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NLAFET D3.4: Highly unsymmetric factorizations

1 Introduction

The Description of Action document states for Deliverable D3.4:
“D3.4 Algorithm design for highly unsymmetric factorizations

Report on experimental algorithms for parallel Markowitz ordering, analysing
various approaches and highlighting issues arising. Includes reporting on
prototype code testing possible algorithms and solutions.”

This deliverable is in the context of Task-3.3 (Direct methods for highly unsymmetric
systems).

This deliverable discusses the design of algorithms for the factorization of highly
unsymmetric matrices and is reporting on work in Task 3 of Workpackage 3. Our
main work has been developing a parallel algorithm for the implementation of a
Markowitz/threshold strategy. We first explain what we mean by “highly unsymmetric”
matrices in Section 2 and present other attempts to design algorithms and software
for this case. In Section 3, we discuss other considerations for this class of matrix
factorizations including preprocessing techniques like scaling and partitioning emphasizing
the current state of parallel algorithms for these phases. We then define what we mean
by Markowitz/threshold in Section 4 before describing our parallel implementation in
detail in Section 5. We give some preliminary results from running our prototype code in
Section 6. Finally we provide some comments on future work in Section 7.

To fix our notation, we will assume that we are solving the system

Az =, (1)

where A is a sparse matrix of dimensions m xn. For the matrix A we only store coefficients
that can be nonzero and call these entries. It is possible that some entries might have
the numerical value zero either because of operations on them or because we are studying
a set of matrices where an entry is sometimes nonzero but sometimes zero. This might
happen, for example, if the matrix is the Jacobian of a nonlinear problem. An entry in
row ¢ and column j is designated by a,;. The right-hand side vector b is of length m and
the solution vector x is of length n. In this deliverable, we consider vectors x and b as
dense. In our experiments for this deliverable, we only consider matrices with real entries
although we will also develop versions of the code to handle matrices and vectors with
complex entries. The methods that we use for solving Equation (1) are direct methods.
That is we form an LDU factorization of a permutation of the matrix A, where L is a
sparse lower triangular matrix, D is a diagonal matrix, and U is a sparse upper triangular
matrix. The permutation is chosen to maintain sparsity in the matrices L and U while also
producing a numerically stable factorization. We discuss how this is done in Section 4.

2 Highly unsymmetric matrices

We define a highly unsymmetric matrix as a matrix whose structure is not well
approximated by the structure of |A| + |A|T. Various authors have defined a measure
of the asymmetry of a matrix and here we use that defined in [12] which is the proportion
of off-diagonal entries for which there is a corresponding entry in the transpose, viz.

numberi#{aij * Qg 7é 0}

nz{A} ’

si(A) =
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NLAFET D3.4: Highly unsymmetric factorizations

where si is called the symmetry index and nz{A} is the number of off-diagonal entries
in the matrix A. A symmetric matrix will thus have a symmetry index of 1.0. Matrices
with symmetry indices of less than 0.5 can be considered highly unsymmetric and these
are the main target of our current work.

There are many applications that give rise to such matrices, for example, econometric
modelling, chemical engineering, and linear programming although the latter has
developed a large cohort of software where special techniques are used to update the
factors for sequences of very related matrices.

In contrast to the case of nearly symmetric matrices, there is little software for this
class of matrices and almost no work on parallel algorithms. Available codes for this case
include MA48 and HSL_MA48 [11], UMFPACK [6], LUSOL [14], and KLU [7].

3 Preprocessing highly unsymmetric matrices

An archetypical very highly unsymmetric matrix is a triangular matrix and a simple
generalization of that form is a block triangular matrix (BTF). There are many algorithms
that can find this form cheaply, and we will normally only consider matrices that are
irreducible (that is cannot be permuted to a non-trivial BTF). There are good algorithms
available to partition irreducible matrices to a bordered block diagonal form as shown in
Figure 1. The market-leader is generally considered to be PaToH [2], but this code is not

N -

Figure 1: A singly bordered block diagonal form.

parallel so we recommend the PHG code of Zoltan [4] for doing this stage.

