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1 Executive summary
In this deliverable, we introduce some new algorithms for solving a symmetric positive definite
linear system. On massively parallel machines, communication is the performance bottleneck.
That is why those algorithms are designed in order to reduce the communication in parallel.

On one hand, we explain a method to reduce the number of search directions adaptively
during the iterations of Enlarged Conjugate Gradient (ECG) [1, 2]. This method is cheap be-
cause its arithmetic overhead is low, just a SVD decomposition on a small matrix, and it does
not need any communication. It is also completely algebraic and could be applied to any block
Krylov Conjugate Gradient variant. On the other hand, we detail the construction and appli-
cation of LORASC preconditioner [3], a robust and algebraic preconditioner. We show how it
can be built and applied in parallel. To assess the effectivity of these methods, we perform sev-
eral numerical experiments on a set of matrices including some coming from EDF CFD code
Code_Saturne which is one of the industrial application of NLAFET (see Deliverable D5.1:
Requirements Analysis). Numerical results on a set of matrices arising from the discretization
by the finite element method of linear elasticity models illustrate the robustness, and show the
fast convergence and efficiency of LORASC preconditioner. When testing ECG with or without
adaptive reduction of the search directions, the numerical results show that our method allows
to reduce the computational cost of ECG while maintaining a convergence rate very close to the
one of ECG, and much better than the one of PCG.

To summarize, we introduce two methods that give promising results for solving SPD linear
systems in parallel. These methods are currently implemented in parallel and they will be tested
on massively parallel machines. Those results and the associated source code will be presented
in details in Deliverable D4.3. In particular, we will test the implementation on Code_Saturne
test cases and for the Cosmic Microwave Background problem in astrophysics (see Deliverable
5.1: Requirements Analysis). In addition, we will consider using LORASC as a preconditioner
for ECG.

2 Introduction
The Description of Action document states for Deliverable 4.2:

“Analysis and algorithm design
Report on novel Krylov methods and multilevel preconditioners, focusing on nu-
merical efficiency and theoretical properties.”

This deliverable is in the context of Task 4.2 (Iterative methods) and Task 4.3 (Preconditioners).

In this deliverable, we discuss communication avoiding Krylov subspace iterative methods
for solving large sparse linear systems of equations Ax = b, where A is a symmetric positive
definite (SPD) matrix. We consider Krylov subspace methods based on Conjugate Gradient
(CG) [7]. The convergence rate of CG depends on the condition number of the matrix A and
on the distribution of its eigenvalues [15]. The convergence rate of Krylov subspace methods is
often accelerated by seeking a preconditioner M such that the preconditioned matrix M−1A has
better spectral properties and the linear system M−1Ax = M−1b converges faster. Our research
focuses on two mains aspects: design reformulations of Krylov-based iterative methods that, at
the cost of more computation, will enable a reduction in the number of global communications
with respect to classic formulations, and design communication-avoiding preconditioners that
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are efficient in accelerating the iterative method but also reduce communication. Our contribu-
tions can be summarized as follows.

First, we recall a novel approach introduced by Grigori, Moufawad and Nataf [1] for re-
ducing the communications in Krylov subspace methods that consists of enlarging the Krylov
subspace by a maximum of t vectors per iteration, based on a domain decomposition of the
graph of A. The solution of the linear system is sought in the enlarged subspace, which is a su-
perset of the classic Krylov subspace. The construction of this enlarged space involves BLAS3
operations instead of BLAS1 and BLAS2 operations thus it increases arithmetic intensity and
does not cost much more than constructing the corresponding classic Krylov subspace. Fur-
thermore, as the solution is searched in a larger space, the number of iterations for finding an
approximate solution is lower than with CG. Hence, the number of global synchronizations is
reduced. Then, we explain a method, introduced in [2], for reducing adaptively the number of
search directions during the iterations of Enlarged Conjugate Gradient.

