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NLAFET D3.1: Communication in sparse matrix operations

1 Executive summary
One of the main challenges we face in high performance computing is the exponentially
growing gap between the time required to perform floating point operations and the time
required to transfer data. To address this challenge, our project focuses on designing
algorithms that reduce drastically the communication cost of linear algebra operations,
or even minimize it when possible.

In recent years, lower bounds on communication for dense linear algebra operations
were derived [5, ?]. These bounds allowed the derivation of algorithms for dense linear
algebra that minimize communication. However, few results exist in the case of sparse
matrices.

In this document we discuss and review some of the results on the communication
complexity of sparse matrix operations. We discuss first the communication complexity
of the multiplication of two sparse matrices, and then we discuss the communication
complexity of sparse matrix factorizations such as Cholesky or QR.

2 Introduction
The Description of Action document states for Deliverable 3.1:

“Theoretical bounds for communication in sparse operations.
Report on theoretical lower bounds for key sparse matrix operations such as
matrix-matrix multiplication and factorization.”

This deliverable is in the context of Task 3.1 (Lower Bounds on Communication for Sparse
Matrices).

In this document we discuss and review several results on the communication com-
plexity of sparse matrix operations. We present first the representation of the nonzero
structure of a matrix by using graphs. In section 3 we consider the multiplication of
two sparse matrices and we review results from [2, 3] which derive lower bounds on com-
munication for matrices with random sparsity structure. In section 4 we consider direct
methods of factorization of sparse matrices. We consider first matrices whose graphs have
small separators. We review results from [15] on lower bounds on communication for the
Cholesky factorization of a model problem. We then present bounds on communication
for the QR factorization of a matrix whose graph has small separators. We then present
results for matrices whose graphs don’t have small separators.

2.1 Sparse matrices and graphs
The nonzero structure of a symmetric matrix can be represented by using an undirected
graph. Given an n×n symmetric matrix A, the undirected graph G(A) = (V,E) has a set
V of n vertices and a set E of edges {i, j}, where i and j are two distinct vertices. There
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is a vertex i for each column/row of the matrix A and an edge {i, j} for each nonzero
element Aij = Aji. A path in a graph is a sequence of vertices which are connected.

We consider in the following an n × n matrix A which is symmetric and positive
definite and whose structure can be represented by an undirected graph. As an example,
the graph of the matrix A in equation (2.1) which is obtained from a finite difference
operator on a two-dimensional (2D) regular grid using a five-point stencil is displayed at
the left of Figure 1.
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(2.1)

In this case, the Cholesky factorization A = LLT leads to a factor L that has more
nonzeros than the matrix A. These new nonzero elements are referred to as fill-in elements,
and the graph that contains them is referred to as the filled graph of A, G+(A) = (V,E+).
It has the same vertices as G(A) and an edge {i, j} if and only if there is a path from i to
j in G(A) whose intermediate nodes are numbered lower than min(i, j) [18, 19, 20]. If we
ignore numerical cancellations, G(L + LT ) = G+(A). The elimination tree T (A) [10, 21]
has a node for each column of A and i is the parent of j if the first nonzero in column j
of L is in row i. This tree can be computed directly from the nonzero structure of A. It
provides information about the dependencies between column computations. If i is the
parent of j in this tree, column j has to be factored before column i. Columns belonging
to disjoint subtrees can be factored independently.
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(2.2)

Nested dissection [12] is a global graph partitioning procedure that allows the matrix
A to be reordered by identifying in the graph of A a small separator which divides the
graph into two disjoint subgraphs. The process is then repeated recursively on the two
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Figure 1: The graph G(A) of matrix A from equation (2.1) and its filled graph G+(A).

subgraphs. By permuting the matrix A from equation (2.1) such that the columns/rows
corresponding to the vertices of the separator are ordered last, followed by those of the
two disjoint subgraphs, its Cholesky factors have the nonzero structure given in equation
(2.3). The graph and the filled graph of the permuted matrix PAP T are given in Figure 2.
The elimination tree is presented on the right of this figure.
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Figure 2: The graphs and the elimination tree of matrix A from equation (2.1) permuted
by nested dissection.

