
H2020–FETHPC–2014: GA 671633

D2.5
Eigenvalue problem solvers

April 2017



NLAFET D2.5: Eigenvalue problem solvers

Document information

Scheduled delivery 2017-04-30
Actual delivery 2017-04-27
Version 1.0
Responsible partner UMU

Dissemination level

PU — Public

Revision history

Date Editor Status Ver. Changes
2017-03-28 CCKM Draft 0.1 Not applicable
2017-04-26 CCKM Final 1.0 Typographical errors fixed, figure placement

improved and a few new paragraphs added in
response to review questions.

Author(s)

Carl Christian Kjelgaard Mikkelsen (UMU)
Mirko Myllykoski (UMU)
Björn Adlerborn (UMU)
Lars Karlsson (UMU)
Bo Kågström (UMU)

Internal reviewers

Alan Ayala (INRIA)
Negin Bagherpour (UNIMAN)
Sven Hammarling (UNIMAN)
Mawussi Zounon (UNIMAN)

Copyright

This work is c© by the NLAFET Consortium, 2015–2018. Its duplication is allowed only
for personal, educational, or research uses.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/28



NLAFET D2.5: Eigenvalue problem solvers

Table of Contents
1 Introduction 4

1.1 Long term goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Our current focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Eigenvalue reordering 5
2.1 The fundamental swapping kernels . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The sequential algorithm implemented in DTRSEN . . . . . . . . . . . . . 6
2.3 The blocked algorithm implemented in BDTRSEN . . . . . . . . . . . . . 7
2.4 The parallel algorithm implemented in PBDTRSEN . . . . . . . . . . . . . 7

3 Our progress on eigenvalue reordering 8

4 The performance of reordering algorithms 8
4.1 Computer system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Test matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Experimental methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Time to solve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.6 Sequential execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.7 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.7.1 Weak scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.7.2 Strong scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.8 Flop rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.9 Idle time and overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.10 Tunability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 The next steps for eigenvalue reordering 16

6 Computation of eigenvectors 18
6.1 Robust scalar backward substitution . . . . . . . . . . . . . . . . . . . . . 18

7 Our progress on eigenvector computation 18
7.1 Robust block computation of eigenvectors . . . . . . . . . . . . . . . . . . 21
7.2 Simultaneous computation of multiple eigenvectors . . . . . . . . . . . . . 23

8 The performance of eigenvector computations 24
8.1 Computer system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.2 Test matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.3 Experimental methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.4 Software requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.5 Sequential execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.6 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8.6.1 Weak scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.6.2 Strong scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.7 Tunability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

http://www.nlafet.eu/ 2/28



NLAFET D2.5: Eigenvalue problem solvers

9 The next steps for eigenvector computation 27

10 Conclusion 27

List of Figures
1 The central idea behind BDTRSEN . . . . . . . . . . . . . . . . . . . . . . 7
2 The layout of our hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Comparison of PBDTRSEN and our new task-based algorithm . . . . . . . 11
4 Comparison of BDTRSEN and our new task-based algorithm . . . . . . . . 12
5 Weak scalability of our new task-based algorithm . . . . . . . . . . . . . . 13
6 Strong scalability of our new task-based algorithm . . . . . . . . . . . . . . 14
7 Lower bounds for the flop rate of our new task-based algorithm . . . . . . 15
8 Idle time and overhead for our new task-based algorithm . . . . . . . . . . 17
9 Comparison of ZTREVC3 and our new robust parallel algorithm . . . . . . 25
10 Weak scalability of our new robust parallel algorithm . . . . . . . . . . . . 26
11 Strong scalability of our new robust parallel algorithm . . . . . . . . . . . 26

http://www.nlafet.eu/ 3/28



NLAFET D2.5: Eigenvalue problem solvers

1 Introduction
The Description of Action document states for deliverable D2.5:

“D2.5 Eigenvalue problem solvers
Report on computation of eigenvectors and reordering of eigenvalues in Schur
and generalized Schur forms. Includes evaluation of the scalability and tun-
ability of the prototype software developed.”

This deliverable is in the context of Task 2.3 (Eigenvalue problem solvers).

1.1 Long term goals
The long term goal of the team at UMU is to develop and implement a full suite of task
based algorithms for the standard and generalized eigenvalue problems. For the purpose
of this deliverable, we have concentrated on the problem of reordering eigenvalues and
computing eigenvectors in parallel.

1.2 Eigenvalue problems
Given an n by n matrix A, the standard eigenvalue problem for A consists of finding
scalars (eigenvalues) λi and vectors vi 6= 0 (eigenvectors), such that

Avi = λivi. (1)

Given two n by n matrices A and B the generalized eigenvalue problem for the matrix
pencil A− λB consists of finding generalized eigenvalues λi and generalized eigenvectors
vi such that

Avi = λiBvi. (2)
Dense eigenvalue problems are solved by reducing the matrices to standard form. A square
complex matrix A has a Schur decomposition

A = QSQH (3)

where Q is a unitary matrix and S is an upper triangular matrix. Similarly, if A and B
are complex matrices, then there exist a generalized Schur decomposition

A = QSZH , B = QTZH , (4)

where Q and Z are unitary matrices, and S and T are upper triangular. The standard
eigenvalues of A are the diagonal elements of S. The generalized eigenvalues of the
pencil A − λB can be determined from the diagonal elements of the matrices S and T .
In both cases, the eigenvectors can be computed by backward substitution and back-
transformation to the original basis. Unitary transformations preserve the Euclidean
norm (two-norm) of vectors and matrices and are numerically stable.

A square real matrix A has a real Schur decomposition

A = QSQT (5)

where S is quasi upper triangular with 1 by 1 or 2 by 2 blocks on the diagonal and Q is
orthonormal. Each 2 by 2 block on the diagonal of S corresponds to a pair of complex

http://www.nlafet.eu/ 4/28



NLAFET D2.5: Eigenvalue problem solvers

conjugate eigenvalues of A. Similarly, if A and B are real matrices, then the pencil A−λB
has a real Schur decomposition

A = QSZT , B = QTZT (6)

where Q and Z are orthonormal matrices, S is quasi upper triangular and T is triangular.

1.3 Practical considerations
In practice, the reduction from the general form to the relevant Schur form is carried out
gradually using two-sided transformation algorithms. Here we sketch the procedure for
the standard eigenvalue problem. The matrix A is first transformed to upper Hessenberg
form

H = QHAQ. (7)

This is a direct method which requires a finite number of operations. We then reduce H
iteratively to upper triangular form S. The flow of the algorithm depends on the actual
floating point values. The eigenvalue reordering problem for S now consists of moving the
user’s selection of eigenvalues to the upper left corner of S. This problem is also solved
using a sequence of two-sided unitary transformations. They induce some very complex
data dependencies which are common to all two-sided transformation algorithms.

