
H2020–FETHPC–2014: GA 671633

D3.3
Software for Symmetrically Structured

Factorizations

January 2019

NLAFET D3.3: Symmetrically Structured Factorizations

Document information

Scheduled delivery 2019-01-31
Actual delivery 2019-01-31
Version 2.0
Responsible partner STFC

Dissemination level

PU — Public

Revision history

Date Editor Status Ver. Changes
2018-10-12 Iain Duff Draft 0.1 Skeleton draft
2019-01-16 Iain Duff and Florent Lopez Internal review 1.0 Major update
2019-01-29 Iain Duff and Florent Lopez Submitted version 2.0 Minor update

Author(s)

Iain Duff, RAL
Florent Lopez, RAL

Internal reviewers

Jan Papez, Inria
Srikara Pranesh, UMAN

Copyright

This work is c© by the NLAFET Consortium, 2015–2019. Its duplication is allowed only
for personal, educational, or research uses.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/18

http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

Table of Contents
1 Introduction 3

2 Using the NLAFET SyLVER package 3
2.1 Overview . 3
2.2 Dependencies with external libraries . 4
2.3 Installation . 5

2.3.1 Install the dependencies . 5
2.3.2 Get and install SyLVER . 6

3 Codes in the SyLVER package 6
3.1 Subroutine parameters . 7
3.2 Example programs . 9

4 Numerical experiments 11
4.1 Some comparisons with other codes . 12
4.2 Results using GPUs . 14
4.3 Scalability of solve routines . 14

5 Acknowledgements 17

List of Figures
1 Timing of SpLLT compared to PARDISO and PaStiX 13
2 Gflop rates of SpLDLT compared with PARDISO and HSL_MA97 13
3 Results of runs of SpLDLT on GPUs . 14
4 Comparisons of solve times for SpLLT, PARDISO and PaStiX 16

List of Tables
1 Positive-definite test matrices and their characteristics 12
2 Indefinite test matrices and their characteristics 12
3 Comparison of solve times for SpLLT, PARDISO, and PaStiX 15
4 Enlarged Conjugate Gradient (ECG) with PARDISO and SpLLT 17

http://www.nlafet.eu/ 2/18

http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

1 Introduction
The Description of Action document states for Deliverable 3.3:

“Implementation and adaption of methods from D3.2 on top of the common task frame-
work. Extension from symmetric to unsymmetric (but symmetrically structured) case.
Includes extensive testing, documentation and benchmarking.”

This deliverable is the final one related to the work performed in WP3, Task 3.2
(Direct methods for (near-)symmetric systems). Our work has focused on the design and
implementation of codes using matrix factorizations to solve large sparse linear systems
of equations Ax = b, where A is a symmetrically structured matrix. We discussed the
design for our suite of routines in Deliverable D3.2 submitted at M24 (October 2017).
Since then we have developed new routines for the solution of indefinite symmetric and
unsymmetric but structurally symmetric systems. All our routines are task based. They
use the runtime system StarPU for managing the task graph and are focused on single
node performance although the node can comprise multiple NUMA sections and GPUs.

The earlier work on Task 3.2 that was described in Deliverable D3.2 included an in-
depth discussion of the basis for our algorithms that we do not repeat here. In D3.2
we also discussed the SpLLT code1 for symmetric positive definite systems and SSIDS, a
Sparse Symmetric Indefinite Solver, that is included in the SPRAL Library. Some details
of SSIDS are included in a more recent technical report that has been submitted for
publication [8]. Since we submitted Deliverable 3.2, we have worked more on improving
SpLLT and have compared it more with other state-of-the-art codes and show some of
these comparisons in Section 4.1. We have made other significant improvements to the
code that we mention in Section 2.1 and discuss in Section 4.3. We have also developed a
version of SpLLT that works on nodes with GPUs and include a short discussion of this
in Section 4.2. Although our new codes, SpLDLT and SpLU, in what we call the SyLVER
package, represent significant further developments they share a number of kernels with
SSIDS, and we show these as dependencies in Section 2.2 by requiring the pre-installation
of SPRAL.

We introduce the SyLVER package in Section 2.1 and discuss the external libraries
that need to be linked with SyLVER in Section 2.2. We describe the installation procedure
in Section 2.3, the input parameters in Section 3.1 and provide simple test programs in
Section 3.2. We present some results in Section 4.

2 Using the NLAFET SyLVER package

2.1 Overview
The SyLVER package is included in the library developed at RAL as part of the NLAFET
project. It is available from https://github.com/NLAFET/. The SyLVER package pro-
vides an efficient implementation of codes for two different types of input matrix:

• SpLDLT for symmetric positive definite or indefinite matrices.

