
H2020–FETHPC–2014: GA 671633

D2.8
Prototypes for two-sided bidiagonal

factorization

April 2017

NLAFET D2.8: Bi-diagonal factorization

Document information

Scheduled delivery 2017-04-30
Actual delivery 2017-04-27
Version 1.0
Responsible partner UNIMAN

Dissemination level

PU — Public

Revision history

Date Editor Status Ver. Changes
2017-04-11 Mawussi Zounon Complete 1.0 Feedback from reviewers added.
2017-01-18 Mawussi Zounon Draft 0.1 Initial version of document pro-

duced.

Author(s)

Negin Bagherpour (UNIMAN)
Jack Dongarra (UNIMAN)
Samuel Relton (UNIMAN)
Mawussi Zounon (UNIMAN)

Internal reviewers

Simplice Donfack Last (INRIA)
Nicholas Higham (UNIMAN)
Carl Christian Kjelgaard Mikkelsen (UMU)
Lars Karlsson (UMU)

Copyright

This work is c©by the NLAFET Consortium, 2015–2018. Its duplication is allowed only
for personal, educational, or research uses.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

Table of Contents
1 Introduction 4

2 Principles of tile algorithms 5

3 Reduction to band bidiagonal form 6
3.1 Late update strategy . 6
3.2 Early update strategy . 7
3.3 Experimental results . 8
3.4 Potential improvements . 11

4 Band reduction to bidiagonal form 13

5 Concluding remarks 14

List of Figures
1 Illustration of the two-stage bidiagonal reduction process. 5
2 Panel factorization using the triangle on top of square QR factorization

kernel (TSQRT). 6
3 Reduction from general matrix to band bidiagonal form using the late up-

date strategy. 7
4 DAG of the late update strategy for band reduction: this partial view

is limited to the factorization of the first panel and the update of the
corresponding trailing matrix. 8

5 Reduction from general matrix to band bidiagonal form using early update
strategy. 9

6 DAG for the early update strategy for band reduction: this partial view
is limited to the factorization of the first panel and the update of the
corresponding trailing matrix. 9

7 Performance comparison of different implementations of DGE2GB using
68 threads on the Intel KNL with square matrices ranging in size from
1, 000 × 1, 000 to 20, 000 × 20, 000. 10

8 Performance comparison of different implementations of DGE2GB on a 2x
Intel Xeon(R) CPU E5-2650 v3 @ 2.30GHz (20 cores), with square matrices
ranging in size from 1, 000 × 1, 000 to 20, 000 × 20, 000. The experiment
with 20 threads is performed with the NUMA configuration "numactl –
interleave=all" while the experiment with 10 threads using only one 10-core
socket. 10

9 DAG for the late update strategy for band reduction when A(i, i) depen-
dencies are expressed at the upper/lower tile granularity. This partial view
is limited to the factorization of the first panel and the update of the cor-
responding trailing matrix. 12

10 Performance comparison of different implementations of DGE2GB using 68
threads on the Intel KNL with different square matrices ranging in size from
1, 000 × 1, 000 to 20, 000 × 20, 000. The code has been modified to express
some data dependencies at upper/lower triangular tile granularity. . . 12

http://www.nlafet.eu/ 2/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

11 Performance comparison of different implementations of DGE2GB on a
NUMA node with 2x Intel Xeon(R) CPU E5-2650 v3 @ 2.30GHz (20 cores),
with square matrices ranging in size from 1, 000×1, 000 to 20, 000×20, 000.
The experiment with 20 threads is performed with the NUMA configuration
"numactl –interleave=all" while the experiment with 10 threads used only
one 10-core socket. The code has been modified to express some data
dependencies at upper/lower triangular tile granularity. 13

http://www.nlafet.eu/ 3/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

1 Introduction
The Description of Action (DoA) document states for deliverable D2.8:

“D2.8: Bi-diagonal factorization
Prototypes for two-sided bidiagonal factorization.”

This deliverable is in the context of Task 2.4 (Singular Value Decomposition Algorithms).