We consider now the QR factorization of a matrix A of size m × n, where Q is an
m ×m orthogonal matrix and R is an m × n upper triangular matrix with nonnegative
diagonal entries. We consider that the factorization is computed by using Householder
transformations. The normal equations ATAx = AT b relate the Cholesky factorization
to the QR factorization for full-rank least squares problems. If we ignore numerical
cancellations, the graph of R has the same structure as the graph of the Cholesky factor
LT of ATA. The undirected graph of ATA, referred to as the column intersection graph
G∩(A), has a vertex for each column of A and a clique for each row of A.
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3 Multiplication of sparse matrices with random spar-
sity pattern

In this section we review existing results studying the communication complexity of the
multiplication of two sparse matrices C = A · B. This is a more difficult problem than
studying the communication complexity of the Cholesky factorization of a sparse matrix
arising from a model problem. For example, if A and B are block diagonal matrices, then
their parallel multiplication can require no communication. Capturing this in a lower
bound for matrices with arbitrary sparsity structure is a challenging problem. Hence,
existing results consider matrices with particular sparsity structures. We review here
results published in [2, 3] which consider matrices with random sparsity pattern, that
is matrices whose graphs belong to the class of Erdős - Rényi(n,d) graphs. Given such
an n × n matrix A, referred to as ER(n,d) matrix, each element of A is nonzero with
probability d/n. We assume d� n. The expected number of nonzeros in A is dn. If B is
also an ER(n,d) matrix, then the multiplication C = A · B has the following properties:
the expected number of multiplications performed is d2n, the expected number of nonzeros
in C is d2n(1− o(1)).

The general lower bounds on parallel matrix multiplication from [5] can be applied to
the case of ER(n,d) matrices and lead to the following bound on volume of communication,

#words ≥ Ω
(

#flops
M3/2 ·

M

P

)
= Ω

(
d2n

P
√
M

)
(3.1)

where P is the number of processors and M is the memory per processor. The results in
[3] show that the lower bounds on communication for multiplying two ER(n,d) matrices
A and B are

#words ≥ Ω
(

min
(
dn√
P
,
d2n

P

))
= Ω

(
dn√
P

min
(

1, d√
P

))
. (3.2)

This bound is obtained by assuming that the sparse matrix multiplication algorithm is
sparsity independent, that is the input and output matrices and the computation is dis-
tributed over processors independently of the sparsity pattern of the matrices. It also
assumes that the input and output matrices are sparse (d� n) and that the algorithm is
load balanced. The bound involves the minimum over two quantities; which bound applies
depends on the ratio d/

√
P . This bound improves by a factor of

√
M · max{1,

√
P/d}

the bound in equation (3.1). Two algorithms introduced in [3] attain this bound. Both
algorithms are 3D algorithms, an approach introduced in the context of dense matrix mul-
tiplication [1] in which the input and output matrices are distributed over a 3-dimensional
grid of processors. The first algorithm is an iterative 3D algorithm that adapts the 3D
dense matrix multiplication algorithm from [22] to the sparse case. In the dense case
3D algorithms involve storing multiple copies of the data on processors and thus need
extra memory, but in the sparse case there is no extra memory requirement. The second
algorithm is a recursive matrix multiplication algorithm which uses ideas from [8]. At
each level of the recursion, the multiplication is split into 4 subproblems. The splitting is
based on either replicating parts of A and B or redistributing and reducing parts of C, de-
pending on the dimensions of the matrices to be multiplied, such that the communication
is minimized.
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4 Sparse factorizations
In this section we discuss bounds on communication for direct methods of factorization
of sparse matrices.

4.1 Sparse factorizations of matrices whose graphs have small
separators

We consider the case of matrices whose graphs have small separators. We consider a
matrix A of size ks×ks which is obtained from a finite difference operator on a regular grid
of dimension s ≥ 2 with ks nodes. The graph of this matrix is defined as a k×k×. . .×k (s
times) mesh, where each node is connected to its neighbours. In this case, it is known that
its Cholesky factor contains a dense lower triangular matrix of size ks−1×ks−1 (Lemma 2 in
[17]). In addition, the computaton of the Cholesky factorization of this ks−1×ks−1 matrix
dominates the computation of the overall Cholesky factorization (Theorem 10 in [17]). In
our example matrix from equation (2.3), the matrix formed by the nodes {7, 8, 9} is dense
lower triangular in the factor L. By using lower bounds on communication required for
the computation of the Cholesky factorization of this matrix of dimension ks−1×ks−1, we
obtain lower bounds on communication for the overall Cholesky factorization of matrix
A. They are given in the following theorem in a more general setting.

