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1 Introduction
The Description of Action document states for Deliverable 3.7:

“Software for partitioning saddle point problems and overdetermined systems; improved
block Cimmino methods incorporating new solvers from other deliverables. Includes ex-
tensive testing, documentation and benchmarking.”

This deliverable is the final deliverable related to the work performed in WP3, Task
3.4 (Hybrid Direct-Iterative Methods). Our work has focused on the design and imple-
mentation of algorithms using the block Cimmino method, as developed in [4], to solve
large sparse linear systems of equations Ax = b, where A is generally unsymmetric and
can even be rectangular. We discussed the design for this software in Deliverable D3.6
submitted at M24 (October 2017). In this deliverable (D3.7), we describe the BC software
package, where BC stands for Block Cimmino, that we have developed based on the work
discussed in D3.6. Since then we have developed a new interface to the NLAFET SpLDLT
code, incorporated a numerically aware partitioning algorithm, and developed a column
partitioning for the least-squares solution of overdetermined systems. This work has been
conducted in collaboration with our colleagues in CERFACS and ENSEEIHT-IRIT in
Toulouse, France. Some of the work of our collaborators in France has been supported
by the EU Centre of Excellence for energy applications, called EoCoE. Our BC code is
also included in the ABCD (Augmented Block Cimmino Distributed) code distributed by
them. The block Cimmino approach couples distributed memory parallelism (using MPI)
with the efficient direct solution of sparse subsystems on single multicore nodes. In the
preliminary version of the BC code in Deliverable D3.6 and the ABCD code in France,
MUMPS [1] is used as the direct solver. Although MUMPS was originally developed for
distributed memory computing, it is now able to exploit multicore parallelism through
multithreading and the use of some OpenMP directives. Part of our work in NLAFET is
to replace MUMPS with the SpLDLT code from the NLAFET SyLVER package that is
specifically designed to exploit multicore architectures.

1.1 Underdetermined systems
We first discuss the block Cimmino algorithm for solving square or underdetermined
systems based on a row partitioning of the matrix. We assume that we are solving the
linear system Ax = b, where A is a sparse matrix of dimensions m× n, with m ≤ n and
rank(A) = m.

Ax = b is partitioned as



A1
A2
·
·
·
Ap


x =



b1
b2
·
·
·
bp


and then the algorithm computes a solution iteratively from an initial estimate x(0) ac-
cording to:

ui = A+
i

(
bi − Aix

(k)
)

i = 1, ....p (1.1)

x(k+1) = x(k) + ω
p∑

i=1
ui, (1.2)
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where we note independence of the set of p equations. Since A is full row rank, so are the
Ai and A+

i = AT
i (AiA

T
i )−1. Elfving [7] proves convergence of the method so long as

ω < 2/ρ(H)

where ρ(H) is the spectral radius of the iteration matrix that we define in equation (1.3).
Equations (1.1) and (1.2) define the block Cimmino method.

Even if the original matrix is square the partitions are underdetermined systems whose
shape is of the form:

We obtain the minimum norm solution of the underdetermined systems in equa-
tion (1.1) viz.

Aiui = ri, (ri = bi − Aix
(k))

by using the augmented system(
I AT

i

Ai 0

)(
ui

vi

)
=

(
0
ri

)

and will solve these augmented systems using a direct method.
Thus the block Cimmino method is a hybrid method combining direct and iterative

methods. Notice that, in common with many hybrid methods, by setting a block size
larger than the system dimension, we are just using a direct solver, albeit not very effi-
ciently.

The iteration equations can be written as:

x(k+1) = x(k) + ω
p∑

i=1
A+

i

(
bi − Aix

(k)
)

=
(
I − ω

p∑
i=1

A+
i Ai

)
x(k) + ω

p∑
i=1

A+
i bi

= Qx(k) + ω
p∑

i=1
A+

i bi.

We can write the fixed point iteration as

Hx = ξ, (1.3)

where H = I − Q. Then, since we assume that the matrices Ai have full row rank, the
matrix H = ω

∑p
i=1 A

+
i Ai is a sum of projection matrices and is thus positive definite.