Numerical considerations are even stronger in the case of unsymmetric systems than
in the solution of symmetric systems in Task 3.2, and it is crucial to scale the matrix prior
to factorization. The market leader here is MC64 [10] but again it is not parallel so we can
use a simpler but still effective scaling like that given in [1].

4 Markowitz/threshold pivoting

We first note how important it is to order a sparse matrix before or during numerical
factorization. To demonstrate this, we show a table from [9] where both the benefits of
using sparsity and of ordering the matrix for factorization are clearly seen. There is a
substantial reduction in both operations and storage for the factorization by using sparse
data structures and another significant gain if a good ordering strategy is used.

Clearly for any pivot in Gaussian elimination the maximum fill-in! that can occur is
the product of the number of other entries in the pivot row with the number of other

L An entry which is zero in A but is nonzero in the corresponding entry of the factors is termed fill-in.
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Table 1: Operations for Gaussian elimination on onetonel, which has order 36 057 and
341 088 entries.

Treating matrix as dense sparse
unordered ordered

Operations to factorize matrix (x10%) 31251 17.6 3.6

Storage for LU factors (x10°) 1300 33.4 5.3

entries in the pivot column. Thus if there are ¢; entries in column j and r; entries in row
i, then we define the Markowitz cost for a potential pivot in row ¢, column j as

Mark;; = (r;—1) x (¢; —1). (2)

We choose candidate entries with low or minimum Markowitz count to reduce the amount
of fill-in. Of course such a candidate would be unacceptable if its value was zero or very
small relative to other entries. We therefore introduce a threshold of acceptability for a
pivot and only consider entries a;; that satisfy

|aig| = wrmaxay|, k=1,...,m )

where u is a threshold parameter 0 < u < 1.0. That is to say we only consider entries that
are at least u times as large as the largest entry in modulus of all entries in the column.
We call such entries eligible entries. If u were equal to 1.0 then we would be using partial
pivoting that is the most common algorithm for dense matrices.

To continue with the factorization we must first update the remaining matrix using the
outer product of the pivot row and column, updating the numerical entries and normally
introducing fill-in. This is clearly a right-looking algorithm. For selecting the next pivot
we then perform the Markowitz/threshold algorithm on this remaining updated matrix
of order one less than the previous one, and we continue in this way until all min(m,n)
pivots have been chosen. The algorithm is simple but the data structures to implement
it efficiently, even in serial mode, are not. We consider the data structures that we use in
detail in the next section.

5 Parallel implementation of Markowitz/threshold
pivoting

For our parallel implementation, we essentially use the same algorithm, that is a threshold
Markowitz/threshold algorithm using the same terminology as the previous section. In
this implementation, we find a set of independent pivots that can be used in parallel and
then use these as a block pivot to update in parallel the remaining matrix. We illustrate
this in Figure 2. We then repeat these two steps on the updated Schur complement and
continue doing this until either the Schur complement becomes denser than a preset value
or the number of pivots found is less than a preset value. In fact, when we conducted the
experiments that we describe in Section 6, we found that the number of pivots chosen at
each stage was not, as might be expected, monotonically decreasing but the selection of a
low number of pivots might be followed by a much larger number of independent pivots.

http://www.nlafet.eu/ 5/13
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We thus monitor the number at each stage and do not switch unless the last few (the
actual number is a parameter) steps have yielded only a very few (another parameter)
pivots. We then switch to using a dense factorization routine on the remaining Schur
complement. In our present implementation on multi-core machines we use GETRF from
PLASMA[5].

Figure 2: Block of independent pivots

When choosing the set of pivots in parallel, we note that the threshold test only
needs information from one column and this is our first observation for obtaining
significant parallelism. We thus launch our algorithm by scanning columns of the matrix
independently. For each column we compute the largest entry in modulus and choose as
a potential pivot in that column an entry that satisfies the threshold test, that is an entry
at least u times the maximum just calculated, and is in a row with the least number of
entries over all eligible entries in the column. It is possible that all eligible entries are in
rows of high count so, although we still flag the entry as a possible pivot, we will not use
it unless there are no other suitable pivots.