• SpLU for symmetrically structured unsymmetric matrices.
1https://github.com/NLAFET/SpLLT

http://www.nlafet.eu/ 3/18

https://github.com/NLAFET/
https://github.com/NLAFET/SpLLT
http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

The basic algorithms and design are the same for both codes.
The SyLVER package is similar to SpLLT in that it provides a tree-based implemen-

tation of a sparse direct method that accomplishes the solution of sparse equations in
three steps:

1. an analysis that determines an ordering based on the structure of the matrix and
computes data structures used in the factorization including the assembly tree,

2. a numerical factorization, factorize, that computes the matrix factors using output
from the analysis and the numerical values of the matrix. In the case of SpLLT,
the factorization will follow exactly the computations defined by the tree but for
SpLDLT and SpLU it will perform additional numerical pivoting to ensure stability
of the factorization,

3. a solve routine that uses the factors produced in the previous step to solve the
system with one or more right-hand sides.

In addition to the numerical pivoting, another difference between SpLLT and SyLVER
is that SpLLT processes the tree using a supernodal approach whereas SyLVER is a
multifrontal code. Our experience is that the multifrontal approach is both easier to
implement and more suited for a GPU implementation but requires more memory. For
background information on this approach to the direct solution of sparse equations, we
refer the reader to the book [6].

We described the earlier SpLLT code [7] for symmetric positive definite systems in
Deliverable 3.2. Since then a significant and important addition has been a blocked and
parallel routine for the solve phase [4]. We illustrate the performance of this enhanced
parallel solve in Section 4.3.

A detailed description of the parallel pivoting strategy used in both codes is given
in [8]. SpLDLT has a similar functionality to previous HSL parallel codes [12, 13] but
SpLU addresses a different class of matrices, specifically matrices that are unsymmetric
but structurally symmetric. The HSL code MA41 [2] solved systems with such coefficient
matrices and the later development of MUMPS [1] also includes an entry for these matri-
ces. Our code is different inasmuch as its primary target is for shared-memory multicore
machines.

2.2 Dependencies with external libraries
SyLVER depends on a few external libraries that need to be installed and linked with
SyLVER in order to use it:

• BLAS and LAPACK [3]: BLAS is a standard library for performing basic vector
and matrix operations. LAPACK is a standard software package for numerical
linear algebra. Although any library providing BLAS and LAPACK can be used,
we recommend MKL [17] (https://software.intel.com/en-us/mkl).

• CUBLAS from Nvidia CUDA (https://developer.nvidia.com/cuda-zone) is re-
quired if GPUs are to be used.

• MeTiS [14] is a sequential graph partitioning tool. SyLVER was tested with
MeTiS 5.1.0. This partitioning tool can be downloaded from http://glaros.dtc.
umn.edu/gkhome/metis/metis/overview.

http://www.nlafet.eu/ 4/18

https://software.intel.com/en-us/mkl
https://developer.nvidia.com/cuda-zone
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

• SPRAL (http://www.numerical.rl.ac.uk/spral/) is used for scaling and analy-
sis routines and for kernels from SSIDS.

• StarPU (http://starpu.gforge.inria.fr/) is a runtime system that we use to
exploit the parallel architecture. It is necessary to install this for compiling the
parallel code.

2.3 Installation
We now describe the complete installation of SyLVER.

2.3.1 Install the dependencies

The installation of the first three packages in Section 2.2 is well described in their respec-
tive documentation therefore we discuss here the installation of SPRAL and StarPU. The
compilation process for both installations is handled by the GNU Autotools package2.

Installing SPRAL The latest development version of the SPRAL library can be found
on the GitHub repository https://github.com/ralna/spral. Instructions for compiling
SPRAL are shown in Listing 1.

1 # Get latest development version from github and run dev scripts
2 git clone --depth =1 https :// github .com/ralna/spral.git
3 cd spral
4 ./ autogen .sh
5

6 # Build and install library
7 mkdir build
8 cd build
9 ../ configure --with -metis=’-L/path/to/metis -lmetis ’

10 make
11 sudo make install # Optional

Listing 1: Compiling the SPRAL library.

Installing StarPU The latest development version of the StarPU runtime system can
be downloaded via git. Instructions for downloading and compiling StarPU are shown in
Listing 2.

1 # Get latest development version via git
2 git clone https :// scm. gforge .inria.fr/ anonscm /git/ starpu / starpu .git
3 cd starpu
4 ./ autogen .sh
5

6 # Build and install library
7 mkdir build
8 cd build
9 ../ configure

10

11 make
12 sudo make install # Optional

Listing 2: Compiling the StarPU library.