1.4 Our current focus
Currently, there exist in ScaLAPACK parallel algorithms for many of the two-sided reduc-
tions needed to reduce standard eigenvalue problems to Schur form [6]. These algorithms
are all based on message passing using MPI. There are algorithms for computing eigen-
vectors in ScaLAPACK, but with one very important limitation. During the backward
substitution phase there is either no protection against overflow or the code is essentially
sequential. Normally, we can solve triangular linear systems very accurately, but in the
context of eigenvector computation, the solver is likely to overflow if the eigenvalue is
part of a cluster of nearby eigenvalues. Eigensolvers fight overflow by scaling the solution
dynamically. Until now, this has proven difficult to do efficiently in parallel.

In view of the current state of ScaLAPACK, we have concentrated on two topics:

1. Solving the reordering problem for the standard eigenvalue problem for matrices in
real Schur form.

2. Computing (right) eigenvectors for the standard eigenvalue problem for matrices in
complex Schur form.

We will apply the lessons learned from these special cases to the problem of developing
other task based algorithms for both standard and generalized eigenvalue problems.

2 Eigenvalue reordering
Given a real Schur decomposition A = QSQT , the eigenvalue reordering problem for S
consists of modifying the Schur basis Q such that selected eigenvalues of A appear in the
upper left corner of the modified matrix S.

http://www.nlafet.eu/ 5/28



NLAFET D2.5: Eigenvalue problem solvers

In this section we briefly review the previous work which is directly relevant for our
current work. We begin by discussing the kernels which form the basis for most known
algorithms. Moreover, we discuss the sequential algorithm which is implemented in LA-
PACK as DTRSEN, Kressner’s blocked improvement BDTRSEN as well as the parallel
algorithm implemented in ScaLAPACK as PBDTRSEN. We refer to the cited references
and the references therein for a more thorough survey of the field.

2.1 The fundamental swapping kernels
The fundamental swapping kernels by Bai and Demmel (1993) [3] form the basis for most
known algorithms for the reordering problem. Consider a matrix S in real Schur form
which has only two diagonal blocks, i.e.

S =
[
S11 S12
0 S22

]
,

where S11 and S22 have size at most 2 × 2. Then the swapping kernels can be used to
compute an orthonormal matrix V such that

V TSV =
[
S̃11 S̃12
0 S̃22

]
,

where S̃11 and S̃22 have the same eigenvalues as S22 and S11. We say that the blocks/eigenvalues
have been swapped.

The swapping kernels are based on the robust solution of a tiny Sylvester equation by
solving the equivalent linear system using Gaussian elimination with complete pivoting
and scaling to avoid overflow. Backward stability is guaranteed by cheaply monitoring
the perturbations introduced by each swap and rejecting those swaps that lead to unac-
ceptably large errors. The authors were unable to find or construct an example were the
method failed, indicating that even though failures are a theoretical possibility, they are
extremely rare in practice.

Kågström and Poromaa (1996) [7] have extended the work by Bai and Demmel to the
generalized eigenvalue reordering problem. Their algorithm is based on the robust solution
of a tiny generalized Sylvester equation and similarly guarantees backward stability.

2.2 The sequential algorithm implemented in DTRSEN
The sequential algorithm implemented in LAPACK as DTRSEN is based on the swapping
kernels by Bai and Demmel (1993) [3]. The user’s selection of eigenvalues is systematically
reordered to the top left corner of the matrix by repeatedly swapping adjacent blocks.
The orthogonal transformation constructed from a small submatrix enclosing a pair of
adjacent blocks affect all entries above and to the right of the submatrix. In principle, it
is possible to swap any pair of blocks, but unless the blocks are adjacent, the real Schur
form is destroyed by fill-in. One can readily solve the reordering problem by scanning the
diagonal of S from the upper left to the lower right corner, moving any selected blocks to
the top by a sequence of swaps. This is the approach taken in DTRSEN. The computation
is memory bound because it contains many low-level BLAS operations.

http://www.nlafet.eu/ 6/28



NLAFET D2.5: Eigenvalue problem solvers

(a) Before

××
×
×
×
×

×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×
×

×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×

×

×

(b) After

××
×
×
×
×

×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×
×

×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×

×

×

Figure 1: Illustration of a quasi-triangular matrix of dimension n = 16 with three selected
1×1 blocks within a window (submatrix on the diagonal) of dimension w = 6. The initial
and final placements of the selected blocks are shown in (a) and (b), respectively. The
transformation of the big matrix proceeds in three logical steps. The blocks are reordered
by a sequence of swaps applied only within the window. The resulting transformations
are then applied using level 3 BLAS to the indicated off-diagonal submatrices above and
to the right of the window.

2.3 The blocked algorithm implemented in BDTRSEN
Kressner (2006) [8] improves the execution rate of the reordering algorithms in both [3]
and [7] by reorganizing the computations for improved cache reuse. Specifically, a group
of eigenvalues is reordered within a small window on the diagonal. Most of the off-
diagonal updates are delayed and applied efficiently either in factored form or using the
Level 3 BLAS matrix multiply and add routine DGEMM after explicitly accumulating
the transformations. This is the approach take in BDTRSEN. The idea is best illustrated
by a small example; see Figure 1. Three selected blocks (which all happen to be of size
1 × 1) are highlighted. A window of size w = 6 is placed on the diagonal such that the
selected block furthest down the diagonal is located flush against the bottom right corner
of the window. The selected blocks are reordered by a sequence of swaps (in this case,
2+2+3 = 7 swaps) such that they end up as illustrated in Figure 1(b). The key is to only
apply the transformations to the window at this stage. The window computation consists
of an interleaved mix of updates from both the left and the right and is hard to implement
efficiently. After processing the window, the resulting transformations are accumulated
into a small orthogonal matrix of size w×w. This new transformation is applied from the
left to the block row to the right of the window and from the right to the block column
above the window. These two operations are done efficiently using DGEMM operations.

2.4 The parallel algorithm implemented in PBDTRSEN
Granat, Kågström, and Kressner (2009) [5] present a parallel algorithm for both the stan-
dard and generalized reordering problems. The algorithms are based on those in [8] and
the software is expressed in the ScaLAPACK style, i.e. the processes are arranged in a

http://www.nlafet.eu/ 7/28



NLAFET D2.5: Eigenvalue problem solvers

mesh and the matrices are distributed in a two-dimensional block-cyclic fashion. Sev-
eral sliding computational windows are introduced to increase the degree of concurrency.
Global synchronization is needed to alternate between updates along block rows and
along block columns. Eigenvalues are reordered across a process border by redundantly
processing the window on the processors which own the two diagonal blocks.