Therefore the system (1.3) can be solved by the conjugate gradient method. We note
that, since ξ = ω

∑p
i=1 A

+
i bi, the parameter ω appears on both sides of equation (1.3)

so we can arbitrarily set it to one. However, it has been shown by [11] that we need to
accelerate the convergence of CG by using a block conjugate gradient algorithm, usually
with only a handful of vectors.
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1.2 Overdetermined systems
When the system is overdetermined, that is when there are more rows than columns,
we cannot use the row partitioning of the previous section since many of the subsystems
would not be of full row rank even if the input matrix is full column rank. In this case,
we assume that the matrix A is of full column rank, of dimensions m × n with m > n,
and that we want to obtain the vector x to minimize

‖b− Ax‖2.

In this case we partition the matrix by columns. That is:

Ax = b is partitioned as
(
A1 A2 · · · Ap

)


x1
x2
·
·
·
xp


= b

Elfving [7, equation (2.3)] shows that the subsystems that we then want to solve are of
the form:

Ai(x(k+1)
i − x(k)

i ) = ωr(k), i = 1, ....p, (1.4)

where r(k) = b − Ax(k). We see that the set of p equations are again independent so the
parallelism is the same as for the row partitioning case. The convergence of the method
is again guaranteed [7] if ω is less than 2 over the spectral radius of the iteration matrix
shown in equation (1.6).

We now look at the iteration matrix for the solution on the full vector, x(k), to see how
we might accelerate the solution in a manner similar to that in Section 1.1. The iteration
for the full vector x(k) can be written as

x(k+1) = x(k) + ω



A+
1

A+
2
·
·
·
A+

p


(b− Ax(k))

= (I − ω



A+
1

A+
2
·
·
·
A+

p


A)x(k) + ω



A+
1

A+
2
·
·
·
A+

p


b.

As before, when we look at the fixed-point iteration, we need to solve the system

Hx = ξ, (1.5)
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with

H =



A+
1

A+
2
·
·
·
A+

p


A, (1.6)

where, as earlier, the parameter ω appears on both sides of equation (1.5) and can be set
to one. Since the Ai are all full column rank

A+
i = (AT

i Ai)
−1
AT

i ,

which we note is a different generalized inverse to that in the underdetermined case when
A+

i = AT
i (AiA

T
i )−1. This means that

H = D−1ATA, (1.7)

where
D = diag(A1

TA1, A2
TA2, ...., Ap

TAp).

Thus H is positive definite and is similar to a symmetric matrix through the scaling
D1/2HD−1/2. We thus, as in the case of the row partitioning of Section 1.1, can solve the
system using block conjugate gradients.

To be more precise, we are solving the system Hx = ξ using block CG, where H is
defined by equation (1.7) and ξ is obtained by solving the p independent least-square
problems Aiξi = b and concatenating the ξi to get the vector ξ. Then, for each iteration
of block conjugate gradients, we solve the p independent systems by using a sparse direct
method on the augmented equations(

I Ai

AT
i 0

)(
y
zi

)
=

(
r(k)

0

)
,

where r(k) is the residual at iteration k. From the augmented equations, we note that the
matrix-vector product that occurs in CG is now implicitly obtained from the solution of
the augmented systems. This allows us to compute at the same time this product as well
as the solution zi, and should lead to better performance.

Our code, whose availability we discuss in Section 2, is included in the ABCD package
[14] that was developed originally by a postdoc, Mohamed Zenadi, working at ENSEEIHT-
IRIT in Toulouse. ABCD [6] has many other options that have been developed by our
colleagues in France but their emphasis has been on further development that augments
the system to improve the convergence of the iterative method. In this document we
focus on the software we have developed as part of the NLAFET project where we have
concentrated more on getting good multi-level parallel performance and offering a new
feature of the code, that is the solution of least-squares problems.

The version developed by our collaborators in France that includes the augmentation
of the matrix to force greater orthogonality between blocks can be accessed through the
repository https://bitbucket.org/APO_IRIT/ABCD.
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2 Installing the NLAFET BC library

2.1 Overview
The software developed in the NLAFET project by STFC-RAL is available from
https://github.com/NLAFET/ and consists of four repositories: SpLLT, SyLVER, ParSHUM,
and BC. It is the last one that is described in this deliverable.