2https://www.lrde.epita.fr/~adl/autotools.html

http://www.nlafet.eu/ 5/18

http://www.numerical.rl.ac.uk/spral/
http://starpu.gforge.inria.fr/
https://github.com/ralna/spral
https://www.lrde.epita.fr/~adl/autotools.html
http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

2.3.2 Get and install SyLVER

The code is held in the GitHub repository https://github.com/NLAFET/Sylver and the
compilation is handled by CMake3 tools. Here are the steps to follow to get and install
the package.

1. Get the latest version of SyLVER from the GitHub repository.

1 git clone git@github .com: NLAFET / sylver .git sylver

2. Use the cmake command to configure the compilation and generate the Makefile in
the build directory.

1 cd sylver
2 mkdir build
3 cd build
4 cmake ..

The choice of the runtime system can be made using the -DRUNTIME option. In order
to use the StarPU runtime system set -DRUNTIME=StarPU as following:

1 cmake .. -DRUNTIME = StarPU # Use the StarPU runtime system

And for generating the serial code:
1 cmake .. -DRUNTIME = Serial # produces a serial code

3. Type make to compile SyLVER and create the library libsylver.a and the example
programs.

1 make

4. The subroutines from the SyLVER library can now be linked to a program as follows:
1 cd <path -to -your -code >
2 gfortran -o myprog myobj.o -lsylver -lmetis -lblas \
3 -lstarpu -1.3

The directory drivers provides a few stand-alone programs to test the library.

3 Codes in the SyLVER package
After the package is installed as indicated in the previous section, detailed documentation
on how to use it can be found in the doc directory. However, we feel that it is useful to give
an overview of the codes and their parameters to indicate what software is available in
this deliverable. There are many more control parameters and more detailed information
returned by the codes that are described in full in the online documentation.

There are two codes in the Sylver package, SpLDLT and SpLU as mentioned in Sec-
tion 2.1. Each code has three callable routines performing the operations as mentioned in

3https://cmake.org/

http://www.nlafet.eu/ 6/18

https://github.com/NLAFET/Sylver
https://cmake.org/
http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

Section 2.1. These are called spldlt_analyse, spldlt_factorize, and spldlt_solve
and similar names for the SpLU codes.

The codes are written in Fortran 2003 but there are bindings for both C and C++.

3.1 Subroutine parameters
We describe the parameters to each of the three entries for SpLDLT. The SpLU routines
have the same parameters but they may hold different data. For example, akeep when
called by spldlt_analyse is of type spldlt_akeep but of type splu_akeep when called by
splu_analyse.

1. spldlt_analyse(akeep,n,colPtr,rowInd,options,inform,[order,val,ncpu])

2. spldlt_factorize(akeep,fkeep,pos_def,val,options,inform[,scaling])

3. spldlt_solve(akeep,fkeep,nrhs,x,ldx,inform)

SyLVER requires input matrices to be in compressed sparse column format (CSC).
This format stores the nonzero entries of the matrix by columns in twin real and integer
arrays with a pointer to the first entry in each column, viz:

• n [integer]: the size of the matrix.

• colPtr [integer(long)]: the beginning position of each column within the arrays
rowInd and val.

• rowInd [integer]: the row indices of the nonzero entries of the matrix.

• val [real]: the corresponding values of the nonzero entries of the matrix.

We show a matrix being input in this format in the example program in Section 3.2.
There is also a wrapper so that the user can input the matrix in coordinate form.

The akeep and fkeep derived data types are really not of concern to the user but
they are present so that information can be shared between the three subroutines. That
is, factorize needs the ordering and tree information held in akeep that is generated by
analyse. solve needs information in akeep that is generated by analyse and also in fkeep
that is generated by factorize.

The parameter options is used to control the code and to set various options. We list
the components of most interest below. There are several other components that could
be of interest to specialist users that are presented in the online documentation.

• print_level [integer, default=0]: the level of printing. Negative for no print-
ing, zero for errors and warnings only, one for some diagnostics, and higher values
for additional diagnostic printing.

• unit_error [integer, default=6]: Fortran unit number for printing of error
messages. Printing is suppressed if < 0.

• unit_warning [integer, default=6]: Fortran unit number for printing of warn-
ing messages. Printing is suppressed if < 0.

• unit_diagnostics [integer, default=6]: Fortran unit number for diagnostics
printing. Printing is suppressed if < 0.

http://www.nlafet.eu/ 7/18

http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

• use_gpu [logical, default=.true.]: If .true., the code will use an Nvidia GPU.

• scaling [integer, default=0]: scaling algorithm used. Options are:

0 : for no scaling or input scaling,
1 : weighted matching using code based on the MC64 algorithm [9],
2 : weighted matching using an auction algorithm,
3 : this option is discussed in online documentation,
4 : norm-equilibration algorithm [15, 16].