3 Our progress on eigenvalue reordering
We have developed a task based parallel algorithm for reordering eigenvalues in real Schur
forms. Our current implementation can be executed in parallel using StarPU1. Three
factors contributed to our choice of run-time system. Firstly, StarPU is well documented
and contains all the desirable features identified in Deliverable D6.1. Secondly, initial
progression to distributed memory machines is straightforward as StarPU is able to deduce
all necessary node-to-node communications from the task graph once the data distribution
is provided. A high performance distributed memory implementation is likely to require
additional work, but in principle, the same StarPU code can be executed in both shared
and distributed memory machines. And finally, since the diagonal windows necessary
overlap and a single sliding window is not usually enough to reorder the whole matrix,
the resulting data dependencies become extremely complex. This effectively excludes less
powerful run-time systems, such as OpenMP, from the list of run-time systems which can
be used.

Parallelism is achieved by using multiple sliding windows in a manner similar to PB-
DTRSEN. Each sliding window manifests itself as a semi-independent entry point into the
task graph. Different sliding windows are not necessarily independent as one may block
another. The main advantage of the task based approach is that we have eliminated
the need for global synchronization associated with the repeated updates along the rows
and columns. The technical details are complicated and are discussed in the NLAFET
Working Note 11 [10].

Our current implementation has been very successful on a shared memory machine,
see Section 4. It is faster than PBDTRSEN by a factor of at least 3, but more importantly
it makes excellent use of the available resources. The weak and strong scaling efficiencies
are well above 50% for all but the smallest test problems. It routinely exceeds 50% of the
peak flop rate. With the exception of the smallest problems tested there is hardly any
idle time and the parallel overhead is tiny.

We are currently rewriting and extending our code to run efficiently on a distributed
memory machine using StarPU. In addition, work to extend the algorithms to generalized
Schur forms is underway.

Our current implementation is available for download from the NLAFET repository
Eigen-reorder. The code can automatically generate test examples and verify the results.
For more details see Deliverable D7.5.

4 The performance of reordering algorithms
In this section, we present results pertaining to reordering of eigenvalues for matrices in
real Schur form, on a shared memory machine using StarPU, double precision arithmetic
and accumulation of the transformations needed to process the windows. Our software

1The StarPU project is hosted at this address http://starpu.gforge.inria.fr/

http://www.nlafet.eu/ 8/28



NLAFET D2.5: Eigenvalue problem solvers

is capable of assigning different priorities for different tasks. Thus, we decided to use the
prio scheduler (a central task queue based scheduler that sorts tasks by priority specified
by the programmer) in our experiments.

4.1 Computer system
All experiments were executed on the Kebnekaise system at HPC2N, Umeå University.
Each compute node contains 28 Intel Xeon E5-2690v4 cores organized in 2 NUMA island
with 14 cores each (Intel Broadwell). The nodes are connected with an FDR Infiniband
Network. Each compute core has 32 KB L1 data cache, 32 KB L1 instruction cache and
256 KB L2 cache. Moreover, for every NUMA island there is 35 MB of shared L3 cache.
There is 128 GB of RAM per compute node. A schematic representation of a compute
node is shown in Figure 2.

Figure 2: Schematic representation of a compute node of the Kebnekaise system at
HPC2N, Umeå University.

4.2 Test matrices
We have developed a generator which can build a complete experiment from a single
random seed and a small set of parameters (n, k, q). Here n is the dimension of the matrix
A, k is the number of pairs of complex conjugate eigenvalues and q is the probability that
the user selects any given diagonal block.

4.3 Experimental methodology
All timings were done using the clock_gettime function. Each experiment was repeated
several times: once to validate the output and three times to measure the runtime. The
runtimes were saved and the median was computed. Problems were generated from a
random seed using the parameters listed here:

1. Matrix dimension n ∈ {10000, 20000, 30000, 40000}.

2. Number of pairs of complex conjugate eigenvalues k = n/4, that is, half of the
eigenvalues belong to complex conjugate pairs.

http://www.nlafet.eu/ 9/28



NLAFET D2.5: Eigenvalue problem solvers

3. The probability q of the user choosing a specific diagonal block,

q ∈ {0.05, 0.015, 0.35, 0.50}.

Parallel experiments with p cores were always executed using cores 0 though p − 1, see
Figure 2.

4.4 Accuracy
Results are worthless if they are not accurate. With respect to all experiments reported
the following statements are true.

1. For each reordered eigenvalue λ̂, we have the relative error bound

|λ− λ̂|
|λ|

. 900u, (8)

where λ is the original value of the eigenvalue.

2. For each reordered Schur decomposition Â = Q̂ŜQ̂T we have a relative backward
error bound

‖A− Â‖F
‖A‖F

. 190u, (9)

where A = QSQT is the original matrix.

3. For each new Schur basis Q̂, we have

‖Q̂T Q̂− I‖F
‖I‖F

. 315u, (10)

which shows that the orthogonality is very nearly preserved.

In exact arithmetic, the errors should be zero. The small values obtained merely serve
to illustrate that our StarPU implementation does not commit any obvious errors for the
well conditioned test problems considered.

4.5 Time to solve
We report on the speed of our StarPU implementation relative to the existing ScaLA-
PACK routine PBDTRSEN. We compare the case of 28 MPI ranks to the case of 28
StarPU workers, i.e. full utilization of a single node on Kebnekaise. The results are illus-
trated in Figure 3. It is clear that our StarPU implementation is significantly faster than
PBDTRSEN. In particular, for the largest problem size, we record a speedup well above
3 regardless of the number of selected eigenvalues.

4.6 Sequential execution
We report on the time Ts to solve problems using single threaded code and compare our
code to the sequential blocked code BDTRSEN. This is important because it allows us
to determine the best sequential code and establish a baseline against which all parallel
speedups should be computed. Our results are shown in Figure 4. We note the paradoxical

http://www.nlafet.eu/ 10/28



NLAFET D2.5: Eigenvalue problem solvers

 0

 50

 100

 150

 200

 250

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

MPI versus StarPU / Kebnekaise / 5% selected

MPI (28 ranks)
StarPU (28 workers)

(a) 5% selected.

 0

 50

 100

 150

 200

 250

 300

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

MPI versus StarPU / Kebnekaise / 15% selected

MPI (28 ranks)
StarPU (28 workers)

(b) 15% selected.

 0

 100

 200

 300

 400

 500

 600

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

MPI versus StarPU / Kebnekaise / 35% selected

MPI (28 ranks)
StarPU (28 workers)

(c) 35% selected.