Having done this we then want to construct a set of independent pivots in parallel.
We do this by a binary combination illustrated in Figure 3. We use a parameter to define

Figure 3: Combining pivots to get block pivot.

a block size and then select at random a set of columns of the matrix whose cardinality is
the block size. We choose the columns at random because often the structure of the matrix
militates against choosing consecutive columns. We then do a cheap scan of columns in
the block to identify an independent set. Each block is independent and can be scanned
in parallel. If we assume that the column we are seeking to combine with the current
block pivot is j; and the block pivot is in the set of rows I, and columns J; and that the
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potential pivot in column 7; is in row ¢; then the column is combined with the current
block if there are no entries in positions (I, j1) and (i1, J2). For checking whether a
column yields an independent pivot we use an integer array of length n that flags whether
a row has no entries in all the previously chosen columns. A similar flag is set for the
columns so that the test comprises just two look ups followed by an update of the flags.
This can be done without having to reset the flag array by incrementing flags at each step
and only resetting if integer overflow occurs. We show experiments on the effect of the
influence of the block size in the next section.

Having done this pass on all the blocks, we have sets of independent pivots of size up
to the block size. We then combine these to get larger sets continuing to do so in a binary
tree fashion as shown in Figure 3 until we have a single set of independent pivots.

In sequential codes like MA48[11], we select the eligible pivot which has the minimum
Markowitz count, as defined in Equation (2). Because we want to get large blocks of
independent pivots, we relax this by accepting eligible pivots within a factor of the
minimum, that is an entry (¢, j) can be chosen as a pivot if its Markowitz cost satisfies
the condition

Mark;; < appark X Bestyark (4)

where the Markowitz factor aps..r is greater than or equal to one and Besta, is the
lowest Markowitz count among all eligible entries.

Our next step is to perform all the pivot operations for this set of pivots in parallel. In
effect what we have to do is a parallel sparse matrix by sparse matrix multiply to update
the Schur complement.

Having done this, we then repeat the parallel pivot selection on the reduced matrix
corresponding to the Schur complement that we have just computed.

We terminate the algorithm when either the last few steps of our algorithm (“few” is
a parameter that we have set to 5 in our experiments) have failed to obtain a number
of independent pivots greater than a preset threshold or the Schur complement reaches
a preset density. At that stage, in the present code, we switch to using the PLASMA code
GETRF for parallel dense LU factorization on the remaining Schur complement. We plan in
later versions of the code to have a transitional stage where we use a parallel sparse direct
code designed for relatively dense sparse matrices, such as the parallel LU factorization
that will be developed in Workpackage 3.2.

Because of these various stages, we use four different data structures. The L and
U factors continuously grow with the execution of our algorithm without changing the
already computed part. For this reason, we use standard CSC and CSR storage for the L
and U factors respectively. The values in the diagonal matrix D of the LDU factorization
are stored in a separate array. On the other hand, the structure of the Schur complement
changes because of the update operations. Additionally, at each step we must be able to
determine if a set of pivots are mutually independent. For these reasons, we use a flexible
CSC/CSR based structure. The numerical values are stored in the CSC fashion, while the
CSR part stores only the nonzero structure of the matrix. In total, three large arrays are
used, one index and one value array for the CSC part and one index array for the CSR
part. Having the matrix structure stored by rows and columns provides an efficient way
of updating the structures during pivot selection and Schur update. In order to cope with
the dynamic nature of the Schur complement, within the CSR/CSC structure extra space
is allocated at the end of each row or column. Each row and column is represented by an
offset from the start of the corresponding array, by the number of entries each contains,
with the amount of available free space. Additional memory is allocated at the end of
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each array which is managed by a garbage collector. For each block of free memory, the
garbage collector stores the offset from the beginning of the array and its size. When
fill-in to a row or a column consumes its available space, it is moved to the next available
space provided by the garbage collector. Its old memory is marked as free memory and
added to the garbage collector for future reuse. Similarly, space freed when a row or
column becomes pivotal is likewise given to the garbage collector.