The main objective of this work is to investigate new strategies for two-sided bidiagonal
factorization, which is widely used to transform a full matrix into bidiagonal form using
orthogonal transformations. A matrix bidiagonalization is required as a precursor to
computing the singular value decomposition (SVD). The SVD of an m × n matrix A is
given by: A = UΣV T or (A = UΣV H if A is complex) where U and V are orthogonal
(unitary) and Σ is an m × n matrix with real diagonal elements, σi , commonly ordered
such that: σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0. The σi are known as the singular values of A
and the first min(m,n) columns of U and V are the left and right singular vectors of A,
respectively.

For a given m × n matrix A, the traditional approach, for computing the singular
values and optionally the singular vectors, consists of the following steps:

1. Reduction of the matrix A to bidiagonal form: A = U1BV
T

1 if A is real (and
A = U1BV

H
1 if A is complex), where U1 and V1 are orthogonal (unitary if A is

complex), and B is real and upper bidiagonal when m ≥ n or lower bidiagonal
when m < n, so that B is nonzero on only the main diagonal and either the first
superdiagonal (if m ≥ n) or the first subdiagonal (if m < n).

2. The SVD computation of the bidiagonal matrix B: B = U2ΣV T
2 , where U2 and V2

are orthogonal, and Σ is diagonal with entries consisting of the singular values of A.

3. If required, the singular vectors of A are computed as U = U1U2 and V = V1V2.

The SVD decomposition algorithm described above was introduced in 1965 by Golub
and Kahan [1]. While the last two steps have been considerably optimized for mod-
ern architectures, the first step—the reduction to bidiagonal form—remains limited by
bandwidth-bound operations. In fact, in the algorithm proposed by Golub, the reduction
to bidiagonal form is achieved by applying a QR factorization to the first column, followed
by a LQ factorization of the first row, then a QR factorization of the second column, and
so on. Since this algorithm processes one column (or row) at a time using Householder
transformations, it is limited to Level-2 BLAS kernels (and is hence bandwidth-bound).

In 1989, to improve the bidiagonalization step, Dongarra, Sorensen, and Hammar-
ling [2] proposed a new variant which has the advantage of exploiting Level-3 BLAS op-
erations. Instead of applying the Householder transformations to one column at a time,
this algorithm uses an aggregated Householder transformation strategy [3] to process a
few columns at each time, giving us the opportunity to use compute-intensive Level-3
BLAS kernels. This modification to the bidiagonalization algorithm helps to reformulate
approximately 50% of the total number of flops as Level-3 BLAS operations as reported
by Großer and Lang in [4].

To address the remaining 50% of Level-2 BLAS operations in the algorithm, in 1999,
Großer and Lang introduced a two-stage approach. As illustrated in Figure 1, the al-
gorithm consists of a first stage for reducing the full matrix into band bidiagonal form

http://www.nlafet.eu/ 4/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

(Figure 1b) using only compute-intensive kernels, followed by a second stage to reduce
the band matrix to bidiagonal form (Figure 1c) with bandwidth-bound kernels. Since
the first stage is a compute-intensive algorithm and represents the dominant part of the
process, it significantly increases the overall performance of the bidiagonalization process.
This two-stage algorithm may introduce extra flops but as reported by Azzam et al. [5],
it is still efficient in terms of time to solution.

In this work, we consider the two-stage bidiagonalization algorithm with a special fo-
cus on the first stage. We compare various design options making use of tile algorithms
and the task-based programming model. As a result, we propose a prototype based on
the OpenMP 4.0 runtime system which is competitive with state-of-the-art implementa-
tions. The remainder of this paper is organized as follows. In section 2 we explain the
background to tiled algorithms. Then, in section 3 we discuss and analyze different strate-
gies for implementing the reduction from a full matrix to band bidiagonal form, followed
by performance analyses and a discussion of the potential performance improvement.
Section 4 investigates different solutions for transforming the band bidiagonal matrix to
bidiagonal form before providing some concluding remarks in Section 5.

(a) Full 5 × 5 tile matrix. (b) Band bidiagonal form. (c) Bidiagonal form.

Figure 1: Illustration of the two-stage bidiagonal reduction process.