 0

 100

 200

 300

 400

 500

 600

 700

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

MPI versus StarPU / Kebnekaise / 50% selected

MPI (28 ranks)
StarPU (28 workers)

(d) 50% selected.

Figure 3: Comparison of the runtime for PBDTRSEN from ScaLAPACK and our new
StarPU implementation. The number of selected eigenvalues relative to the matrix size
runs through the values 5, 15, 35, and 50 percent. Observe that the scale on the y-axis
varies between sub-figures.

http://www.nlafet.eu/ 11/28



NLAFET D2.5: Eigenvalue problem solvers

result that our StarPU implementation which uses BDTRSEN as a kernel, is somewhat
faster than BDTRSEN running alone.

It remains an open problem to fully explain this situation, but the fact that the window
size can chosen more freely in our implementations is probably a major factor. This allows
us to have larger update task which implies fewer and larger DGEMM operations, hence
a higher floprate.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

StarPU runtime / Kebnekaise / 5% selected

BDTRSEN
1 worker

4 workers
12 workers
20 workers
28 workers

(a) 5% selected.

 0

 500

 1000

 1500

 2000

 2500

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

StarPU runtime / Kebnekaise / 15% selected

BDTRSEN
1 worker

4 workers
12 workers
20 workers
28 workers

(b) 15% selected.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

StarPU runtime / Kebnekaise / 35% selected

BDTRSEN
1 worker

4 workers
12 workers
20 workers
28 workers

(c) 35% selected.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

10000 20000 30000 40000

R
u
n
ti

m
e
 [

s]

Matrix dimension

StarPU runtime / Kebnekaise / 50% selected

BDTRSEN
1 worker

4 workers
12 workers
20 workers
28 workers

(d) 50% selected.

Figure 4: The runtime of the sequential code BDTRSEN and our StarPU implementation.
The number of selected eigenvalues relative to the matrix size runs through the values 5,
15, 35, and 50 percent. Observe that the scale on the y-axis varies between sub-figures.

http://www.nlafet.eu/ 12/28



NLAFET D2.5: Eigenvalue problem solvers

4.7 Scalability
The scalability of a program measures its response to an increase in the number of pro-
cessing units. In the context of high performance computing, we are interested in weak
and strong scalability. In both cases we report on the parallel efficiency ρ given by

ρ = Ts
pTp

, (11)

where Ts is the serial execution time and Tp is the parallel execution time using p cores.

4.7.1 Weak scalability

Weak scalability refers to the situation where the problem size per processing unit is
constant as the number of units is increased. Here we report on the weak scalability
efficiency obtained by scaling our largest problem (n = 40 000) from p = 28 down to p = 1
core. Our results are plotted in Figure 5. We are pleased to report that the efficiencies
are well above 60%. Except for some minor bumps the curves decrease monotonically as
expected.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  8  12  16  20  24  28

N = 40,000 for 28 cores

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Weak scalability / StarPU / Kebnekaise

5% selected
15% selected
35% selected
50% selected

Figure 5: Weak scalability of our StarPU implementation.

4.7.2 Strong scalability

Strong scalability refers to the situation where the problem size is constant as the number
of processing units is increased. Here we report on strong scalability efficiency. Our results
are shown in Figure 6. Ideally, one would like to obtain curves which are monotone and
slowly decreasing. It is almost true for our experiments with the exception of the case of
5% and 15% percent selected eigenvalues. In general, shorter runs are more sensitive to

http://www.nlafet.eu/ 13/28



NLAFET D2.5: Eigenvalue problem solvers

disruptions beyond our control, i.e. intervention by the operating system, so we are not
surprised to record bumps when the computational load is rather light.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  8  12  16  20  24  28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Strong scalability / StarPU / Kebnekaise / 5% selected

N = 10000
N = 20000
N = 30000
N = 40000

(a) 5% selected.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  8  12  16  20  24  28
E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Strong scalability / StarPU / Kebnekaise / 15% selected

N = 10000
N = 20000
N = 30000
N = 40000

(b) 15% selected.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  8  12  16  20  24  28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Strong scalability / StarPU / Kebnekaise / 35% selected

N = 10000
N = 20000
N = 30000
N = 40000

(c) 35% selected.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  8  12  16  20  24  28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Strong scalability / StarPU / Kebnekaise / 50% selected

N = 10000
N = 20000
N = 30000
N = 40000

(d) 50% selected.

Figure 6: The strong scalability efficiency of our StarPU implementation. The number of
selected eigenvalues relative to the matrix size runs through the values 5, 15, 35, and 50
percent.

4.8 Flop rate
The flop rate is the number of floating point numbers per second. Our results are presented
in Figure 7. Here we plot the relative flop rate, i.e. the flop rate relative to the peak flop
rate. The curves represent lower bounds as we have only counted the flops performed
during the row and column matrix–matrix multiply operations. The flops performed

http://www.nlafet.eu/ 14/28



NLAFET D2.5: Eigenvalue problem solvers

within each window are more difficult to count and have not been included. We are
pleased to note that the lower bound for our relative flop rate is well above 50% for
all but the lightest loads. Ideally, one would like to obtain curves which are decreasing
monotonically. In practice, the occasional bumps are unavoidable and not necessarily
reproducible from one experiment to the next.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  8  12  16  20  24  28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Floating-point performance / Kebnekaise / 5% selected

N = 10000
N = 20000
N = 30000
N = 40000

(a) 5% selected.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  8  12  16  20  24  28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Floating-point performance / Kebnekaise / 15% selected

N = 10000
N = 20000
N = 30000
N = 40000

(b) 15% selected.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  8  12  16  20  24  28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Floating-point performance / Kebnekaise / 35% selected

N = 10000
N = 20000
N = 30000
N = 40000

(c) 35% selected.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  8  12  16  20  24  28

E
ffi

ci
e
n
cy

CPU cores / StarPU workers

Floating-point performance / Kebnekaise / 50% selected

N = 10000
N = 20000
N = 30000
N = 40000

(d) 50% selected.

Figure 7: A lower bound for the flop rate of our StarPU implementation relative to the
peak flop rate for the specific selection of cores. The number of selected eigenvalues
relative to the matrix size runs through the values 5, 15, 35, and 50 percent.