Second, we introduce a robust algebraic preconditioner that can be efficiently built and ap-
plied in parallel. The graph of the matrix is partitioned by using k-way partitioning with vertex
separators into N disjoint domains and a separator formed by the vertices connecting the N do-
mains. The obtained permuted matrix has a block arrow structure. The preconditioner relies
on the Cholesky factorization of the first N diagonal blocks and on approximating the Schur
complement corresponding to the separator block. The approximation of the Schur comple-
ment involves the factorization of the last diagonal block and a low rank correction obtained
by solving a generalized eigenvalue problem. The preconditioner can be build and applied in
parallel. Our numerical results illustrate the robustness and the efficiency of our approaches.

The rest of the document is organized as follows. In section 3 we present enlarged Krylov
methods. In section 4, we consider the LORASC preconditioner, discuss its general properties
and its application. In Section 5, we present the results on a set of matrices arising from the
discretization by the finite element methods of linear elasticity models, and illustrate the robust-
ness and efficiency of our approaches. Finally, in section 6 we give a conclusion, and present
future work.

3 Enlarged Conjugate Gradient
Block Krylov methods were introduced for the Conjugate Gradient in 1980 by O’Leary with
the Block Conjugate Gradient method [12] (Block CG). She was motivated by solving linear
systems with several right hand sides. She has shown theoretically that this method can converge
significantly faster than the classical Conjugate Gradient.

3.1 Derivation
Following Gutknecht at al. [5] Block Krylov subspaces are defined as,

K �
k (A,R0) := span�

{
R0,AR0, . . . ,Ak−1R0

}
(3.1)

:=

{
k−1

∑
s=0

AsR0γs such that ∀s ∈ {0, . . . ,k−1}, γs ∈ Rt×t

}
. (3.2)
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When there is no ambiguity we denote K �
k (A,R0) by K �

k . Using this definition Block Krylov
subspaces projection methods are defined as,

Xk ∈K �
k +X0, (3.3)

Rk ⊥L �
k , (3.4)

where L �
k is a subspace which has the same size as K �

k . The first equation (3.3) is called the
subspace condition and the second one (3.4) is called the Petrov-Galerkin condition.

The Block Conjugate Gradient method is defined as the Block Krylov subspaces projection
method, where A is symmetric positive definite and L �

k = K �
k . As a result of this projection

process,
φ(Xk) = min

X∈K �
k

φ(X), (3.5)

where

φ(X) =
1
2

X>AX−B>X , (3.6)

∇φ(X) = AX−B. (3.7)

As in gradient methods, the new solution at iteration k is defined as Xk = Xk−1 + Pkαk,
where Pk represent the descent directions and αk is the step. One important property of the
Block Conjugate Gradient is the A-orthonormality (or conjugacy) of the descent directions, that
is P>i APj = 0 when i 6= j.

As shown in [2] there exists two variants for constructing the search directions, Orthomin
(see [2]) and Orthodir (Algorithm 1). In practice, Orthodir is more stable even if it is more
expensive than Orthomin. That is why we focus on Orthodir in this report.

Algorithm 1 Block CG: orthodir
Require: A, B, X0, kmax, εsolver
Ensure: ||B−AX ||< εsolver or k = kmax

1: R0 = B−AX0
2: P0 = 0
3: P1 = A-orthonormalize(R0)
4: k = 1
5: while ||Rk−1||> εsolver||B|| and k < kmax do
6: αk = P>k Rk−1 . t× t matrix
7: Xk = Xk−1 +Pkαk . n× t matrix
8: Rk = Rk−1−APkαk . n× t matrix
9: Pk+1 = APk−PkP>k AAPk−Pk−1P>k−1AAPk . n× t matrix

10: Pk+1 = A-orthonormalize(Pk+1)
11: k = k+1
12: end while

Even if the Block CG method was initially used to solve linear systems with several right
hand sides, it is possible to use a block method to solve a linear system with only one right hand
side. In the following we present different ways to use Block CG in order to solve a system
with only one right hand side.

In this report we use the following notations: U> is the transpose of a matrix U , A is a
symmetric (A> = A) positive definite (x>Ax > 0, ∀x 6= 0) real matrix of size n× n, B is a real

http://www.nlafet.eu/ 5/20

http://www.nlafet.eu/


NLAFET D4.2: Analysis and algorithm design

matrix of size n× t, B(i) is the i-th column of a matrix B, X0 is an initial guess for the linear
system AX = B, i.e. it is a real matrix of size n× t. We denote the initial residual matrix
R0 = B−AX0. We call t the initial block size. Unless otherwise stated, ||.|| denotes the usual
euclidean norm both for vectors and matrices.