2 Principles of tile algorithms
In order to use modern many/multi-core shared memory architectures at full efficiency,
many LAPACK library algorithms initially powered by block algorithms have been re-
designed into tile algorithms. This led to a new generation of linear algebra libraries such
as PLASMA [6]. The key idea is that, instead of operating on block-columns as found in
LAPACK, tile algorithms operate at a finer granularity by dividing the whole matrix into
small square tiles which are more likely to fit into the L2 cache of a CPU. As illustrated
in Figure 1a, the original matrix has been converted into a 5-by-5 tile matrix. One of the
advantages of working at the tile level is that it provides more room for parallelism with
many tasks to keep all computational cores busy.

Another advantage of tile algorithms is that they alleviate the fork-join overhead
inherent to parallelized LAPACK block algorithms [7]. In fact, the order of execution of
the tasks in tile algorithms are commonly represented in form of a Directed Acyclic Graph
(DAG) where each node represents a task, while the edges represent the data dependencies
between the tasks. These tasks are then scheduled by a runtime system which checks the
dependencies and takes care of launching tasks on appropriate cores.

For the sake of illustration, Figure 2 shows the tile algorithm variant of QR factor-
ization for a panel (block-column). Following the example shown in Figure 1, the panel

http://www.nlafet.eu/ 5/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

(a) QR (b) TSQRT (c) TSQRT (d) TSQRT (e) TSQRT (f) End

Figure 2: Panel factorization using the triangle on top of square QR factorization kernel
(TSQRT).

has been divided into 5 tiles. This algorithm involves two tile kernels: a standard QR
factorization kernel to factorize the top-most tile (Figure 2a), and a specialized kernel to
use the top triangular matrix from the first QR factorization to eliminate the square tiles
below (Figures 2b-2e). This kernel is denoted TSQRT and stands for “triangle on top of
square tile QR factorization”. In the next few sections we will introduce other specialized
kernels that we designed to operate on tiles.

3 Reduction to band bidiagonal form
The idea of using a tile algorithm to factorize a full matrix into a band bidiagonal one is
not new. The approach was first introduced in 2010 by Dongarra et al. [8], and improved
in 2013 [5] by the same authors. This section aims at evaluating different options for
designing such an algorithm before moving to the second stage of the factorization.

We identified two main design options: (1) a “late update” strategy which is the
algorithm implemented in Plasma-2.8.0 but with the QUARK runtime system, and (2)
an “early update” strategy that we introduce to address some limitations of the “late
update” strategy. Each of these strategies are introduced and assessed in the subsections
below.

3.1 Late update strategy
To reduce a full mt×nt tile matrix A to a band bidiagonal form, the late update strategy
begins by applying a QR factorization to the first panel A(1 : mt, 1) (using MATLAB
indexing) (see Figure 3a), then updating the trailing submatrix A(1 : mt, 2 : nt) (Fig-
ure 3b), followed by an LQ factorization of the first tile-row, ignoring the first column
(Figure 3c), and the update of the corresponding trailing matrix (Figure 3d). This proce-
dure is repeated until the whole matrix is reduced to band bidiagonal form, as illustrated
in Figure 3. It is important to notice that we describe this strategy at the tile-column
(panel) and tile-row granularity but tile algorithms are used underneath to process each
panel and the update of the trailing matrix. We can think of this as a direct translation
of the LAPACK column-oriented procedure into a more modern tile-based algorithm.

The main advantage of this strategy is its simplicity, as the algorithm is very close to
the LAPACK version. However, the individual steps of the QR factorization illustrated
in Figure 2 show that a full factorization of a panel starts with the QR factorization of
the first tile (Figure 2a), which means only one CPU core is busy while the others remain

http://www.nlafet.eu/ 6/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

(a) Panel QR (b) Update (c) Tile-row LQ (d) Update

(e) Panel QR (f) Update (g) Row-tile LQ (h) Update

Figure 3: Reduction from general matrix to band bidiagonal form using the late update
strategy.

idle. Once the first tile is factorized, the rest of work (to annihilate the tiles below using
the TSQRT kernel) can commence. Since the elimination procedure modifies the entries
of the top triangular tile, only one square tile can be eliminated at a time to guarantee a
correct result. Put differently, the panel factorization introduces synchronization points
in the algorithm that may lead to performance penalties. The sequential nature of the
panel factorization can be clearly observed in Figure 4, which shows the DAG of the
corresponding operations.