4.9 Idle time and overhead
Worker threads executing code under a runtime system such as StarPU are either busy
doing useful work, waiting for tasks to become available (idle time) or running the system

http://www.nlafet.eu/ 15/28



NLAFET D2.5: Eigenvalue problem solvers

itself (parallel overhead). Ideally, we want all worker threads to advance the main cal-
culation at all times, but this is of course not possible. StarPU has the ability to record
the time spent in each activity. Here we report on the idle time and the overhead as a
fraction of the total execution time. We include StarPU startup and shutdown times in
the reported overhead. Our result are presented in Figure 8. In general, the impression
is favorable and the workers are almost always moving the computation along, especially
when the problem size is large and a large fraction of eigenvalues has been selected. If we
were to omit the smallest problem size and the case of 5% selected eigenvalues, then all
workers are devoting more than 95% of their time to advancing the calculations. There is
significant amount of time lost to idling when only 5% are selected and the worker count
is high. This is hardly surprising as we are trying to schedule a small load across a rather
large number of workers.

4.10 Tunability
The implementation has multiple tunable parameters. However, we have identified two
parameters that have the largest impact on the performance. The matrix is initially
partitioned into square blocks (tiles) of uniform size nb. The block size has implications
both for the data layout and the dependency tracking in StarPU. In addition, the block
size also defines the task granularity. Based on our experiences, the block size appears
to be the most important parameter. A second important parameter is the strategy that
determines the order in which the tasks are inserted into StarPU as well as the task
priorities, see [10]. Other parameters appear to be less important or a (close to) optimal
values are already known. However, new tunable parameters are likely to appear as our
implementation develops further.

5 The next steps for eigenvalue reordering
We are currently rewriting and extending our code so that it can be executed efficiently
by StarPU on a distributed memory machine. In addition, work to extend the algorithms
to generalized Schur forms is underway.

We fully expect to transfer the lessons learned from the problem of reordering eigen-
values to two-sided transformation algorithms needed for the reduction of dense standard
and generalized eigenvalue problems to Schur and generalized Schur forms. This will in-
clude developing task-based algorithms for such reductions and implementing them for
execution under StarPU.

http://www.nlafet.eu/ 16/28



NLAFET D2.5: Eigenvalue problem solvers

 0

 0.2

 0.4

 0.6

 0.8

 1

Po
rt

io
n
 o

f 
e
xe

cu
ti

o
n
 t

im
e

Matrix dimension : StarPU workers

Runtime distribution / Kebnekaise / 5% selected

Executing
Idle

Overhead

40000300002000010000

(a) 5% selected.

 0

 0.2

 0.4

 0.6

 0.8

 1

Po
rt

io
n
 o

f 
e
xe

cu
ti

o
n
 t

im
e

Matrix dimension : StarPU workers

Runtime distribution / Kebnekaise / 15% selected

Executing
Idle

Overhead

40000300002000010000

(b) 15% selected.

 0

 0.2

 0.4

 0.6

 0.8

 1

Po
rt

io
n
 o

f 
e
xe

cu
ti

o
n
 t

im
e

Matrix dimension : StarPU workers

Runtime distribution / Kebnekaise / 35% selected

Executing
Idle

Overhead

40000300002000010000

(c) 35% selected.

 0

 0.2

 0.4

 0.6

 0.8

 1

Po
rt

io
n
 o

f 
e
xe

cu
ti

o
n
 t

im
e

Matrix dimension : StarPU workers

Runtime distribution / Kebnekaise / 50% selected

Executing
Idle

Overhead

40000300002000010000

(d) 50% selected.

Figure 8: The idle time and overhead of our StarPU implementation relative to the total
runtime. Each of the four sub-figures corresponds to the user selecting a specific fraction
of the eigenvalues, specifically, 5, 15, 35, and 50 percent of the total. Within each figure,
the results are grouped by matrix dimension. Within each group, the StarPU worker
count runs through the numbers 1, 4, 12, 20 and 28 as we move from left to right.

http://www.nlafet.eu/ 17/28



NLAFET D2.5: Eigenvalue problem solvers

6 Computation of eigenvectors
The problem of computing a single eigenvector reduces to the problem of solving a trian-
gular linear system (S − λI)x = f and applying a unitary transformation x ← Qx. In
practice there are at least two problems. Specifically,

1. The triangular solver may overflow.

2. Computing a single eigenvector is a memory bound operation.

The solver is likely to overflow if the eigenvalue is part of a cluster of nearby eigenvalues.
In this case, the triangular matrix S−λI has a number of very small entries on the main
diagonal and the corresponding divisions can trigger massive growth in the solution. For
this reason, eigenvalue solvers attempt to compute a scaling α, such that the solution x
of the scaled linear system

(S − λI)x = αb (12)

does not overflow. This is done by protecting each scalar division and each linear update
against overflow.

Solving a single triangular system of dimension n requires O(n2) flops on O(n2) words
of memory. The arithmetic intensity (average number of flops per word) is O(1). The
problem of computing a single eigenvector is incompatible with modern computer ar-
chitectures with deep memory hierarchies which favor algorithms with high arithmetic
intensity. The eigenvector might be computed “rapidly”, but the machine will be running
at small fraction of its peak flop rate, wasting the majority of the processing power.

6.1 Robust scalar backward substitution
Since 1991 xLATRS [2] and its derivative PxLATRS [4] has fought overflow in triangular
linear systems using an algorithm very similar to Algorithm 1 RobustScalarBacksolve.
In fact, the only difference between xLATRS and RobustScalarBacksolve is that xLATRS
contains an extra scaling which is harmless, but not necessary. Algorithm 1 addresses over-
flow by considering every single arithmetic operation, see Algorithm 2 ProtectDivision
and Algorithm 3 ProtectUpdate. It is essentially impossible to parallelize Algorithm 1
efficiently. Recomputing the variable xmax at the end of every iteration requires global
communication and badly affects the efficiency even if scalings are rarely needed.

7 Our progress on eigenvector computation
We have learned how to address overflow when solving triangular systems in parallel. The
key is to do a blocked solve and use different scaling factors for each block row of the
solution. We have replaced the standard kernels with robust variants. These new kernels
operate on augmented vectors 〈α, x〉 rather than regular vectors. An augmented vector
consists of a scaling α and a vector x and represents the vector α−1x, which can lie far
outside the representable range of floating point numbers. We explain this breakthrough
in some detail, see Section 7.1 and refer to the NLAFET Working Notes 9 and 10 [9, 1]
for a full discussion.

We have also learned to interleave the computation of several eigenvectors in order to
improve the arithmetic intensity and reduce the solve time, see Section 7.2.

http://www.nlafet.eu/ 18/28



NLAFET D2.5: Eigenvalue problem solvers

Algorithm 1: (α, x) = RobustScalarBacksolve(S, λ, b)
Data: A non-singular upper triangular matrix S − λI ∈ Cn×n and b ∈ Cn, such

that
‖S − λI‖∞ ≤ Ω, ‖b‖∞ ≤ Ω

and numbers c(j) satisfying

‖S(1:j−1, j)− λI‖∞ ≤ c(j), j = 2, 3, . . . , n.