Theorem 1 ([15]). Consider the Cholesky factorization LLT of an n×n symmetric matrix
A whose undirected graph G = (V,E) has the following property for some l: every set of
vertices W ⊂ V with n/3 ≤ |W | ≤ 2n/3 is adjacent to at least l vertices in V −W . A
lower bound on communication for computing the Cholesky factorization of A is

#words ≥ Ω
(
W√
M

)
, #messages ≥ Ω

(
W

M3/2

)
(4.1)

For a sequential algorithm, W = l3 and M is the fast memory size. For a parallel
algorithm executed on P processors that is work-balanced, W = l3

P
. We assume that the

matrix and the L factor are distributed evenly over all the processors and the local memory
size used is estimated to be M = Θ(nnz(L)/P ).

For the sequential Cholesky factorization of a ks × ks matrix resulting from a finite
difference operator on a regular grid of dimension s ≥ 2 with ks nodes, the lower bounds
from equation (4.1) apply with W = k3(s−1)/3 and M is the fast memory size. In the
case of a parallel algorithm executed on P processors in a balanced way, W = k3(s−1)

3P
and

M ≈ nnz(L)/P .
These bounds allow us to show that an existing parallel solver for SPD matrices,

PSPASES [16], can attain the lower bounds on communication for 2D and 3D regular
grids. We explain in the following briefly why. PSPASES reorders the input matrix
by using nested dissection and obtains a separator tree (a more compact version of the
elimination tree, each node in the separator tree corresponds to a separator obtained
during nested dissection). Each node k in the separator tree has a frontal matrix Fk

associated with it, which is formed by rows that have their first nonzero in columns of
A associated with node k and contribution blocks coming from the children of node k in
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the separator tree. The numeric factorization in PSPASES is performed during a bottom
up traversal of the separator tree. For each frontal matrix Fk, the first rows and columns
corresponding to the rows/columns associated with node k are factored and the remaining
rows/columns are updated and then transferred to the parent node. At the parent node,
the contribution blocks received from the children nodes are added through an extend-
add operation. The frontal matrices are distributed over processors by using the subtree
to subcube mapping [13] which assigns subsets of processors to nodes in the separator
tree. PSPASES uses a bitmask based cyclic distribution such that the communication
of contribution blocks between children and parent nodes and the extend-add operation
requires point to point communication between pairs of processors which exchange half
of their data. With this, the communication performed during the Cholesky factorization
of the frontal matrix is greater than the communication required for forming the frontal
matrix.

If the Cholesky factorization of every dense multifrontal matrix is computed by using
an optimal dense Cholesky factorization [4], the volume of communication, number of
messages, and number of flops performed by PSPASES is given in Table 1. An optimal
dense Cholesky factorization uses an optimal layout, that is an optimal distribution of
the matrix over processors such that the communication is minimized. For more details,
the reader can refer to [4]. The results consider an n × n matrix resulting from a finite
difference operator on regular 2D and 3D grids. The analysis assumes the local memory
per processor is M = O(n log n/P ) in the 2D case and M = O(n4/3/P ) in the 3D case.

Table 1: Lower bounds on communication for 2D and 3D model problems and communi-
cation cost of PSPASES solver.

PSPASES PSPASES with Lower bound
optimal layout

2D grids
# flops O

(
n3/2

P

)
O
(

n3/2

P

)
Ω
(

n3/2

P

)
# words O( n√

P
) O

(
n√
P

logP
)

Ω
(

n√
P log n

)
# messages O(

√
n) O

(√
P log3 P

)
Ω
( √

P
(log n)3/2

)
3D grids
# flops O

(
n2

P

)
O
(

n2

P

)
Ω
(

n2

P

)
# words O(n4/3

√
P

) O
(

n4/3
√

P
logP

)
Ω
(

n4/3
√

P

)
# messages O(n2/3) O

(√
P log3 P

)
Ω
(√

P
)

Similarly, in [15] it is shown that a sequential multifrontal approach can be derived
such that the transfer of data between slow memory and fast memory can be minimized.