• small [real, default=1d-20]: threshold below which an entry is treated as equiv-
alent to 0.0.

• u [real, default=0.01]: relative pivot threshold used in numerical pivoting.
Negative values are treated as 0 and values greater than 0.5 as 0.5 for the LDLT

factorization. For the LU factorization, values greater than 1.0 are treated as 1.0.

• unsymm [integer, default=1]: SpLU only. 0: matrix is symmetrically struc-
tured, 1: matrix is unsymmetric also in pattern.

The parameter inform provides information on the running of the routine. We list
the components of most interest below. There are several other components that could
be of interest to specialist users and that are documented in the online documentation.

• flag [integer]: exit status of the algorithm. Zero if successful, positive if a fatal
error, and negative if a warning.

• num_flops [integer (long)]: number of floating-point operations required to
factorize the matrix.

• num_factor [integer (long)]: number of entries in the factors, L (without nu-
merical pivoting after analyse phase, and including numerical pivoting after factorize
phase) in the Cholesky and LDLT factorization, and L and U in the case of the LU
factorization.

• matrix_rank [integer]: (estimated) rank (structural after analyse phase, numer-
ical after factorize phase).

• stat [integer]: Fortran allocation status parameter in event of allocation error
(0 otherwise).

The other parameters in the call to the analyse entry are optional. order is an integer
array and can be used to define a user supplied ordering for the analysis. If it is omitted,
the default ordering is to use a nested dissection ordering from MeTiS. Other possibilities
are discussed in the online documentation. For one of these orderings, it is necessary to
supply the matrix values in the array val. The user can set ncpu to the number of cores
to use. It is an optional parameter and, if omitted, the routine will use hwloc4 to obtain
information on the hardware.

The other parameters in the call to the factorize entry are:
4https://www.open-mpi.org/projects/hwloc/

http://www.nlafet.eu/ 8/18

http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

• pos_def [logical]: that the user must set to indicate whether the matrix is pos-
itive definite (pos_def =.true.) or not (pos_def = .false.)

and an optional parameter

• scaling [real]: that can be set to a user input scaling vector in the case when
the options%scaling component is set to zero.

The other parameters in the call to the solve entry are

• nrhs [integer]: number of right-hand sides.

• x [real]: right-hand side(s) on input and solution(s) on output.

• ldx [integer]: if there is more than one right-hand side (nrhs ≥ 2) then ldx is
the leading dimension of the matrix x.

There are three other user-callable routines.

• sylver_init(ncpu,ngpu) to initialize the package and StarPU.

• sylver_finalize() to release memory and clean up data structures at the end of
the run.

• spldlt_free(akeep,fkeep) to deallocate the arrays akeep and fkeep.

The parameters to sylver_init can be used to set the number of cores (ncpu) and the
number of GPUs (ngpu). The value of ngpu will be ignored if options%use_gpu is set to
.false..

3.2 Example programs
The following program listings illustrate how SyLVER can be used for solving a sparse
linear system. We provide a simple Fortran program using SpLDLT in Listing 3 and a C
program using SpLU in Listing 4.

1 program spldlt_example
2 use spldlt_mod
3 implicit none
4

5 ! Derived types
6 type (spldlt_akeep) :: akeep
7 type (spldlt_fkeep) :: fkeep
8 type (sylver_options) :: options
9 type (sylver_inform) :: inform

10

11 ! Parameters
12 integer , parameter :: long = selected_int_kind (16)
13 integer , parameter :: wp = kind (0.0 d0)
14

15 ! Matrix data
16 logical :: posdef
17 integer :: n, row (9)
18 integer (long) :: ptr (6)
19 real(wp) :: val (9)
20

http://www.nlafet.eu/ 9/18

http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

21 ! Other variables
22 integer :: ncpu , ngpu
23 integer :: nrhs
24 real(wp) :: x(5)
25

26 ! Data for matrix :
27 ! (2 1)
28 ! (1 4 1 1)
29 ! (1 3 2)
30 ! (2 -1)
31 ! (1 2)
32 posdef = .false.
33 n = 5
34 ptr (1:n+1) = (/ 1, 3, 6, 8, 9, 10

/)
35 row (1: ptr(n+1) -1) = (/ 1, 2, 2, 3, 5, 3, 4, 4, 5 /)
36 val (1: ptr(n+1) -1) = (/ 2.0, 1.0, 4.0, 1.0, 1.0, 3.0, 2.0, -1.0, 2.0 /)
37