We denote 1t a row of size 1× t and full of ones. We refer to the method defined in [11]
by Nikishin and Yeremin as BCG. In this method, X0 and B are choosen as X0 = x01t and
B(i) ∼U (0,1), ∀t ≥ i > 1 and B(1) = b. In that case, the method is stopped as soon as the first
column of Rk has a norm smaller than εsolver||b||. The solution is given by the first column of X .
In [1] Grigori, Moufawad and Nataf use a domain decomposition approach to define enlarged
Krylov subspaces and the associated ECG method. Given a splitting decomposition represented
by the operator T ,

T (x) =



∗
...
∗
∗
...
∗

. . .
∗
...
∗
∗
...
∗


where x is a vector of size n and T (x) is of size n× t. The first columns of T (x) contains the
first components of x and so on for the following columns of T (x). The initial residual denoted
r0, the corresponding enlarged Krylov subspace is defined as

Kk,t = span�{T (r0),AT (r0), . . . ,Ak−1T (r0)}. (3.8)

Using this definition, they derive a Short Recurrence Enlarged CG (ECG). This method can
be embedded in the Block Conjugate Gradient framework by defining R0 = T (r0). The stopping
criterion is the euclidean norm of rk = ∑i R(i)

k and the solution is x = ∑i X (i).

3.2 Adaptive reduction of the search directions
In this section, we present an approach for reducing the block size in the Orthodir method during
the iterations defined in [2]. This is a technique known as deflation in block Krylov methods
[5, 11, 13].

Indeed, as explained in the survey [5] the key idea to reduce the block size is to monitor
the rank of Rk−1. Once Rk−1 becomes rank deficient, it means that there exists a vector v of
dimensions t×1 such that,

Rk−1v = 0, (3.9)
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and,

Rkv = Rk−1v−APkαkv (3.10)

= 0+APkP>k Rk−1v (3.11)
= 0. (3.12)

It follows that Riv = 0 for i ≥ k− 1. In other words, Xk−1v has already converged at iteration
k−1 because Xk−1v = A−1Bv. For i≥ k−1, there exists a linear combination (independent of
i) of columns of Xi denoted Xiv such that Xiv remains constant. As a consequence, Pkv is not
useful to compute the approximate solution and the idea is to remove this search direction in
the next iterations. As Rk−1 is an n× t matrix with n large, it is preferable to avoid computing
the rank of Rk−1 directly. Our approach is based on computing the rank of αk = P>k Rk−1. This
is similar to the idea developed by Robbé and Sadkane in [13].

In practice, the case, where αk becomes exactly rank deficient (also denoted exact break-
down or lucky breakdown), is very rare and it is preferable to detect when αk becomes nearly
rank deficient (also denoted inexact breakdown) [5, 13, 11].

More precisely, we compute the Singular Value Decomposition of αk,

αk =UkΣkV>k , (3.13)

where Uk and Vk are orthonormal t× t matrices and Σ =diag(σt , . . . ,σ1) (σ1 ≤ ·· · ≤ σt are the
singular values of αk). If αk is nearly rank deficient then this decomposition can be rewritten as

UkΣkV>k =
(

U (1)
k U (2)

k

)(
Σ
(1)
k 0
0 Σ

(2)
k

)V (1)
k

>

V (2)
k

>

 , (3.14)

where ||U (2)
k Σ

(2)
k V (2)

k

>
|| < εdef, and εdef is a given tolerance. In this case αk ≈U (1)

k Σ
(1)
k V (1)

k

>

and the idea is to replace αk by U (1)
k Σ

(1)
k V (1)

k

>
. Hence Pkαk ≈ (PkU

(1)
k )(Σ

(1)
k V (1)

k

>
).