6 Preliminary results

In this section we present results of some experiments with our solver. The tests were
performed on a multicore Haswell machine equipped with two Intel(R) Xeon(R) E5-2695
v3 CPUs with fourteen cores each (twenty eight cores in total). Each core is clocked at
2.3 GHz. All the results presented are sequential (mono-threaded execution). The main
attributes of the matrices used in this study are given in Table 2. The matrix twotone is

from the SparseSuite set of test matrices and the other two are from the Power Systems
application supplied by Bernd Kloss of DigSILENT GmbH (see Deliverable 5.1).

Table 2: Sizes of the matrices that are used in this study.

’ Matrix ‘ n ‘ nnz ‘ st ‘
twotone 120K | 1.22M | 0.26
LoadFlow_Newton_OuterLoopO_InnerLoop4_J | 197K | 3.70M | 0.46
Jacobian__unbalancedLdf 203K | 2.76M | 0.80

As discussed in the previous section, at some point in our algorithm we switch to a
dense solver. The reason for this is that once the Schur complement becomes too dense,
we get only just a few pivots at a time and in addition the operations become more and
more expensive. This is shown in Figure 4. At some point, we get sets of size one

25000 35

T T T T T
#pivots per pivot set m— time per step m—m

30 - B
20000 - B

15000 - B

#pivots
time (s)

10000 - B

5000 - B
0 JL 1 1 1 1 I I

0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
step step

(a) (b)

Figure 4: The number of pivots (4a) and the time spent (4b) for each step when the
matrix twotone is used.

only and the execution of each step takes a lot of time. This is considerably improved by
switching to the dense solver (Figure 5). With this technique we are able to decrease the
execution time from around 250 minutes to 93 seconds when the switch to the dense code
is used.
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25000 T

35 T

T T
#pivots per step mm—m per step mm—m
dense part 30 dense factorization

20000 R
25+ 1

15000 - . 2L |

#pivots
time( s)

10000 - B 15 b

10 - B
5000 - B

han L o i | | | ! L ! 1
0 50 100 150 200 250 0 50 100 150 200 250
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(a) (b)

Figure 5:  The number of pivots (5a) and the time spent (5b) for each step when the
matrix twotone is used. Additionally, the number of pivots handled by the dense solver
and the time spent in the dense solver are given at the end.

At the beginning of each step, we need to set up the initial sets of pivots that
will be merged later on. The impact of the number of candidates per initial pivot set
(the block size) on the average number of pivots found per step is given in Figure 6.
We can see that for most of the different values of this parameter, our algorithm is
able to create large enough sets. One interesting thing to notice is that when the
LoadFlow_Newton_QuterLoop0_InnerLoop4_J matrix is used, the optimal value is 10.
That points to the fact that the largest pivot sets are obtained when we start with a
large number of small pivot sets. Since the merge is done using a binary tree and, at each
level of the tree, all the merging can be done in parallel, it indicates that our algorithm
could potentially be extremely parallel.

average #pivot per set

1400 I \ \ \ \ \
twotone —+—
1200 L LoadFlow_Newton_OuterLoopO_InnerLoop4_] |
Jacobian_unbalancedLdf —x—
1000 - _
800 - =

#pivots

600 - _—k ) R .
400 /\/ N ]

200 + f

0 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800

#candidates per initial pivot set

Figure 6: Impact of the number of candidates per initial pivot set on the average number
of pivots per step.