38 ! The right -hand side with solution (1.0 , 2.0, 3.0, 4.0, 5.0)
39 nrhs = 1
40 x(1:n) = (/ 4.0, 17.0 , 19.0 , 2.0, 12.0 /)
41

42 ncpu = 1
43 ngpu = 0
44

45 call sylver_init (ncpu , ngpu)
46

47 ! Perform analyse and factorize
48 call spldlt_analyse (akeep , n, ptr , row , options , inform)
49 if(inform %flag <0) go to 100
50

51 call spldlt_factorize (akeep , fkeep , pos_def , val , options , inform)
52 if(inform %flag <0) go to 100
53

54 call spldlt_solve (akeep , fkeep , nrhs , x, n, inform)
55 if(inform %flag <0) go to 100
56 write (*,’(a ,/ ,(3 es18 .10))’) ’ The computed solution is:’, x(1:n)
57

58 100 continue
59 call spldlt_free (akeep , fkeep)
60

61 call sylver_finalize ()
62

63 end program spldlt_example

Listing 3: Simple example program in Fortran using SpLDLT.

1 # include "splu.h"
2

3 int main(void) {
4

5 void *akeep , *fkeep;
6 splu_inform_t info;
7 splu_options_t options ;
8

9 /* Data for matrix :
10 * (2 -1)
11 * (1 4 -1 -1)

http://www.nlafet.eu/ 10/18

http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

12 * (1 3 -2)
13 * (2 -1)
14 * (1 2) */
15

16 int n = 5;
17 long ptr [] = { 1, 3, 7, 10,

12, 14 };
18 int row [] = { 1, 2, 1, 2, 3, 5, 2, 3, 4, 3,

4, 2, 5 };
19 double val [] = { 2.0, 1.0, -1.0, 4.0, 1.0, 1.0, -1.0, 3.0, 2.0, -2.0,

-1.0, -1.0, 2.0 };
20

21 /* The right -hand side with solution (1.0 , 2.0, 3.0, 4.0, 5.0) */
22 double x[] = { 0.0, 1.0, 19.0 , 2.0, 12.0 };
23

24 /* Machine Topology */
25 ncpu = 1;
26 ngpu = 0;
27

28 /* Initialize SyLVER */
29 sylver_init (ncpu , ngpu);
30

31 /* Perfom analyse */
32 splu_analyse (n, ptr , row , val , &akeep , &options , &info);
33

34 /* Factorize matrix */
35 splu_factorize (val , akeep , &fkeep , &options , &info);
36

37 /* Solve system */
38 int job = 0; // Forward and backward substitution
39 splu_solve (job , nrhs , x, n, akeep , fkeep , &info);
40

41 printf ("The computed solution is:\n");
42 for(int i=0; i<n; i++) printf (" %18.10 e", x[i]);
43 printf ("\n");
44

45 splu_free (akeep , fkeep);
46

47 /* Shutdown SyLVER */
48 splu_finalize ();
49

50 return 0;
51 }

Listing 4: Simple example program in C using SpLU.

4 Numerical experiments
In this section, we present some results from runs of SpLLT and from routines in the
SyLVER package. We use test matrices from the SuiteSparse set of sparse matrices [5].
In Table 1 we list the characteristics of the positive-definite matrices that we use for our
experiments with SpLLT presented in Figures 1 and 4 and Tables 3 and 4. In Table 2 we
list the characteristics of indefinite matrices that we use for our experiments with SyLVER
presented in Figures 2 and 3.

http://www.nlafet.eu/ 11/18

http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

Problem n nz(A) nz(L) flops
×103 ×106 ×106 ×109

1 Janna/Flan_1565 1565 59.5 1477.9 3859.8
2 Oberwolfach/bone010 987 36.3 1076.4 3876.2
3 Janna/StocF-1465 1465 11.2 1126.1 4386.6
4 GHS_psdef/audikw_1 944 39.3 1242.3 5804.1
5 Janna/Fault_639 639 14.6 1144.7 8283.9
6 Janna/Hook_1498 1498 31.2 1532.9 8891.3
7 Janna/Emilia_923 923 21.0 1729.9 13661.1
8 Janna/Geo_1438 1438 32.3 2467.4 18058.1
9 Janna/Serena 1391 33.0 2761.7 30048.9

Table 1: Positive-definite test matrices and their characteristics without node amalgama-
tion. n is the matrix order, nz(A) represents the number of entries in the matrix A, nz(L)
represents the number of entries in the factor L, and flops corresponds to the operation
count for the matrix factorization.