One can overcome this synchronization issue by overlapping the panel factorization
and the update steps. As long as we respect the data dependencies, the algorithm can
then progress onto the next step even though the previous step is not completed. In
addition, when working on a panel we can take advantage of “tall and skinny” QR factor-
ization strategies which provide elegant methods to introduce parallelism during a panel
factorization. This leads us to the early update strategy.

3.2 Early update strategy
To reduce a full tile matrix to a band bidiagonal form, the early update strategy also
completes the QR factorization of the first panel and the update before starting the
LQ process, but the operations are launched in a completely different order. Instead of
completing the full factorization of a panel before applying the updates as before, the
early update strategy looks down the panel, factorizes each tile, and then launches its
corresponding updates immediately.

As depicted in Figure 5, the algorithm starts with the factorization of the tile A(1, 1)
(Figure 5a), before applying the corresponding transformations to the rest of the tile-row
(Figure 5b). Once the first tile is factorized, the remaining tiles in the panel are succes-
sively eliminated and, in the same way, the trailing submatrices are updated immediately
(as illustrated in Figures 5c and 5d as well as in Figures 5e and 5f). In addition, the up-
dates in Figure 5d can be computed in parallel with the next tile elimination in Figure 5e.
The same approach is used during the LQ factorization step.

http://www.nlafet.eu/ 7/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

GEQRT(1,1)

TSQRT(2,1)

TSQRT(3,1)

TSQRT(4,1)

TSQRT(5,1)

ZUNMQR(1,2) ZUNMQR(1,3) ZUNMQR(1,4) ZUNMQR(1,5)

TSMQR(2,2) TSMQR(2,3) TSMQR(2,4) TSMQR(2,5)

TSMQR(3,2) TSMQR(3,3) TSMQR(3,4) TSMQR(3,5)

TSMQR(4,2) TSMQR(4,3) TSMQR(4,4) TSMQR(4,5)

TSMQR(5,2) TSMQR(5,3) TSMQR(5,4) TSMQR(5,5)

Figure 4: DAG of the late update strategy for band reduction: this partial view is limited
to the factorization of the first panel and the update of the corresponding trailing matrix.

As illustrated in the DAG (Figure 6), the early update approach considerably reduces
the severity of the synchronization points. However, all the ZUNMQR kernels in charge
of updating the first tile-row have to be completed before starting any TSQRT kernels,
since the ZUNMQR kernels use the entries of the top left tile and those entries will be
overwritten if any TSQRT kernels are launched before the end of the first tile-row update.
This explains the bottleneck at TSQRT(2,1) in the DAG. But the completion of the first
TSQRT kernel unlocks many tasks and leads to high levels of parallelism.

3.3 Experimental results
In order to assess the performance of each strategy, we design an OpenMP task-based
version of each of the two strategies. In all the experiments within this section, we compare
these strategies to the PLASMA 2.8.0 kernel designed for reduction of a full matrix to
band bidiagonal form. The experiments have been performed on a NUMA node (two-
socket Xeon(R) CPU E5-2650 v3 @ 2.30GHz–Haswell) and a 68-core Intel KNL1 and all
the computations are done in double precision arithmetic. The performance (GFlop/s)
displayed is calculated by dividing the standard theoretical flops by the time to solution.

In addition to the traditional DDR4, the Intel KNL has a high bandwidth memory
called Multi-Channel DRAM (MCDRAM) with a bandwidth four times greater than the
DDR4 bandwidth, but with the storage capacity limited to 16GB. There are different
configuration options of MCDRAM, but in this experiment it has been configured in flat
mode, i.e., the 16GB memory can be directly allocated from within an application as is
the case for DDR4. In our experiments we provide results for both DDR4 and MCDRAM.