Result: A scaling factor α ∈ (0, 1] and the solution of the scaled linear system

(S − λI)x = αb

where the scaling factor ensures that the computation of x cannot
overflow.

1 α← 1, x← b, xmax ← ‖x‖∞;
2 for j ← n, n− 1, . . . , 1 do
3 β = ProtectDivision(x(j), λ, S(j, j));
4 if β 6= 1 then
5 x← βx;
6 α← βα;
7 x(j)← x(j)

S(j,j)−λ ;
8 if j > 1 then
9 β = ProtectUpdate(xnorm, c(j), |x(j)|);

10 if β 6= 1 then
11 x← βx;
12 α← βα;
13 x(1:j−1)← x(1:j−1)− S(1:j−1, j)x(j);
14 xmax ← ‖x(1:j−1)‖∞;

15 return α, x;

http://www.nlafet.eu/ 19/28



NLAFET D2.5: Eigenvalue problem solvers

Algorithm 2: α = ProtectDivision(b, s, λ)
Data: Numbers b and t such that |b| ≤ Ω and s 6= λ.
Result: A scaling factor α ∈ (0, 1] such that the result of the scaled division

x← (αb)
s− λ

(13)

cannot exceed the overflow threshold Ω.
1 α← 1;
2 if |s− λ| < Ω−1 then
3 if |b| > |s− λ|Ω then
4 α← |s−λ|Ω

|b| ;

5 else
6 if |s− λ| < 1 then
7 if |b| > |s− λ|Ω then
8 α← |b|−1;

9 return α;

Algorithm 3: ζ = ProtectUpdate(ynorm, cnorm, xnorm, )
Data: Non-negative real numbers cnorm, xnorm and bnorm such that

‖Y ‖∞ ≤ ynorm ≤ Ω, ‖C‖∞ ≤ cnorm ≤ Ω, ‖X‖∞ ≤ xnorm ≤ Ω.

Result: A scaling factor ζ such that

ζ (ynorm + cnormxnorm) ≤ Ω

which implies that the scaled linear update

Z ← ζY − C(ζX) (14)

cannot exceed the overflow threshold Ω.
1 ζ ← 1;
2 if xnorm ≤ 1 then
3 if cnormxnorm > Ω− bnorm then
4 ζ ← 1/2;
5 else
6 if cnorm > (Ω− bnorm)/xnorm then
7 ζ ← 1/(2xnorm);

8 return ζ;

http://www.nlafet.eu/ 20/28



NLAFET D2.5: Eigenvalue problem solvers

We have developed a robust parallel algorithm for computing right eigenvectors for the
standard eigenvalue problem for complex matrices. We have implemented it using MPI.
The details of our current MPI implementation can be found in the NLAFET Working
Note 10 [1].

We report on the performance of our current implementation in Section 8. The sequen-
tial version of our code is about twice as fast as its counterpart in LAPACK. However, we
have recently realized that it is possible to improve on our parallel scalability and reduce
our memory footprint.

Our current implementation can be downloaded from the NLAFET repository Eigen
vector. For more details see Deliverable D7.5.

7.1 Robust block computation of eigenvectors
Consider the problem of solving a triangular linear system S − λI using a blocked algo-
rithm. First partition the system conformally, and write

(S − λI)x =



S11 S12 . . . S1N

S22 . . . S2N
. . . ...

SNN

− λI



x1
x2
...
xN

 =


b1
b2
...
bN

 = b. (15)

This system can be solved using block backward substitution as in Algorithm 4.

Algorithm 4: x = BlockBackSolve(S, λ, b)
Data: A non-singular upper triangular matrix S − λI and a vector b partitioned

conformally as in equation (15).
Result: The solution x of the linear system (S − λI)x = b.

1 x = b;
2 for j = N,N − 1, . . . , 1 do
3 xj ← f(Sjj, λ, bj);
4 for i = 1, 2, . . . , N do
5 xi ← g(xi, Sij, xj);

6 return x;

In order to obtain a robust algorithm, one must replace the two kernels

f(S, λ, b) = (S − λI)−1b, g(y, C, x) = y − Cx (16)

with robust variants, which are given as Algorithm 5 RobustBlockSolve, and Algorithm
6 RobustBlockUpdate. It is critical to observe that they operate on augmented vectors
〈α, x〉 representing vectors α−1x. The result is Algorithm 7 RobustBlockBackSolve. For
a detailed discussion of the algorithms stated in this report we refer to NLAFET Working
Notes 9 and 10 [9, 1]. Here we limit ourselves to making one critical observation. Any
runtime system capable of executing a regular block triangular backward substitution can
do so robustly. It is simply a matter of replacing the standard kernels with our robust
kernels. Apart from the final re-scaling, the number and pattern of messages that have
to be exchanged is unchanged. Moreover, the volume is increased marginally as we have
to communicate the scaling factors.

http://www.nlafet.eu/ 21/28



NLAFET D2.5: Eigenvalue problem solvers

Algorithm 5: 〈α, x〉 = RobustBlockSolve(S, λ, 〈β, b〉)
Data: A non-singular matrix S − λI and an augmented vector 〈β, b〉.
Result: An augmented vector 〈α, x〉 such that

(S − λI)(α−1x) = β−1b

where the scaling α ensures that the computation of x cannot overflow.
1 〈α, x〉 = RobustScalarBackSolve(S, λ, b);
2 α← βα;
3 return 〈α, x〉;

Algorithm 6: 〈ν, z〉 = RobustBlockUpdate(〈α, x〉, C, 〈β, y〉)
Data: Augmented vectors 〈α, x〉, 〈β, y〉 and a matrix C such that the linear

transformation
z = y − Cx

is defined.
Result: An augmented vector 〈ν, z〉 such that

ν−1z = β−1y − C(α−1x)

where the scaling ν ensures that the computation of z cannot overflow.
1 γ = min{α, β};
2 x← (γ/α)x;
3 y ← (γ/β)y;
4 ξ ← ProtectUpdate(‖y‖∞, ‖C‖∞, ‖x‖∞);
5 z ← ξy − C(ξx);
6 ν = ξγ;
7 return 〈ν, z〉

Algorithm 7: 〈α, x〉 = RobustBlockBackSolve(S, λ, b)
Data: A partitioned, non-singular, upper triangular linear system (S − λI)x = b.
Result: An augmented vector 〈α, x〉 such that (S − λI)x = αb.