For this block Cimmino code (BC) we have decided to maintain a single version of the
combined code and so the code is cross-referenced and maintained also at the bitbucket
repository in France. Since the NLAFET Library code is concerned with high levels of
parallelism and not with the augmentation of the matrix for greater orthogonality between
blocks, we differentiate between the full ABCD code and our subset which we call BC.
Within our BC code we have two main functionalities defined by the governing parameters
that determine whether we are using

1. row partitions for underdetermined or square matrices, or

2. column partitions for overdetermined matrices when a least-squares solution is ob-
tained.

The code chooses the first option if m ≤ n and the second if m > n.

2.2 Dependencies with external libraries
BC depends on a few external libraries that need to be installed and linked with BC in
order to use it:

• BLAS and LAPACK [3]: BLAS is a standard library for performing basic vector and
matrix operations. LAPACK is a standard software for numerical linear algebra.
Although any library providing BLAS and LAPACK can be used, we recommend
MKL [13] (https://software.intel.com/en-us/mkl).

• MeTiS [10] is a graph partitioning tool that is used to provide a nested dissection
ordering for the sparse direct solver used on the subsystems from the partitioning.
Our codes were tested with MeTiS 5.1.0. This partitioning tool can be downloaded
from http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.

• SPRAL is an open access suite of codes from RAL (https://github.com/SPRAL/)
that is only used directly for matrix scaling although other routines are used by
SpLDLT.

• SyLVER is the direct solver package that includes the SpLDLT routine with depen-
dencies

– SPRAL
– MeTiS
– StarPU is a runtime system developed in Bordeaux that is used to exploit the

parallel architecture. It is available in Open Source form from http://starpu.
gforge.inria.fr/.
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2.3 Installation
We now describe the complete installation of BC.

2.3.1 Install the dependencies

The installation of the first two packages in Section 2.2 is well described in their respective
documentation therefore we discuss here the installation of SPRAL, StarPU, and SyLVER.
The compilation process for these installations is handled by the GNU Autotools package1.

Installing SPRAL The latest development version of the SPRAL library can be found
on the GitHub repository https://github.com/ralna/spral. Instructions for compiling
SPRAL are shown in the listing in Figure 1.

1 # Get latest development version from github and run dev scripts
2 git clone https://github.com/ralna/spral.git spral
3 cd spral
4 ./autogen.sh
5

6 # Build and install library
7 mkdir build
8 cd build
9 ../configure --with-metis=’-L/path/to/metis -lmetis’

10 make
11 sudo make install # Optional

Figure 1: Compiling the SPRAL library.

Installing StarPU The latest development version of the StarPU runtime system can
be downloaded via git. Instructions for downloading and compiling StarPU are shown in
the listing in Figure 2.

1 # Get latest development version via git
2 git clone https://scm.gforge.inria.fr/anonscm/git/starpu/starpu.git starpu
3 cd starpu
4 ./autogen.sh
5

6 # Build and install library
7 mkdir build
8 cd build
9 ../configure

10 make
11 sudo make install # Optional

Figure 2: Compiling the StarPU library.

Installing SyLVER The SyLVER package is held in the GitHub repository
https://github.com/NLAFET/Sylver. The steps to download and install the package
are shown in Figure 3.

1https://www.lrde.epita.fr/~adl/autotools.html
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1 git clone git@github.com:NLAFET/sylver.git sylver
2 cd sylver
3 mkdir build
4 cd build
5 cmake .. -DRUNTIME=StarPU # Use the StarPU runtime system
6 make # This will create the library

Figure 3: Compiling the Sylver package.

2.3.2 Get and install BC

1. Get the latest version of BC.
$ git clone https://github.com/NLAFET/block_cimmino.git BC

2. In the BC directory that has just been created, make a copy named abcdCmake.in
of one of the abcdCmake.in.* files located in the cmake.in directory, and edit it in
order to set the compiler directives, the library paths, and flags.
In order to use SpLDLT as the inner solver with StarPU, do
$ cp cmake.in/abcdCmake.in.spldlt_starpu abcdCmake.in

3. Create a build directory in the BC directory, and move into it
$ mkdir build && cd build

4. To compile BC and create the library lib/libBC.a and the examples, type
$ cmake .. && make

5. Now, the subroutines from the library BC can be called by a program by including
their corresponding header file. The directory example provides a few stand-alone
programs to test the library.