1https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_
40-GHz-68-core

http://www.nlafet.eu/ 8/15

https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core
https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core
http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

(a) Top corner QR (b) Tile-row up-
date (c) TSQRT (d) Tile-rows up-

date

(e) TSQRT (f) Tile-rows up-
date (g) LQ (h) Panel update

(i) TSLQT (j) Panel update (k) TSLQT (l) Panel update

Figure 5: Reduction from general matrix to band bidiagonal form using early update
strategy.

GEQRT(1,1)

ZUNMQR(1,2) ZUNMQR(1,3) ZUNMQR(1,4) ZUNMQR(1,5)

TSQRT(2,1)

TSQRT(3,1) TSMQR(2,2) TSMQR(2,3) TSMQR(2,4) TSMQR(2,5)

TSQRT(4,1) TSMQR(3,2) TSMQR(3,3) TSMQR(3,4) TSMQR(3,5)

TSQRT(5,1) TSMQR(4,2) TSMQR(4,3) TSMQR(4,4) TSMQR(4,5)

TSMQR(5,2) TSMQR(5,3) TSMQR(5,4) TSMQR(5,5)

Figure 6: DAG for the early update strategy for band reduction: this partial view is
limited to the factorization of the first panel and the update of the corresponding trailing
matrix.

As illustrated in Figure 7a where the data is allocated in DDR4, the early update
approach gives the best performance with a slight advantage over the Plasma-2.8.0 im-

http://www.nlafet.eu/ 9/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Matrix size(M=N)

0

50

100

150

200

250

300

350

400

450
G

FL
O

P/
S

Early update
Late update
Plasma-2.8.0

(a) Results with DDR4

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Matrix size (M=N)

0

50

100

150

200

250

300

350

400

450

G
FL

O
P/

S

Early update
Late update
Plasma-2.8.0

(b) Results with MCDRAM

Figure 7: Performance comparison of different implementations of DGE2GB using 68
threads on the Intel KNL with square matrices ranging in size from 1, 000 × 1, 000 to
20, 000 × 20, 000.

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Matrix size(M=N)

0

50

100

150

200

250

300

350

400

450

500

550

600

G
FL

O
P/

S

Early update
Late update
Plasma-2.8.0

(a) Results with 20 threads

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Matrix size(M=N)

0

50

100

150

200

250

300

350

400

450

500

550

600

G
FL

O
P/

S

Early update
Late update
Plasma-2.8.0

(b) Results with 10 threads

Figure 8: Performance comparison of different implementations of DGE2GB on a 2x Intel
Xeon(R) CPU E5-2650 v3 @ 2.30GHz (20 cores), with square matrices ranging in size
from 1, 000 × 1, 000 to 20, 000 × 20, 000. The experiment with 20 threads is performed
with the NUMA configuration "numactl –interleave=all" while the experiment with 10
threads using only one 10-core socket.

plementation. The significant gap between the early update and late update strategies
is consistent with our expectations and confirms the benefit of the early update strategy.
In Figure 7b where data is allocated in the MCDRAM instead of the regular DDR4, the
difference between the strategies is fairly similar, although all implementations benefit
from the increased memory access speed.

We obtained a similar result on a NUMA node (2x Intel Xeon(R) CPU E5-2650 v3)
using 20 threads and 10 threads in Figure 8a and Figure 8b respectively. However, unlike
for the 68-core Intel KNL, the late update strategy exhibits a more severe performance
penalty.

http://www.nlafet.eu/ 10/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

In the next subsection we investigate ways to remove the bottlenecks in both synchro-
nisation points in both the early and late update strategies.

3.4 Potential improvements
One way to solve the performance issue discussed for both the late update and the early
update strategy is to revisit the data dependencies and remove all unnecessary synchro-
nizations. In Figure 3 for example, since the algorithm is task based, a part of the trailing
matrix update in Figure 3b could start before the completion of the panel factorization
(Figure 3a), if its dependencies are satisfied. In the same way, once the first tile-row is
updated, the update of the other tile-rows below could follow as soon as their correspond-
ing tile in the panel is eliminated. Unfortunately, all these parallelisms are not exploited
in the version presented above.