1 for i = 1, . . . , N do
2 〈αi, xi〉 ← 〈1, bi〉;
3 for j = N,N − 1, . . . , 1 do
4 〈αj, xj〉 ← RobustBlockSolve(Sjj, λ, 〈αj, xj〉);
5 for i = 1, 2, . . . , j − 1 do
6 〈αi, xi〉 ← RobustBlockUpdate(〈αi, xi〉, Sij, 〈αj, xj〉)

7 α = min{α1, α2, . . . , αN};
8 for i = 1, 2, . . . , N do
9 xi ← (α/αi)xi;

10 return 〈α, x〉

http://www.nlafet.eu/ 22/28



NLAFET D2.5: Eigenvalue problem solvers

7.2 Simultaneous computation of multiple eigenvectors
Consider a matrix A for which a triangular Schur form S = QHAQ has been computed.
We now seek to determine the eigenvectors of S corresponding to a subset of the eigen-
values of A. We are also interested in back-transforming the computed eigenvectors of S
to eigenvectors of A.

It is entirely possible to consider a general subset of the eigenvalues, but there is a
certain clarity associated with the special case where all eigenvectors are sought. Strictly
speaking, the general case can be reduced to this special case by reordering the eigenvalues
of S, but this is beside the point. For the sake of simplicity, please assume that all
eigenvalues are distinct. In this case Algorithm 8 can be used to simultaneously compute
all eigenvectors.

Algorithm 8: X=ScalarSimEigenvector(S)
Data: An m by m upper triangular matrix S with distinct diagonal entries.
Result: A matrix X =

[
x1 x2 . . . xm

]
of eigenvectors of S such that

Sxj = sjjxj.
1 X ← Im for j = m,m− 1, . . . , 1 do
2 for k = j + 1 : m do
3 X(j, k)← X(j,k)

S(j,j)−S(k,k) ;
4 S(1:j−1, j:m)← X(1:j−1, j:m)− S(1:j−1, j)X(j, j:m);
5 return X;

Algorithm 8 loops backwards through the m systems which are to be solved. The
inner iteration computes a single row of X and the linear update has rank 1. As a result,
the arithmetic intensity is very low.

However, it is straight forward to transform this algorithm into a block algorithm, see
Algorithm 9 BlockSimEigenvector. It uses a pair of arrays first and last to keep track
of the partitioning of S. Specifically, the first (last) row of the Jth diagonal block has
global row index first(J) (last(J)). The algorithm loops backwards over the systems
which are to be solved. It computes one block row of X per iteration. The variable k is
always the dimension of the next linear system which will be solved. It is worth stressing
the fact that while each of the diagonal blocks of S are read many times from cache
memory, they are only read once from main memory. The linear update at the end of
each iteration has the same rank as the dimension of the current diagonal block.

http://www.nlafet.eu/ 23/28



NLAFET D2.5: Eigenvalue problem solvers

Algorithm 9: X=BlockSimEigenvector(S)
Data: An m by m upper triangular matrix S partitioned as an M by M block

matrix, arrays first and last describing the partitioning.
Result: A matrix X of eigenvectors of X such that SX = Xdiag(T ).

1 X ← Im;
2 for J = M,M − 1, . . . , 1 do
3 f ← first(J);
4 l← last(J);
5 for j = f + 1 : l do
6 k ← j − f ;
7 Xf :j−1,j ← −(Sf :j−1,f :j−1 − sjjIk)−1Sf :j−1,j;
8 k ← l − f + 1;
9 for j = l + 1 : m do

10 Xf :l,j ← (Sf :l,f :l − sjjIk)−1Xf :l,j;
11 X1:f−1,f :m ← X1:f−1,f :m − S1:f−1,f :lXf :l,f :m;
12 return X

8 The performance of eigenvector computations
We report on a sequence of experiments testing our new parallel algorithm. It offers
improved protection against overflow, uses augmented vectors, interleaves the computa-
tion of multiple eigenvectors and merges the backward substitution phase with the back-
transformation. We give a brief description of the hardware, the test matrices, and the
experimental methodology before presenting the results. We report on the single threaded
execution time, the weak and the strong scaling of our current implementation.

8.1 Computer system
All experiments were executed on the Kebnekaise system at HPC2N, Umeå University.
The relevant details are given in Section 4.1.

8.2 Test matrices
The test matrices were randomly generated from a seed with the real and complex parts
being uniformly distributed on the interval [0, 1]. The generator is available on demand.

8.3 Experimental methodology
The high-resolution function GetTimeOfDay was used to measure runtimes, and the me-
dian execution time of three runs yielded reproducible numbers.

8.4 Software requirements
Our parallel algorithm is built using level 2 and 3 BLAS, as well as MPI calls. The user
must provide libraries for both of those. We have linked all our tests against Intel MKL
2017.1.132 and Intel MPI 2017.1.132.

http://www.nlafet.eu/ 24/28



NLAFET D2.5: Eigenvalue problem solvers

8.5 Sequential execution
In Figure 9 our MPI based algorithm is compared against the LAPACK ZTREVC3 solver
for

n ∈ {10000, 20000, 30000, 40000}. (17)

All right eigenvectors are computed from a random upper triangular S, and are back-
transformed using a dense unitary transformation matrix as input.

1 2 3 4

Problem size #104

0

0.5

1

1.5

2

2.5

3

3.5

E
xe

cu
tio

n 
tim

e

#104 Execution time on a single core on Kebnekaise

MPI version
LAPACK ztrevc3

Figure 9: Execution time in seconds for our MPI based algorithm and ZTREVC3 from
LAPACK for n ∈ {10000, 20000, 30000, 40000}.

It is clear that the runtimes are quite similar and our MPI version is marginally better.
However, the MPI version has significant overhead, even when using a single MPI rank.
A serial implementation of the algorithm, without the overhead gives a runtime of 13835
seconds for n = 40000, roughly half of what the MPI based implementation requires for
completion. The LAPACK routine ZTREVC3 deals with potential overflow by working with
one column of S and right-hand-sides completely before moving on to next. The blocking
strategy we propose is clearly beneficial as it allows for cache reuse.

8.6 Scalability
As for the eigenvalue reordering in Section 4.7, we have measured weak and strong scal-
ability of our eigenvalue computation.

8.6.1 Weak scalability

The weak scalability was measured by scaling up the problem size n with the number of
cores to keep the memory required per core constant. Specifically, for a problem of size
n1 on P1 MPI ranks, the problem size nP on PP cores was set to n1

√
PP/P1.

The results of the weak scalability experiments, with n1 = 15000 and P1 = 16 are
shown in Figure 10.

http://www.nlafet.eu/ 25/28



NLAFET D2.5: Eigenvalue problem solvers

0 5 10 15 20 25 30 35 40

Number of MPI units

1

2

3

4

5

6

7

8

9
S

pe
ed

up

Eigenvector computation - Weak scaling on Kebnekaise.