Each pivot candidate must satisfy the Markowitz test in Equation (4). When we
relax the constraint on the Markowitz cost, we accept pivots with higher Markowitz cost
which will usually introduce more fill-in in the factors. The impact of the Markowitz
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factor aiprqr on the number of entries in the L and U factors is presented in Figure 7. In

1.8e+09 T T T T T T 7e+06 T T T T T T
twotone —+— twotone —+—
1.6e+09 LoadFlow_Newton_OuterLoopO_InnerLoop4_] 4 LoadFlow_Newton_OuterLoopO_InnerLoop4_J K
Jacobian_unbalancedLdf —%— 6e+06 |- Jacobian_unbalancedLdf 7
1.4e+09 B
5e+06 |- —
1.2e+09
3 1e+09 $ 4e+06 |- |
=] =]
o 8e+08 o
3e+06 - B
Y # e |
6e+08 A
2e+06 |- / E
4e+08 e
26408 le+06 - B
0 0 I I I I I I
0 2 4 6 8 10 12 14 16
Markowitz factor Markowitz factor

(a) (b)

Figure 7: The impact of the Markowitz factor on the number of entries in the L and U
factors. The total number of entries including the dense part of L and U is presented
in 7a. Only the number of entries in the sparse part of L and U is shown in 7b.

Figure 7a the total number of entries in the L and U factors are shown and include the
dense part of each of them. The expected behaviour would be that when the Markowitz
factor is relaxed, the amount of fill-in increases, but our algorithm behaves in the opposite
way. The reason for this is that for small values of the Markowitz factor, our algorithm is
not able to find large enough sets of pivots so it switches to the dense solver earlier. On
the other hand, if only the number of entries in the sparse part of the L and U factors
is considered, then the number of entries increases with the relaxation of the Markowitz
factor (see Figure 7b).

Another important parameter of our algorithm is the density threshold that forces the
code to switch to a dense solver when the density of the Schur complement exceeds a
certain threshold. The impact of this threshold is shown in Figure 8. The impact of the
density threshold has similar behaviour to the Markowitz factor. When we constrain the
density threshold, the switch to the dense code will happen earlier, resulting in a high
number of entries for the whole L and U factors (see Figure 8a), but the number of entries
in the sparse part of the factors is lower (see Figure 8b). That is, as the parameter is
relaxed, the total number of entries in the factors decreases, but the number of entries in
the sparse part increases.

In order to obtain a numerically correct solution, we have to take into account the
numerical value of our pivots, see Equation (3). This will also impact the number of
the entries in the factors. The effect of the threshold value is shown in Figure 9. If this
parameter is relaxed (smaller values), then our algorithm is able to obtain a lower fill-in.
The reason for this is that when smaller values for this threshold are used, our algorithm
has a larger number of potential pivots at each step.

7 Conclusions and future work

The complexity of the algorithms and data structures for performing this parallel
Markowitz search is very high and progress has been slower than originally planned.
However, we now have a working, albeit embryonic, code and are in the process of tuning
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Figure 8: The impact of the density threshold on the number of entries in the L and U
factors. The total number of entries including the dense part of L and U is presented
in 8a. Only the number of entries in the sparse part of L and U is shown in 8b.

it and defining or reducing the number of parameters to have a user friendly release of a
beta test version well before our M24 deadline for the release of our prototype code.

We are investigating current work on parallel sparse matrix by sparse matrix multiply,
for example [3] and [8] to see if any of that work can help the update of our Schur
complement update phase since, on some of our problems, we have found that this
dominates the cost of pivot selection.

There are many instances when a sequence of sparse matrices must be factorized
where each has the same sparsity structure and where the numerical values are similar so
that the same pivot sequence can be used while maintaining a stable factorization. This
might be the case when solving a nonlinear problem using Newton iterations. Clearly the
complexity of parallel pivot selection and the use of sparse dynamic data structures can
be avoided to yield a faster and more efficient factorization. This entry will be present in
a later version of our code.

Although the major and more time consuming part of the solution of equation (1)
lies in the LDU factorization, it is important to also provide efficient parallel code for
the forward and back substitution using the triangular factors. We have already been
investigating this in the context of GPUs [13] and plan to extend this work to use multi-
core and heterogeneous machines also.
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