In fact, the update of the first tile-row uses the top left corner tile A(1, 1) as input
(read dependency), while the TSQRT kernel in charge of the elimination of the square tiles
in the panel modifies A(1, 1) (read and write dependency). The update kernel then waits
until the completion of the panel factorization. But a further analysis of the algorithm
shows that, as illustrated in Figure 2, once A(1, 1) is factorized the elimination operations
applied to the rest of the panel modify only the upper triangular part of A(1, 1). On the
other hand, the update of the first tile-row requires only reflectors stored in the lower
triangular part of A(1, 1). Therefore the panel factorization and the update of the first
tile-row can be done in parallel.

Currently our OpenMP implementation supports dependencies only between full tiles.
This introduces an unnecessary dependency between the first tile-row update and the first
tile-column elimination through the A(1, 1) tile. To solve this we might want to split all
A(i, i) tiles into upper and lower parts.

Alternatively, one can modify the way OpenMP expresses its data dependencies. To
illustrate this, lets consider an nb × nb tile B. The standard way to express a read or
input dependency on B is

1 #pragma omp task depend (in :B [0 : nb∗nb])

while write or output dependency on B would be
1 #pragma omp task depend (out :B [0 : nb∗nb]) .

The OpenMP runtime system then ensures that the dependency criteria are satisfied
on each of the nb × nb entries before executing the corresponding kernel. But instead of
using depend(in:B[0:nb*nb]), if one uses depend(in:B[i]), the runtime system will
check only the ith entry of the tile to decide whether to execute the kernel or not. Al-
though specifying the whole ranges is the recommended way, using only a single entry is
an alternative in cases where only some entries of the tile are used and the ith entry is rep-
resentative of their dependency. Since the tile entries are stored in column major format,
an input and output dependency on the upper triangular tile can be simulated by #pragma
omp task depend(inout:B[0]) (zero is the starting index of the upper triangular tile
with respect to C language and column major storing) and an input dependency on the
lower triangular by #pragma omp task depend(in:B[1]) (one is the starting index of
the lower triangular tile).

Expressing tile dependency at upper/lower triangular granularity helps us to achieve
a highly parallel kernel, as demonstrated by the corresponding DAG depicted in Figure 9.

http://www.nlafet.eu/ 11/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

GEQRT(0,0)

TSQRT(1,0)ZUNMQR(0,1) ZUNMQR(0,2)ZUNMQR(0,3) ZUNMQR(0,4)

TSQRT(2,0)TSMQR(1,1) TSMQR(1,2)TSMQR(1,3) TSMQR(1,4)

TSQRT(3,0)TSMQR(2,1) TSMQR(2,3) TSMQR(2,4)

TSQRT(4,0)TSMQR(3,1) TSMQR(3,2)TSMQR(3,3) TSMQR(3,4)

TSMQR(4,1) TSMQR(4,2)TSMQR(4,3) TSMQR(4,4)

TSMQR(2,2)

Figure 9: DAG for the late update strategy
for band reduction when A(i, i) dependencies
are expressed at the upper/lower tile granu-
larity. This partial view is limited to the fac-
torization of the first panel and the update
of the corresponding trailing matrix.

We also applied this modification to the
early update strategy to remove the syn-
chronisation point observed previously. In
fact, since we are working at the triangu-
lar tile granularity this releases all unnec-
essarily dependencies, so the panel and tile
strategies should provide comparative re-
sults.

To assess the effectiveness of this im-
provement, We reproduced the same exper-
iments but now with some critical depen-
dencies expressed at triangular tile granu-
larity.

The effectiveness of the modification is
illustrated by the improvement of the Intel
68-core KNL performance results in Fig-
ure 10 where the early update and the late
update strategies almost overlap and both
are slightly better than Plasma-2.8.0. This observation is consistent with results with
DDR4 as well as for results with MCDRAM. There is also a slight improvement in the
performance achieved by the early update strategy compared to the results in Figure 7
where all dependencies were expressed at full tile granularity. We have also observed
similar results for the experiments illustrated in Figure 11 with the Intel Haswell NUMA
node.