Problem n nz(A) nz(L) flops
×103 ×106 ×106 ×109

1 Boeing/pct20stif 52.33 1.38 12.60 5.63
2 GHS_indef/copter2 55.48 0.41 12.70 6.10
3 GHS_indef/helm2d03 392.26 1.57 33.00 6.16
4 Boeing/crystk03 24.70 0.89 10.90 6.26
5 Oberwolfach/filter3D 106.44 1.41 23.80 8.71
6 Koutsovasilis/F2 71.50 2.68 23.70 11.30
7 McRae/ecology1 1000.00 3.00 72.30 18.20
8 Cunningham/qa8fk 66.13 0.86 26.70 22.10
9 Oberwolfach/gas_sensor 66.92 0.89 27.00 22.10

10 Oberwolfach/t3dh 79.17 2.22 50.60 70.10
11 Lin/Lin 256.00 1.01 126.00 285.00
12 PARSEC/H2O 67.02 2.22 234.00 1290.00
13 GHS_indef/sparsine 50.00 0.80 207.00 1390.00
14 PARSEC/Ge99H100 112.98 4.28 669.00 7070.00
15 PARSEC/Ga10As10H30 113.08 3.11 690.00 7280.00
16 PARSEC/Ga19As19H42 133.12 4.51 823.00 9100.00

Table 2: Indefinite test matrices and their characteristics without node amalgamation.
n is the matrix order, nz(A) represents the number of entries in the matrix A, nz(L)
represents the number of entries in the factor L, and flops corresponds to the operation
count for the matrix factorization.

4.1 Some comparisons with other codes
At the end of the day, we expect our project to be judged in part by the performance of
the NLAFET software compared to state-of-the-art codes from other libraries. We have
published and submitted several papers[4, 7, 8, 10, 11] that compare our codes to others
and are working on more, but we just give a flavour of some of our comparisons in this
section.

http://www.nlafet.eu/ 12/18

http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

In Figure 1 we show both factor and solve times for our SpLLT code, PARDISO,
and PaStiX. The runs were performed using the 28 CPU cores (2× Intel Broadwell CPU
equipped with 14 cores clocked at 2.6 GHz) of a compute node which is part of the Keb-
nekaise machine5 hosted by the High Performance Computing Center North (HPC2N).
The experiments show that our code is significantly faster than the others both for fac-
torize and solve phases.

Fl
an
15
65

bo
ne
01
0

St
oc
F-
14
65

au
di
kw
1

Fa
ul
t
63
9

Ho
ok
14
98

Em
il
ia
92
3

Ge
o
14
38

Se
re
na

0

20

40

60

80

100

120

140

160

180

T
i
m
e

(
s
)

Spllt::factor

Spllt::solving

Pardiso::factor

Pardiso::solving

Pastix::factor

Pastix::solving

Figure 1: Timing of our SpLLT code compared to PARDISO and PaStiX on positive-
definite systems.

M
cR

ae
/e

co
lo

gy
1

O
be

rw
ol

fa
ch

/t
3d

h

Li
n/

Li
n

PA
RS

EC
/H

2O
G
HS

_in
de

f/
sp

ar
sin

e
PA

RS
EC

/G
e9

9H
10

0
PA

RS
EC

/G
a1

0A
s1

0H
30

PA
RS

EC
/G

a1
9A

s1
9H

42

0

50

100

150

200

250

300

350

400 Factor GFlop/s -- Haswell 20 cores

SpLDLT
PARDISO
HSL_MA97

Figure 2: Gflop rates of SpLDLT compared with PARDISO and HSL_MA97 on indefinite
matrices.

In Figure 2 we show Gflop rates for our SpLDLT code from SyLVER on symmetric
indefinite systems compared with PARDISO and HSL_MA97. These rates are for the

5https://www.hpc2n.umu.se/resources/hardware/kebnekaise

http://www.nlafet.eu/ 13/18

https://www.hpc2n.umu.se/resources/hardware/kebnekaise
http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

factorize phase only and again they show that our code is very competitive with other
state-of-the art codes. The runs for this figure were performed on the Alembert computer
in the Innovative Computing Laboratory (ICL) at the University of Tennessee.

4.2 Results using GPUs
One reason why we use the StarPU runtime system is so we can more easily port our code
to systems that have GPUs in addition to CPUs. We present some results in Figure 3
where see that we always benefit from adding a GPU sometimes significantly so. These
experiments were also run on Alembert, a heterogeneous CPU-GPU machine with two
NUMA nodes equipped with a 10 core Intel Haswell CPU clocked at 2.3 GHz, plus one
NVIDIA Pascal GPU device P100.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Matrix #

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Speedup

SpLDLT -- 20 CPUs
SpLDLT -- 20 CPUs + 1 GPU

Figure 3: Results comparing runs of SpLDLT on CPUs only and on CPUs with one GPU
on indefinite matrices.