0 5 10 15 20 25 30 35 40

Number of MPI units

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

Eigenvector computation - Weak scaling on Kebnekaise.

Figure 10: Speedup (left) and efficiency (right) achieved when running weak scalability
performance test using up to 36 MPI units. One MPI unit consists of 16 MPI ranks.

8.6.2 Strong scalability

The strong scalability of the parallel algorithm was measured in terms of speedup relative
to the parallel implementation running on one core for problems of size

n ∈ {10000, 20000, 30000, 40000}, (18)

and meshes of size Pr × Pc for

Pr = Pc ∈ {1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 28, 32}. (19)

0 200 400 600 800 1000 1200

Number of MPI ranks

0

10

20

30

40

50

60

70

S
pe

ed
up

Eigenvector computation - Strong scaling on Kebnekaise.

n=40000
n=30000
n=20000
n=10000

0 200 400 600 800 1000 1200

Number of MPI ranks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

Eigenvector computation - Strong scaling on Kebnekaise.

n=40000
n=30000
n=20000
n=10000

Figure 11: Speedup (left) and efficiency (right) achieved when running strong scalability
performance test using up to 1024 MPI ranks for four problem sizes.

The results of the strong scalability experiments are shown in Figure 11. The strong
scalability increases with larger problem sizes. The parallel efficiency drops dramatically
when the number of cores is increased. This is hardly surprising as even the largest
problem size (n = 40, 000) is too small compared with the number of cores used.

http://www.nlafet.eu/ 26/28



NLAFET D2.5: Eigenvalue problem solvers

8.7 Tunability
There is only one parameter which can be adjusted, namely the block size used to define
the 2D block cyclic distribution of the matrices. It is not practical to change it dynamically
during the execution of the code.

9 The next steps for eigenvector computation
There are several natural steps which will be taken in the immediate future. A standard
error analysis for partitioned back-substitution using a unique scaling factor for each block
row must be completed. The basic idea must be extended to a partitioned algorithm for
Sylvester equations, so that eigenvectors can be computed in parallel and robustly from
real Schur forms as well.

We will also improve our MPI implementation of the eigenvector computation. The
most viable strategy is to maintain the block cyclic distribution used by ScaLAPACK, but
begin the calculation by broadcasting all diagonal blocks of the Schur matrix along each
process row. Moreover, all eigenvalues should be broadcast to all ranks. This will eliminate
the rather elaborate scheme currently used to load balance the backward substitution.

In view of the success of our StarPU implementation for the eigenvalue reordering
problem, it is realistic to develop a task based algorithm for computing eigenvectors in
parallel while addressing overflow using augmented vectors.

10 Conclusion
Our work has focused on two topics, eigenvalue reordering and eigenvector computation.
We are pleased to report progress on these topics. We now understand how to fight
overflow when solving a triangular linear system in parallel. The key is to assign a
unique scaling factor to each block row and replace all necessary kernels with robust
counterparts. We understand how it is possible to interleave the robust computation of
multiple eigenvectors in order to improve the arithmetic intensity.

In terms of software, we have developed and implemented two new algorithms. We
can solve the problem of reordering eigenvalues in real Schur form using our task based
algorithm. Our implementation can be executed using StarPU. We routinely exceed 50%
of the peak flop rate. We have recorded weak and strong scalability efficiencies well above
50%. We are currently rewriting and extending our code to run efficiently on a distributed
memory machine using StarPU.

We have developed a parallel and robust algorithm for computing eigenvectors from
complex Schur forms. Our current implementation uses MPI. The numerical scaling works
as it should. We anticipate some changes to the memory layout in the immediate future,
but then we will turn to the task of producing task based software.

The two-sided transformation algorithm used for reordering eigenvalues encapsulates
many of the aspects found in the other algorithms used in eigenvalue computations. We
are confident that the lessons learned will allow us to develop task based algorithms and
codes for these problems.

Having cracked the problem represented by the parallel bottleneck associated with
robust backward substitution, we are also confident that task based algorithms for eigen-
vector computation will be developed and implemented successfully.

http://www.nlafet.eu/ 27/28



NLAFET D2.5: Eigenvalue problem solvers

References
[1] Björn Adlerborn, Carl Christian Kjelgaard Mikkelsen, Lars Karlsson, and

Bo Kågström. Towards Highly Parallel and Compute-Bound Computation of Eigen-
vectors fo Matrices in Schur Form. NLAFET Working Note WN-10, April, 2017. Also
as Report UMINF 17.10, Dept. of Computing Science, Umeå University, SE-901 87
Umeå, Sweden.

[2] Edward Anderson. Robust Triangular Solves for Use in Condition Estimation.
LAWN 36, Cray Research Inc., August 1991.

[3] Z. Bai and J. W. Demmel. On swapping diagonal blocks in real Schur form. Linear
Algebra Appl., 186:73–95, 1993.

[4] Mark R. Fahey. New Complex Parallel Eigenvalue and Eigenvector Routines. Tech-
nical report, Computational Migration Group, Computer Science Corporation, 2001.

[5] R. Granat, B. Kågström, and D. Kressner. Parallel eigenvalue reordering in real
Schur forms. Concurrency and Computation: Practice and Experience, 21(9):1225–
1250, 2009.

[6] R. Granat, B. Kågström, D. Kressner, and M. Shao. ALGORITHM 953: Parallel
Library Software for the Multishift QR Algorithm with Aggressive Early Deflation.
ACM Trans. Math. Software, 41(4):Article 29:1–23, 2015.

[7] B. Kågström and P. Poromaa. Computing eigenspaces with specified eigenvalues
of a regular matrix pair (A,B) and condition estimation: theory, algorithms and
software. Numer. Algorithms, 12(3-4):369–407, 1996.

[8] D. Kressner. Block Algorithms for Reordering Standard and Generalized Schur
Forms. ACM Transactions on Mathematical Software, 32(4):521–532, December
2006.

[9] Carl Christian Kjelgaard Mikkelsen and Lars Karlsson. Robust solution of triangular
linear systems. NLAFET Working Note WN-9, April, 2017. Also as Report UMINF
17.9, Dept. of Computing Science, Umeå University, SE-901 87 Umeå, Sweden.

[10] Mirko Myllykoski, Carl Christian Kjelgaard Mikkelsen, Lars Karlsson, and
Bo Kågström. Task-Based Parallel Algorithms for Reordering of Matrices in Real
Schur Form. NLAFET Working Note WN-11, April, 2017. Also as Report UMINF
17.11, Dept. of Computing Science, Umeå University, SE-901 87 Umeå, Sweden.

http://www.nlafet.eu/ 28/28