3 Using the BC code
There are a large number of parameters in the ABCD code. Mostly the default values
are suitable for our BC code and many are not applicable to our code. We describe the
input data format in Section 3.1 and the most relevant parameters in Section 3.2.

3.1 Input data format
On entry, the sparse matrix should be in coordinate form. That is, it is represented by
three arrays of length the number of entries in the matrix. There are two integer arrays
irn and jcn, and a real array val. The entry val(i) is in row irn(i) and column jcn(i)
for i = 1, . . . nz where nz is the number of entries in the sparse matrix. Of course the
dimensions of the matrix m, the number of rows and n, the number of columns and nz
must also be set on entry. We present in Listing 1 the relevant components of the internal
structure of the BC solver.

1 int m; /*! The number of rows in the matrix */
2 int n; /*! The number of columns in the matrix */
3 int nz; /*! The number of entries in the matrix */
4 bool sym; /*! The symmetry of the matrix*/
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5 int *irn; /*! The row indices of size #nz */
6 int *jcn; /*! The column indices of size #nz */
7 double *val; /*! The entries of the matrix of size #nz */
8 int nrhs; /*! The number of right-hand sides to solve, default is 1 */
9 double *rhs; /*! The right-hand side of size #m * #nrhs */

10 double *sol; /*! The solution vector of size #n * #nrhs */
11 int start_index; /*! Defines whether it’s Fortran-Style (1) or C-Style */
12 std::vector<double> rhoVector; /* the residual vector */
13 std::vector<double> scaledResidualVector; /* the scaled residual vector */
14 std::vector<int> icntl; /*! The integer control array */
15 std::vector<double> dcntl; /*! The real control array */
16 std::vector<int> info; /*! The integer info output array */
17 std::vector<double> dinfo; /*! The real info output array */
18 std::vector<int> man_scaling; /*! The real scaling Number of iterations */
19 mpi::communicator comm; /*! The global communicator */

Listing 1: Presentation of the main components of the internal structure of BC.

The internal routines in BC require matrices to be stored in a compressed sparse row
format (CSR). The conversion is done automatically by the code.

3.2 Parameters
In this section, we present some parameters that can be set by the user. The integer
parameters are in the icntl array in Listing 1.

• nbparts (default 2) defines the number of partitions of the matrix

• part_type is the identifier of the partitioning technique used. This defaults to the
numerically aware partitioning of Torun [12].

• scaling (default 1) determines whether scaling is used (1) or not (0).

• itmax (default 1000) sets up the maximum number of iterations in block-CG

• block_size (default 1) corresponds to the number of rhs used in block-CG

• verbose_level defines the verbosity of the solver

• innerSolver_ncpu sets the number of CPUs for the inner solves on the augmented
systems.

• innerSolver_ngpu sets the number of GPUs for the inner solves on the augmented
systems.

• innerSolver_nemin sets the tree amalgamation level for the inner solves on the
augmented systems.

– The matrix is partitioned by rows for solving square or underdetermined sys-
tems (value 1).

– The matrix is partitioned by columns for overdetermined systems in the context
of solving least-squares problems (value 0).

The double precision parameter is in the dcntl array which consists of:

• threshold is the stopping criterion in block-CG
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3.3 Example program
The following listings illustrate how BC can be used in an example program for solving a
sparse linear system.

The steps needed to solve a sparse system are:

• BC_INITIALISE converts the matrix given by the user in coordinate format into a
CSR format, and if the rhs is not given by the user, the routine creates a rhs b such
that b = A× xf , where xf is a vector of dimension n whose entries are xf (i) = 1.0.

• BC_PREPROCESS scales the matrix, calls the partitioner, and creates augmented sys-
tems.

• BC_FACTOR distributes the data (that computes the matrix inf norm ,i.e., max over
local inf norm), initializes the inner solver, and factorises the augmented systems.