Now let us define,

P(1)
k = PkU

(1)
k , (3.15)

P(2)
k = PkU

(2)
k . (3.16)

Since the part of the solution corresponding to XkV
(2)
k has almost converged (in the A-norm),

the search directions P(2)
k are not needed anymore. Hence we define the new search directions

as,

Pk+1U (1)
k = AP(1)

k −
(

P(1)
k P(2)

k

)P(1)
k

>

P(2)
k

>

AAP(1)
k −Pk−1P>k−1AAP(1)

k (3.17)

= AP(1)
k −P(1)

k P(1)
k

>
AAP(1)

k −P(2)
k P(2)

k

>
AAP(1)

k −Pk−1P>k−1AAP(1)
k (3.18)

and Pk+1U (1)
k have a smaller size than Pk+1. Furthermore, by construction Pk+1U (1)

k belongs to

span�{AP(1)
k } and is A-orthogonal to P0,P1, . . . ,Pk−1,P

(1)
k ,P(2)

k .
This allows us to define the new search directions the first time the size of the block is

reduced. It is possible to generalize this idea when the size is reduced several times (possibly
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until it is equal to one) leading to Algorithm 2 [2]. It is also possible to use this idea to derive
an adaptive variant of Orthomin [2].

Algorithm 2 Orthodir with block size reduction
Require: A, B, X0, kmax, εsolver, εdef
Ensure: ||B−AX ||< εsolver or k = kmax

1: R0 = B−AX0
2: P0 = 0
3: P1 = A-orthonormalize(R0)
4: k = 1
5: H = 0
6: while ||Rk−1||< εsolver||B|| and k < kmax do
7: αk = P>k Rk−1
8: [Uk,Σk,Vk] = svd(αk)
9: sk = number of singular values of αk bigger than εdef

10: if sk < sk−1 then
11: U (1)

k =Uk(:,1 : sk)

12: U (2)
k =Uk(:,sk +1 : end)

13: Σ
(1)
k = Σk(1 : sk,1 : sk)

14: V (1)
k =Vk(:,1 : sk)

15: P(2)
k = PkU

(2)
k

16: H = [H,P(2)
k ]

17: αk = Σ
(1)
k V (1)

k

>

18: Pk = PkU
(1)
k

19: end if
20: Xk = Xk−1 +Pkαk
21: Rk = Rk−1−APkαk
22: Pk+1 = APk−PkP>k AAPk−Pk−1P>k−1AAPk−HH>AAPk
23: Pk+1 = A-orthonormalize(Pk+1)
24: k = k+1
25: end while

4 LORASC Preconditioner
In this section we introduce LORASC, a robust algebraic preconditioner of the form M = (L+
D̃)D̃−1(D̃+LT ) that can be efficiently built and applied in parallel. Part of the presentation of
LORASC corresponds to the material published in [4]. The graph of the input matrix A is first
partitioned by using k-way partitioning with vertex separators into N disjoint domains and a
separator formed by the vertices connecting the N domains. Such a partitioning can be obtained
by using existing software as METIS [8]. The permuted matrix has a block arrow structure,
as presented in equation (4.1), in which the first N diagonal blocks correspond to the disjoint
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domains, while the last diagonal block AΓΓ corresponds to the separator.

A =


A11 A1Γ

. . .
...

ANN ANΓ

AΓ1 · · · AΓN AΓΓ

 . (4.1)

LORASC is algebraic in the sense that no information from the underlying PDE is required,
neither for the construction of the preconditioner, nor for the graph partitioning method used
for parallelism. It is robust in the sense that the spectral condition number (defined as the ratio
of the largest to the smallest eigenvalue) of the preconditioned matrix κ(M−1A) is bounded
by a user defined value τ . Here both M and A are SPD matrices. The preconditioner relies
on the Cholesky factorization of the first N diagonal blocks and on approximating the Schur
complement S = AΓΓ−∑

N
j=1 AΓ jA−1

j j A jΓ which would be computed in a direct factorization of A
(however prohibitive for 3D large problems). Our preconditioner is obtained by approximating
first the inverse of S by A−1

ΓΓ
. With this approximation, the eigenvalues of A−1

ΓΓ
S are upper

bounded by 1. The approximation of the Schur complement S̃−1 is obtained by correcting the
first approximation A−1