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Matrix size(M=N)

0

50

100

150

200

250

300

350

400

450

G
FL

O
P/

S

Early update
Late update
Plasma-2.8.0

(a) Results with DDR4

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Matrix size (M=N)

0

50

100

150

200

250

300

350

400

450

G
FL

O
P/

S

Early update
Late update
Plasma-2.8.0

(b) Results with MCDRAM

Figure 10: Performance comparison of different implementations of DGE2GB using 68
threads on the Intel KNL with different square matrices ranging in size from 1, 000×1, 000
to 20, 000 × 20, 000. The code has been modified to express some data dependencies at
upper/lower triangular tile granularity.

As reported in [5], the SVD implementation based on the Plasma-2.8.0 bidiagonal-
ization kernel could be two times faster than Intel’s Math Kernel Library (MKL), when
all the singular vectors are requested and up to 10 times faster if only the singular val-

http://www.nlafet.eu/ 12/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Matrix size(M=N)

0

50

100

150

200

250

300

350

400

450

500

550

600
G

FL
O

P/
S

Early update
Late update
Plasma-2.8.0

(a) Results with 20 threads

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Matrix size(M=N)

0

50

100

150

200

250

300

350

400

450

500

550

600

G
FL

O
P/

S

Early update
Late update
Plasma-2.8.0

(b) Results with 10 threads

Figure 11: Performance comparison of different implementations of DGE2GB on a NUMA
node with 2x Intel Xeon(R) CPU E5-2650 v3 @ 2.30GHz (20 cores), with square matrices
ranging in size from 1, 000×1, 000 to 20, 000×20, 000. The experiment with 20 threads is
performed with the NUMA configuration "numactl –interleave=all" while the experiment
with 10 threads used only one 10-core socket. The code has been modified to express
some data dependencies at upper/lower triangular tile granularity.

ues are required. This shows the efficiency of the Plasma-2.8.0 bidiagonalization kernel,
and the performance of our OpenMP implementation in comparison with Plasma-2.8.0
demonstrates the effectiveness of our prototype.

Furthermore, working at triangular tile granularity only gains a slight performance
improvement for the early update strategy, whilst it requires declaring OpenMP depen-
dencies in a non-conventional way. For this reason, it makes sense to keep the tile oriented
strategy with dependencies at full tile granularity, as it is reasonably efficient and respects
the standard OpenMP programming conventions. In addition by declaring data depen-
dencies in a conventional way, the code can be safely extended to a distributed memory
environment.

4 Band reduction to bidiagonal form
In this section we briefly discuss the second stage of the reduction to bidiagonal form. In
fact the standard bidiagonalization algorithm as proposed by Golub and Kahan requires
8
3n

3 flops to reduce an n× n full matrix to a bidiagonal form. Similarly, the reduction to
block bidiagonal form with a block size of nb (using nb×nb tiles) performs 8

3n× (n−nb)2

flops while the second stage (moving from block bidiagonal to bidiagonal) requires only
4n2×nb flops [9]. Since nb is very small compared to n, the first stage is the dominant part
of the algorithm. However, since the second stage is memory-bound it can dramatically
slow the overall performance if is not implemented efficiently.

We identify two potential solutions for the second stage. The first consists of using an
existing LAPACK routine: while LAPACK does not provide any routine to reduce a full
matrix to band bidiagonal form, the GBBRD routine available in LAPACK is designed
to reduce a band matrix to a bidiagonal one. By relying on a vendor optimized GBBRD
kernel (for instance in Intel MKL), this can be a reasonable solution.

http://www.nlafet.eu/ 13/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

On the other hand, we can implement our own state-of-the-art solution for the second
stage. In particular we can revisit the cache-aware and task coalescing techniques intro-
duced by Haidar et al. in [10] which seems to have a good potential for high performance.
We are currently working on an implementation of this algorithm in OpenMP, after which
we can assess its efficiency by comparing against the optimized MKL GBBRD kernel.