• BC_SOLVE synchronizes masters, distributes the rhs, and calls bcg.

To compile these codes:

• For the C++ example, do
make bc_example

• and for the C example, do
make bc_example_c

1 #include "abcd.h"
2

3 int main(int argc, char* argv[])
4 {
5 int err = 0;
6 double t = 0.0;
7

8 mpi::environment env(argc, argv);
9 mpi::communicator world;

10 string matrix_file, rhs_file, config_file;
11

12 abcd solver;
13

14 if(world.rank() == 0) {
15

16 config_file = "config_file.info";
17 if(argc >= 2) config_file = argv[1];
18

19 std::cout << "Load the config_file " << config_file << std::endl;
20 err = solver.parse_configFile(config_file, matrix_file, rhs_file);
21

22 std::cout << "Load the matrix " << matrix_file << std::endl;
23 err = solver.load_MM(matrix_file);
24

25 if(!rhs_file.empty()){
26 std::cout << "Load the RHS from " << rhs_file << std::endl;
27 err = solver.load_RHS(rhs_file);
28 }
29 }
30

http://www.nlafet.eu/ 11/19
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31 try {
32 t = MPI_Wtime();
33 solver(BC_INITIALISE);
34 solver(BC_PREPROCESS);
35 solver(BC_FACTOR);
36 solver(BC_SOLVE);
37 if(world.rank() == 0) clog << "Total time: " << MPI_Wtime() - t << endl;
38 } catch(std::runtime_error e) {
39 std::cout << world.rank() << " Error code : " << e.what() << std::endl;
40 err = 1;
41 }
42 world.barrier();
43

44 return err;
45 }

Listing 2: Example of a C++ code calling BC.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <mpi.h>
4 #include <string.h>
5 #include "abcd_c.h"
6

7 int main(int argc, char **argv)
8 {
9 int err = 0;

10 int rank = 0;
11 int size = 1;
12 double t = 0.0;
13 char matrix_file[50] = "../example/e05r0500.mtx";
14 char rhs_file[50] = "../example/e05r0500_rhs.mtx";
15 abcd_c *solver;
16

17 /* Initialize MPI */
18 MPI_Init(&argc, &argv);
19

20 /* Find out my identity in the default communicator */
21 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
22 MPI_Comm_size(MPI_COMM_WORLD, &size);
23

24 solver = new_solver();
25

26 /* Setup the solver */
27 solver.icntl[abcd_nbparts] = size;
28 solver.icntl[abcd_part_type] = 5;
29 solver.icntl[abcd_scaling] = 2;
30

31 /* Setup bcg parameters */
32 solver.icntl[abcd_itmax] = 1000;
33 solver.dcntl[abcd_threshold] = 1e-8;
34 solver.dcntl[abcd_block_size] = 1;
35

36 /* Setup inner solver */
37 solver.icntl[abcd_innersolver_ncpu] = 1;
38 solver.icntl[abcd_innersolver_ngpu] = 1;
39 solver.icntl[abcd_innersolver_nemin] = 1;
40
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41 if(rank == 0) { // the master
42

43 printf("Load the matrix %s\n", matrix_file);
44 err = load_MM(solver, matrix_file);
45

46 printf("Load the RHS from %s\n", rhs_file);
47 err = load_RHS(solver, rhs_file);
48 }
49

50 t = MPI_Wtime();
51 call_solver(solver, BC_INITIALISE);
52 call_solver(solver, BC_PREPROCESS);
53 call_solver(solver, BC_FACTOR);
54 call_solver(solver, BC_SOLVE);
55 if(rank == 0) printf("Total time: %f\n", MPI_Wtime() - t);
56

57 MPI_Finalize();
58

59 return 0;
60 }

Listing 3: Example of a C code calling BC.

4 Numerical experiments
For the row partitioned algorithm, we have performed some runs on Kebnekaise at the
High Performance Computing Center North (HPC2N). This machine has 432 nodes, where
each node consists of Intel Xeon E5-2690v4 (2x14 cores) and 128 GB of memory. The
characteristics of the test matrices are shown in Table 1. These matrices are from the
SuiteSparse collection of sparse matrices [5].