ΓΓ
by a low rank matrix which allows to shift all the eigenvalues of A−1

ΓΓ
S

smaller than a threshold ε = 1/τ to ε . We use for this a technique inspired from Wielandt’s
deflation (see [14]). The condition number of S̃−1S and also of the overall preconditioned
matrix M−1A is bounded by τ . The smallest eigenvalues and associated eigenvectors of A−1

ΓΓ
S

are computed by solving a generalized eigenvalues problem of the form

Su = λAΓΓu, S = AΓΓ−
N

∑
j=1

AΓ jA−1
j j A jΓ. (4.2)

In our experiments we observe that the size of the low rank correction increases slower than
linearly with the number of domains. This is an important property, since the number of do-
mains corresponds to the number of processors that will be used for the parallel execution of
LORASC. This means that the time required to apply the preconditioner will increase slowly
when increasing the number of processors, and this will allow to obtain a scalable application
of LORASC during the iterative process.

Given a matrix A of size n×n, we refer to its spectrum Λ(A) as

Λ(A) = {λ1,λ2, ...,λn},

where λ1 = λmin(A) is its smallest eigenvalue and λn = λmax(A) is its largest eigenvalue.
In the following we consider that the input matrix A has been reordered by using k-way

graph partitioning with vertex separators. The obtained matrix A has a bordered block diagonal
form, as presented in equation (4.1), also referred to as block arrow matrix, where each diagonal
block corresponds to a domain, while the last diagonal block AΓΓ corresponds to the separator,
the frontier between domains. The block diagonal matrices Aii are of dimension ni× ni, for
i = 1, . . . ,N, and the last diagonal block AΓΓ is of dimension nΓ×nΓ.

The matrix A can be factored as

A =


A11

. . .
ANN

AΓ1 · · · AΓN S




A−1
11

. . .
A−1

NN
S−1




A11 A1Γ

. . .
...

ANN ANΓ

S

 , (4.3)
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where the Schur complement S is computed as

S = AΓΓ−
N

∑
j=1

AΓ jA−1
j j A jΓ. (4.4)

Consequently, the factorization of A can be written as

A = (L+D)D−1(D+LT ), (4.5)

with D = Block-Diag(A11,A22, ...,ANN ,S) and

L =


0

. . .
0

AΓ1 · · · AΓN 0

 , (4.6)

Since for problems arising from the discretization of PDEs on large 3D grids, the Schur comple-
ment S becomes fairly dense, direct methods of factorization are prohibitive in terms of memory
and computation costs. In our preconditioner we approximate S by a much sparser matrix S̃.

Consider a symmetric positive definite matrix A of size n× n, which has a bordered block
diagonal structure as in Equation (4.1). We refer in the following to the Schur complement
preconditioner as M, and the preconditioned linear system that we solve is

M−1Ax = M−1b (4.7)

The preconditioner M is defined by the following approximate factorization

M = (L+ D̃)D̃−1(D̃+LT ) (4.8)

=


A11

. . .
ANN

AΓ1 · · · AΓN S̃




A−1
11

. . .
A−1

NN
S̃−1




A11 A1Γ

. . .
...

ANN ANΓ

S̃

 ,

where D̃ = Block-Diag(A11,A22, ...,ANN , S̃), L is defined as in Equation (4.6), and S̃ is an
approximation of the Schur complement S from Equation (4.4).

It can be easily shown that Λ(M−1A) = Λ(S̃−1S)∪{1} (see in [4]).
We start from the observation that λmax(A−1

ΓΓ
S)≤ 1. This is because

A−1
ΓΓ

S = I−A−1
ΓΓ

C, with C :=
N

∑
j=1

AΓ jA−1
j j A jΓ, (4.9)

and Λ(A−1
ΓΓ

C) = Λ(A
− 1

2
ΓΓ

CA
− 1

2
ΓΓ

). Then the fact that λmin(A
− 1

2
ΓΓ

CA
− 1

2
ΓΓ

)≥ 0 gives λmax(A−1
ΓΓ

S)≤ 1.
However, a preconditioner based only on AΓΓ does not allow to lower bound the eigenvalues

of S̃−1S. To solve this problem, we use a formulation of S̃−1 that adds to A−1
ΓΓ

a low rank matrix
allowing to correct the smallest eigenvalues of A−1

ΓΓ
S. Our deflation method is inspired from

the Wiedlandt’s deflation technique explained in [14]. The correction matrix shifts the smallest
eigenvalues of A−1