5 Concluding remarks
We have studied different algorithms for the two-stage bidiagonalization with a special
focus on the first stage: reduction from a full matrix to a band bidiagonal form. We
proved that even though the late update strategy is simple to implement and follows the
LAPACK-style, it suffers from numerous synchronisation points that can be released by
the early update approach.

We also discuss potential improvements by relaxing some OpenMP standard depen-
dency expressing rules. We demonstrated that while the improvement makes sense for the
late update approach, the gain is not significant enough for the early update strategy to
sacrifice the robustness of the kernel. Furthermore, we have demonstrated the efficiency
of our implementation by showing that it is competitive with the state-of-the-art kernels.

For the second stage: reduction of band bidiagonal matrix to bidiagonal form, we have
identified two potential solutions which are currently in development.

Since this work focused on square and regular rectangular matrices, future work will be
devoted to designing specialized kernels for very tall matrices (number of rows more than
3x the number of columns) which require different algorithms to keep the computational
resources working at full efficiency. Also the current version of our prototype is based on
OpenMP, which is limited to shared memory systems. In the future, we will consider using
distributed memory runtime systems such as StarPU [11] and PaRSEC [12] to achieve an
extreme-scale, heterogeneous implementation.

References
[1] Gene Golub and William Kahan. Calculating the singular values and pseudo-inverse

of a matrix. Journal of the Society for Industrial and Applied Mathematics, Series
B: Numerical Analysis, 2(2):205–224, 1965.

[2] Jack J. Dongarra, Danny C. Sorensen, and Sven J. Hammarling. Block reduction of
matrices to condensed forms for eigenvalue computations. Journal of Computational
and Applied Mathematics, 27(1-2):215–227, 1989.

[3] Christian Bischof and Charles Van Loan. The WY representation for products
of Householder matrices. SIAM Journal on Scientific and Statistical Computing,
8(1):s2–s13, 1987.

[4] Benedikt Großer and Bruno Lang. Efficient parallel reduction to bidiagonal form.
Parallel Computing, 25(8):969–986, 1999.

[5] Azzam Haidar, Jakub Kurzak, and Piotr Luszczek. An improved parallel singular
value algorithm and its implementation for multicore hardware. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis, page 90. ACM, 2013.

http://www.nlafet.eu/ 14/15

http://www.nlafet.eu/

NLAFET D2.8: Bi-diagonal factorization

[6] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class of parallel
tiled linear algebra algorithms for multicore architectures. CoRR, abs/0709.1272,
2007.

[7] Azzam Haidar, Hatem Ltaief, Asim YarKhan, and Jack Dongarra. Analysis of dy-
namically scheduled tile algorithms for dense linear algebra on multicore architec-
tures. Concurrency and Computation: Practice and Experience, 24(3):305–321, 2012.

[8] Hatem Ltaief, Jakub Kurzak, and Jack Dongarra. Parallel two-sided matrix reduction
to band bidiagonal form on multicore architectures. IEEE Transactions on Parallel
and Distributed Systems, 21(4):417–423, 2010.

[9] Hatem Ltaief, Piotr Luszczek, and Jack Dongarra. High-performance bidiagonal re-
duction using tile algorithms on homogeneous multicore architectures. ACM Trans-
actions on Mathematical Software (TOMS), 39(3):16, 2013.

[10] Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed
forms for symmetric eigenvalue problems using aggregated fine-grained and memory-
aware kernels. In High Performance Computing, Networking, Storage and Analysis
(SC), 2011 International Conference for, pages 1–11. IEEE, 2011.

[11] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Ar-
chitectures. Concurrency and Computation: Practice and Experience, Special Issue:
Euro-Par 2009, 23:187–198, February 2011.

[12] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack J Dongarra. Parsec: Exploiting heterogeneity to enhance scalabil-
ity. Computing in Science & Engineering, 15(6):36–45, 2013.

http://www.nlafet.eu/ 15/15

http://www.nlafet.eu/

	Introduction
	Principles of tile algorithms
	Reduction to band bidiagonal form
	Late update strategy
	Early update strategy
	Experimental results
	Potential improvements

	Band reduction to bidiagonal form
	Concluding remarks