Name n entries Description
torso3 2.59e+05 4.43e+06 Electro Physics
cage13 4.45e+05 7.48e+06 DNA electrophoresis
hamrle3 1.45e+06 5.51e+06 Circuit simulation

Table 1: Statistics for matrices used in row partitioned tests

We perform a strong scaling on the number of partitions, and we show the time to
solve each problem in Figure 4. To emphasize the behaviour of our method, we choose for
block CG, a block size of one, and a threshold of 10−8. We first notice that, as predicted,
increasing the number of partitions reduces the time to solve the system. More precisely,
the time to factorize the augmented systems decreases as the size of each partition de-
creases. We also note that for torso3 and cage13, the number of iterations of CG does
not increase drastically with the number of partitions. In the case of cage13, this number
stays roughly the same. On the other hand, the number of iterations for the Hamrle3
matrix decreases from 302 to 274 when the number of partitions is doubled from 8, and
reaches 344 for 64 partitions. This means that increasing the number of partitions does
not really impact the number of iterations while the global runtime benefits from it.
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(a) Torso3
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(b) Cage13
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Figure 4: Convergence of the method for different matrices when the number of partitions
increases from 8 to 64. The numbers on the top of each bar correspond to the number of CG
iterations, using a threshold of 10−8.

For our tests on the solution of least-squares problems we use some standard test
problems and show data on these in Table 2. The first four matrices are in the SuiteSparse
collection of sparse matrices [5]. The PIGS matrices are from pig breeding that were
obtained from Markus Hegland [8, 9] for experiments on a QR code at CERFACS [2] and
will shortly be available in SuiteSparse.

Name m n entries κ(A) Description
well1850 1850 712 8755 1.1e+02 Paige and Saunders test
Kemelmacher 28452 9693 100875 2.5e+04 Computer graphics/vision problem
mesh_deform 234023 9393 853829 1.7e+03 Image mesh deformation
deltaX 68600 21961 247424 1.2e+16 High fill-in example
PIGS_small1 3140 1988 8510 3.9e+05 Pig breeding
PIGS_small2 6280 3976 25530 5.2e+05 Pig breeding
PIGS_medium1 9397 6119 25013 4.3e+05 Pig breeding
PIGS_medium2 18794 12238 75039 4.2e+05 Pig breeding
PIGS_large1 28254 17264 75018 4.6e+05 Pig breeding
PIGS_large2 56508 34258 225054 4.7e+05 Pig breeding

Table 2: Statistics for matrices used in least-squares tests.

Clearly a greater number of partitions will give us more parallelism but will result in
more iterations. Also, we would hope that the numerically aware partitioning [12] will
do better than simply dividing the matrix uniformally into blocks of columns. We show
these effects quite strongly in the results in Table 3 for runs on the first four matrices.
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The stopping criterion for our algorithm is based on the value of ‖AT r‖2. We also show
the number of iterations for solving the system using a conjugate gradient iteration on
the normal equations. Significantly less iterations are needed by our block Cimmino code
than by CGNR even when using many partitions. In nearly all cases, the numerically
aware partitioning results in far fewer iterations than the natural partitioning sometimes
by a factor of over 5.

Natural partitioning Numerically aware
Matrix name npart niter AT r niter AT r

well1850 CGNR 458 9.85e-09
2 265 8.45e-09 48 1.27e-14
3 428 8.51e-09 65 4.95e-10
4 441 7.46e-09 77 6.49e-09
5 451 9.68e-09 96 1.87e-09
10 457 8.73e-09 115 8.26e-09
20 456 9.76e-09 186 6.83e-09
50 458 9.16e-09 305 9.71e-09