In the following, we extend this result to the QR factorization of an m× n matrix A.
The filled column intersection graph G+

∩ (A) is the graph of the Cholesky factor of ATA
and hence it is also the graph of the R factor. We consider the case when G∩(A) belongs to
the class of graphs having small separators. We use the lower bounds on communication
for computing the Cholesky factor of ATA to obtain lower bounds on communication for
computing the QR factorization of A. This result is presented in the following theorem.
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Theorem 2. Let A be an m × n matrix such that G∩(A) has the following property for
some l: every set of vertices W ⊂ V with n/3 ≤ |W | ≤ 2n/3 is adjacent to at least l
vertices in V −W . A lower bound on communication for computing the QR factorization
of A is

#words ≥ Ω
(
W√
M

)
, #messages ≥ Ω

(
W

M3/2

)
. (4.2)

For a sequential algorithm, W = l3 and M is the fast memory size. For a parallel
algorithm executed on P processors that is work-balanced, W = l3

P
. We assume that the

matrix and the R factor are distributed evenly over all the processors and the local memory
size used is estimated to be M = Θ(nnz(R)/P ).

Results in [14] estimate the number of nonzeros in the factors for the graphs considered
here. When G∩(A) is a structured 2D grid, it is shown in [14] that there exists a column
permutation P such that the matrices Q, R, and H in the thin QR factorization of
AP satisfy the following bounds: nnz(R) = O(n log n), nnz(Q) = O(m

√
n), nnz(H) =

O(n log n+ (m− n)
√
n).

4.2 Sparse factorizations of matrices whose graphs don’t have
small separators

We consider the case of matrices whose graphs do not have small separators. In this case,
we use a result from [17].

Theorem 3 (Theorems 13 and 14 from [17]). For all ε > 0 there is a constant c(ε) such
that almost all n-vertex undirected graphs with at least c(ε)n edges have a fill-in clique of
at least (1−ε)n vertices for any ordering. These graphs have a fill-in of (1−ε)2n2/2−O(n)
and a multiplication count of (1− ε)3n3/6−O(n2) for any ordering.

For the Cholesky factorization of sparse symmetric positive definite (SPD) matrices,
the clique identified in these n-vertex graphs leads to a dense submatrix in the factor
L of Cholesky factorization. We use this dense submatrix to compute lower bounds on
communication for sequential and parallel Cholesky factorizations in Theorem 4. More
generally, these results also apply if Gaussian elimination is used with some form of
symmetric pivoting which does not destroy the symmetry of the input matrix.

Theorem 4. Consider the Cholesky factorization of an SPD n×n matrix A whose graph
satisfies the conditions of Theorem 3, that is the filled graph G+(A) has a clique of (1−ε)n
vertices for any ordering. A lower bound on communication for computing the Cholesky
factorization of A is:

#words ≥ Ω
(

(1− ε)3n3
√
M

)
, #messages ≥ Ω

(
(1− ε)3n3

M3/2

)
, (4.3)

where M is the fast memory size and we omit some lower order terms. For the parallel
factorizations on P processors, we consider that the algorithm is memory- and work-
balanced and that M = O((1− ε)2n2)/P ) is the local memory used per processor. At least
one processor communicates:

#words ≥ Ω
(√

PM
)
, #messages ≥ Ω

(√
P
)
. (4.4)
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Proof. The undirected graph of ATA, which is an SPD matrix, satisfies the properties in
Theorem 3 which identify a dense submatrix in LT . The communication necessary for
computing this dense submatrix in LT represents a lower bound on communication for
computing the entire Cholesky factorization.

We can use the same reasoning as in section 4.1 for deriving lower bounds on commu-
nication for the QR factorization. Since the graph of R is the same as the graph of the
Cholesky factor of ATA, if the graph of ATA satisfies the conditions in Theorem 3, then
there is a dense triangular submatrix in R of dimension (1− ε)n× (1− ε)n. The commu-
nication involved in factoring this submatrix gives a lower bound on the communication
of the entire matrix.

We conjecture that sparse sequential and parallel implementations of sequential recur-
sive Cholesky [11], parallel Cholesky as implemented in ScaLAPACK, CAQR [?] with an
optimal layout attain the lower bounds on communication in Theorem 4.

5 Conclusions
In this report we have summarized several results on the communication complexity of
sparse matrix operations. We first reviewed results on lower bounds on communication
for the multiplication of two matrices with random sparsity structure. We then discussed
lower bounds on communication for the Cholesky and QR factorizations of matrices with
small separators and algorithms that attain these bounds. Finally we introduced lower
bounds on communication for matrices whose adjancency graphs do not have small sep-
arators.
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