4.3 Scalability of solve routines
We saw in Figure 1 that the time for the solve routine was much less than for the factorize
phase and indeed that is the case in general for sparse direct solvers. For this reason, the
efficient implementation of the solve phase has been paid very little attention in the
development of sparse solvers. However, as we show later, there are cases when a single
call to the factorize phase is followed by many calls to the solve phase so that the time for
this phase can strongly affect the overall computation time. We have therefore invested
quite some effort on improving the solve routines so that they scale better both with
respect to the number of right-hand sides and also with the number of cores.

We first compare the performance of our new solve code with PARDISO, PaStiX,
and the HSL code HSL_MA87 on 28 cores when solving for blocks of 1, 2, 16, and 128
right-hand sides. The results in Table 3 from experiments on the Kebnekaise machine
show clearly that our efforts in improving the solve phase were worthwhile.

http://www.nlafet.eu/ 14/18

http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

Matrix Fault_639 boneS10 Emilia_923 Serena
1 rhs

SpLLT 33.10 10.10 44.70 75.80
PARDISO 226.00 61.30 358.00 485.00
MA87 33.30 16.80 50.80 86.30
PaStiX 45.30 17.10 43.70 130.00

2 rhs
SpLLT 38.10 12.40 47.70 80.70
PARDISO 253.00 105.00 345.00 630.00
MA87 45.40 28.40 63.60 114.00
PaStiX 42.20 20.60 58.60 113.00

16 rhs
SpLLT 53.20 18.40 67.70 117.00
PARDISO 290.00 115.00 391.00 654.00
MA87 144.00 165.00 222.00 295.00
PaStiX 87.20 72.80 147.00 211.00

128 rhs
SpLLT 190.00 86.10 291.00 443.00
PARDISO 520.00 197.00 717.00 1380.00
MA87 1020.00 1310.00 1520.00 2130.00
PaStiX 428.00 415.00 878.00 1080.00

Table 3: Comparison of solve times for SpLLT, PARDISO, and PaStiX for 1, 2, 16 and
128 rhs. The experiments are run using 28 CPU cores and the times are shown in 10−2

seconds.

If we keep the number of right-hand sides at 64 but vary the number of cores, we
obtain the results shown in Figure 4 where the scalabilty of our new code with respect to
the number of cores and in comparison with the other codes is evident.

http://www.nlafet.eu/ 15/18

http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

1 2 4 14 28
nworker

0

5

10

15

20
Ti

m
e

(s
)

Fault 639.rb
spllt-solving
pardiso-solving
pastix-solving

a Fault_639

1 2 4 14 28
nworker

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

boneS10.rb
spllt-solving
pardiso-solving
pastix-solving

b boneS10

1 2 4 14 28
nworker

0

5

10

15

20

25

30

35

40

45

Ti
m

e
(s

)

Emilia 923.rb
spllt-solving
pardiso-solving
pastix-solving

c Emilia_923

1 2 4 14 28
nworker

0

10

20

30

40

50

60

70

Ti
m

e
(s

)

Serena.rb
spllt-solving
pardiso-solving
pastix-solving

d Serena

Figure 4: Comparison of the time to solve the system with 64 right-hand sides for SpLLT,
PARDISO and PaStiX.

Finally we mentioned at the start of this section that one reason for spending so much
time improving the solve phase was for cases when many solves would be performed for
each factorize. Such a case has been provided by our partners in the NLAFET Project
from Inria. When solving sparse equations using their Enlarged Conjugate Gradient
(ECG) method, they need only factorize the matrix once but then must do one solve
for each iteration of ECG. Effectively the direct solver is being used as a block Jacobi
preconditioner. We show a comparison of using our code with using PARDISO as the
direct solver in Table 4. We see that while the number of iterations is essentially unaltered,
the time to solution is always better when using our direct solver and sometimes markedly
so. In fact, when there are relatively few partitions the direct solver is working on larger
systems and so the gains from using our solve routine are somewhat greater.

http://www.nlafet.eu/ 16/18

http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

Problem ECG/PARDISO ECG/SpLLT
MPI t (s) # iter t (s) # iter

Flan_1565 16 57.82 141 23.18 141
32 32.92 177 14.94 177
64 20.15 216 9.77 216

128 11.35 270 6.53 270
256 6.70 325 5.50 325

Hook_1498 16 32.10 87 12.68 87
32 16.04 101 7.84 101
64 9.85 128 5.53 128

128 6.05 154 4.00 154
256 3.46 183 2.55 183

3DSKY175P1 16 195.81 159 67.35 160
32 104.75 179 42.48 174
64 55.51 205 27.86 205

128 32.71 248 17.78 248
256 17.02 277 11.22 276

Table 4: Time to solution using PARDISO and SpLLT. ECG is set with a tolerance of
10−5, an enlarge factor of 12 (equal to the number of right-hand sides), and SpLLT has a
block size of 256 with 14 workers.

