200 160
MKL 140 MKL
Quark Quark
150 OpenMP 120 OpenMP
100
g 2
£ 100 & 80
= =
O O 60
50 40
20
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 2000 4000 6000 8000 10000 12000 14000 16000
n n
chetrf_knl ssytrf_knl
500 500
MKL MKL
400 Quark 400 Quark
OpenMP OpenMP
» 300 » 300
~ —~
& &
& 200 5 200
100 100
0

0
0 2000 4000 6000 8000 10000 12000 14000 16000

n

2000 4000 6000 8000 10000 12000 14000 16000

n

Figure 10: Performance of symmetric-indefinite factorization on the KNL. The top row
has double complex precision on the left and double precision on the right. The bottom
row has complex precision on the left and single precision on the right.

http://www.nlafet.eu/

17/17