Kemelmacher CGNR 3591 9.89e-09
2 93 4.99e-09 97 5.05e-09
3 136 7.75e-09 147 9.36e-09
4 161 8.96e-09 163 8.12e-09
5 187 7.47e-09 182 7.92e-09
10 301 7.83e-09 247 8.09e-09
20 451 8.83e-09 307 9.76e-09
50 805 9.92e-09 400 9.17e-09

mesh_deform 2 269 9.52e-09 45 7.50e-09
3 306 9.89e-09 67 9.61e-09
4 390 9.11e-09 63 7.61e-09
5 398 9.45e-09 70 7.23e-09
10 440 8.94e-09 67 7.95e-09
20 474 9.15e-09 82 7.33e-09
50 479 9.41e-09 76 8.56e-09

deltaX CGNR 2344 8.47e-09
2 296 7.51e-09 269 9.99e-09
3 421 9.49e-09 489 8.47e-09
4 521 8.63e-09 594 9.19e-09
5 636 9.74e-09 595 9.77e-09
10 1001 9.72e-09 724 8.40e-09
20 1418 8.75e-09 1549 7.92e-09
50 2056 9.33e-09 2313 9.52e-09

Table 3: Convergence of the method on SuiteSparse matrices for a threshold of 1e− 8.

We show convergence curves for the matrix Kemelmacher in Figure 5. These show that
the numerically aware partitioning is in general much better than the natural partitioning
in terms of number of iterations for convergence. Although our measure for convergence
is not at all monotonic, it does eventually convergence at a fast rate.
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Figure 5: Convergence of the two partitioning schemes on Kemelmacher for differing numbers
of partitions.

The results on the PIGS matrices in Table 4 show a similar pattern to the earlier
runs. In every instance the numerically aware partitioning does better and for the largest
problem it beats CGNR by a factor of more than eight even when using 50 partitions.
Finally we show convergence curves for the matrix PIGS_medium1 in Figure 6 that again
are similar to our results in Figure 5.
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Natural partitioning Numerically aware
Matrix name npart niter niter AT r

small1 CGNR 562 9.62e-09
2 202 9.39e-09 83 7.08e-09
3 239 8.47e-09 104 7.14e-09
4 250 9.35e-09 120 9.68e-09
5 260 8.45e-09 130 6.81e-09

10 278 9.39e-09 159 8.35e-09
20 286 7.21e-09 173 7.49e-09
50 289 9.24e-09 202 9.38e-09

small2 CGNR 705 9.96e-09
2 183 9.36e-09 64 9.63e-09
3 217 9.23e-09 78 9.99e-09
4 232 9.70e-09 103 7.20e-09
5 236 9.16e-09 108 8.32e-09

10 263 8.72e-09 129 8.50e-09
20 273 9.09e-09 148 9.76e-09
50 278 8.92e-09 176 8.83e-09

medium1 CGNR 770 9.50e-09
2 219 8.25e-09 87 6.70e-09
3 249 9.43e-09 101 9.45e-09
4 272 9.86e-09 114 7.14e-09
5 294 9.82e-09 119 9.47e-09

10 316 8.68e-09 142 7.77e-09
20 329 9.36e-09 163 7.69e-09
50 338 8.30e-09 199 8.95e-09

medium2 CGNR 1475 8.28e-09
2 191 9.56e-09 104 6.67e-09
3 218 9.98e-09 120 7.94e-09
4 365 8.60e-09 134 7.94e-09
5 399 9.37e-09 141 8.78e-09

10 433 8.73e-09 179 7.13e-09
20 448 9.02e-09 213 8.87e-09
50 455 9.05e-09 252 8.06e-09

large1 CGNR 1208 8.89e-09
2 235 7.85e-09 84 6.62e-09
3 277 9.17e-09 104 7.88e-09
4 290 7.83e-09 115 9.96e-09
5 312 9.01e-09 122 7.59e-09

10 344 9.57e-09 143 8.13e-09
20 358 9.17e-09 175 8.73e-09
50 362 9.84e-09 213 8.57e-09

large2 CGNR 2225 9.64e-09
2 325 8.72e-09 92 9.89e-09
3 383 8.78e-09 111 6.83e-09
4 397 9.73e-09 127 8.47e-09
5 436 9.05e-09 144 8.79e-09

10 477 8.67e-09 177 9.08e-09
20 490 9.16e-09 221 8.85e-09
50 492 9.72e-09 274 8.84e-09

Table 4: Convergence of the method on the PIGS problems for a threshold of 1e− 8.
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Figure 6: Convergence of the two partitioning schemes on PIGS_medium1 for differing num-
bers of partitions.
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