5 Acknowledgements
This project is funded from the European Union’s Horizon 2020 research and innovation
program under the NLAFET grant agreement No 671633.

References
[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous

multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal.
Appl., 23(1):15–41, 2001.

[2] Patrick R. Amestoy and Iain S. Duff. Vectorization of a multiprocessor multifrontal
code. Int. J. of Supercomputer Applics., 3:41–59, 1989.

[3] Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, Jack Don-
garra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, A. McKenney, and
D. Sorensen. LAPACK User’s Guide, volume 9. SIAM, 1999.

[4] Sébastien Cayrols, Iain S. Duff, and Florent Lopez. Parallelization of the solve phase
in a task-based Cholesky solver using a sequential task flow model. Technical Report
RAL-TR-2018-008, Rutherford Appleton Laboratory, Oxfordshire, England, 2018.
NLAFET Working Note 20.

[5] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

http://www.nlafet.eu/ 17/18

http://www.nlafet.eu/

NLAFET D3.3: Symmetrically Structured Factorizations

[6] Iain S. Duff, Albert M. Erisman, and John K. Reid. Direct Methods for Sparse
Matrices. Second Edition. Oxford University Press, Oxford, England, 2017.

[7] Iain S. Duff, Jonathan Hogg, and Florent Lopez. Experiments with sparse Cholesky
using a sequential task-flow implementation. Numerical Algebra, Control and Opti-
mization, 8:235–258, June 2018.

[8] Iain S. Duff, Jonathan Hogg, and Florent Lopez. A new sparse symmetric indefinite
solver using a posteriori threshold pivoting. Technical Report RAL-TR-2018-012,
Rutherford Appleton Laboratory, Oxfordshire, England, 2018. NLAFET Working
Note 21.

[9] Iain S. Duff and Jacko Koster. On algorithms for permuting large entries to the
diagonal of a sparse matrix. SIAM J. Matrix Anal. Appl., 22(4):973–996, 2001.

[10] Iain S. Duff and Florent Lopez. Experiments with sparse Cholesky using a
Parametrized Task Graph implementation. In Roman Wyrzykowski, Jack Dongarra,
Ewa Deelman, and Konrad Karczewski, editors, Parallel Processing and Applied
Mathematics, volume LNCS 10777, pages 197–206. Springer International Publishing,
2018.

[11] Iain S. Duff, Florent Lopez, and Stojce Nakov. Sparse direct solution on parallel
computers. In M. Al-Baali, L. Grandinetti, and A. Purnama, editors, Numerical
Analysis and Optimization: NAOIV 2017, volume Springer Proceedings in Mathe-
matics & Statistics 235, pages 67–98. Springer, June 2018.

[12] J.D. Hogg, J.K. Reid, and J.A. Scott. Design of a multicore sparse Cholesky factor-
ization using DAGs. SIAM J. Scientific Computing, 32(6):3627–3649, 2010.

[13] J.D. Hogg and J.A. Scott. HSL_MA97 : a bit-compatible multifrontal code for sparse
symmetric systems. Technical Report RAL-TR-2011-024, Rutherford Appleton Lab-
oratory, Oxfordshire, England, 2011.

[14] George Karypis and Vipin Kumar. MeTiS –unstructured graph partitioning and
sparse matrix ordering system, version 2.0, 1995.

[15] Philip A. Knight, Daniel Ruiz, and Bora Uçar. A symmetry preserving algorithm for
matrix scaling. SIAM J. Matrix Anal. Appl., 35(3):931–955, 2014.

[16] Daniel Ruiz. A scaling algorithm to equilibrate both row and column norms in
matrices. Technical Report RAL-TR-2001-034, Rutherford Appleton Laboratory,
Oxfordshire, England, 2001.

[17] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and
Yajuan Wang. Intel Math Kernel Library. In High-Performance Computing on the
Intel R© Xeon Phi, pages 167–188. Springer, 2014.

http://www.nlafet.eu/ 18/18

http://www.nlafet.eu/

	Introduction
	Using the NLAFET SyLVER package
	Overview
	Dependencies with external libraries
	Installation
	Install the dependencies
	Get and install SyLVER

	Codes in the SyLVER package
	Subroutine parameters
	Example programs

	Numerical experiments
	Some comparisons with other codes
	Results using GPUs
	chbluScalability of solve routines

	Acknowledgements