ΓΓ
S to a prescribed lower bound ε = 1

τ
. Note that since the application of M

during the iterative process requires applying the inverse of S̃, in the following we discuss the
formulation of S̃−1 rather than the formulation of S̃.
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In more details, we fix a threshold τ for the required spectral condition number κ(S̃−1S)
which leads us to prescribe a lower bound ε = 1

τ
for the eigenvalues of S̃−1S, as we know that

λmax(A−1
ΓΓ

S)≤ 1. We use the generalized eigenvalues problem

Su = λAΓΓu. (4.10)

Let λ1,λ2, ...,λi be the generalized eigenvalues that need to be corrected, i.e. λk < ε, k ∈
{1,2, ..., i}, and let v1,v2, ...,vi be the corresponding AΓΓ-orthonormal generalized eigenvectors
(see [9, Theorem 1.11]). The inverse of the approximation S̃ is defined as

S̃−1 = A−1
ΓΓ

+EiΣiET
i . (4.11)

where Ei = (v1 v2 ... vi) and Σi is defined as

Σi = Diag(σ1,σ2, . . . ,σi) (4.12)

with σ1,σ2, ...,σi chosen as

σk =
ε−λk

λk
, k ∈ {1,2, ..., i}. (4.13)

Then, one can easily prove that
ε ≤ λ (S̃−1S)≤ 1.

Hence the constructed matrix S̃ is a good approximation of S which ensures that the spectral
condition number κ(S̃−1S) is bounded by a given tolerance τ = 1

ε
.

Definition 1 (LORASC preconditioner). Let A be an n× n symmetric positive definite matrix
with a bordered block diagonal structure,

A =


A11 A1Γ

. . .
...

ANN ANΓ

AΓ1 · · · AΓN AΓΓ

 . (4.14)

Let S = AΓΓ−∑
N
j=1 AΓ jA−1

j j A jΓ. Given a tolerance τ , a lower bound ε = 1
τ

for the generalized
eigenvalues problem Su= λAΓΓu, let λ1,λ2, ...,λi be the generalized eigenvalues smaller than ε ,
i.e. for all k ∈ {1, ..., i} then λk < ε , and let v1,v2, ...,vi be the corresponding AΓΓ-orthonormal
generalized eigenvectors.

The LORASC preconditioner of A is defined as

MLORASC := (L+ D̃)D̃−1(D̃+LT ).

where L is given by (4.6) and D̃ = Block−Diag(A11,A22, ...,ANN , S̃). The matrix S̃ is defined as

S̃−1 = A−1
ΓΓ

+EiΣiET
i , (4.15)

where Ei,Σi are defined as

Ei = (v1 v2 ... vi) , (4.16)

Σi = Diag(σ1,σ2, . . . ,σi) , with σk =
ε−λk

λk
, k ∈ {1,2, ..., i}. (4.17)

The construction of the LORASC preconditioner is completely algebraic, since no informa-
tion from the underlying PDE is required.
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4.1 Multilevel approach
As described in the previous section, the construction of LORASC requires solving the eigen-
value system Su = λAΓΓu. For this solve, using iterative methods, such as ARPACK, requires
at each iteration of the method to perform a matrix-vector product OP×v, where OP = A−1

ΓΓ
S is

the operator and v, a vector of the Krylov subspace. Since this operation requires again A−1
ΓΓ

, we
can recursively call LORASC to solve the system on AΓΓ. This approach has several advantages
with respect to our default approach which uses Cholesky to factorize AΓΓ. First, this recursive
decomposition allows us to take advantage of the machines with hierarchical memories, e.g
clusters of multicores, where the top level of LORASC can use MPI processors over the nodes,
and the next level can use threads or openmp over the cores of each node. Second, for linear
systems of equations where AΓΓ is large after the partitioning, we can still take advantage of
iterative methods. In some cases, the new preconditioned system involving A−1

ΓΓ
can be solved

more efficiency using iterative methods than direct methods.

5 Experiments
The BUNDLE matrices corresponds to a pressure problem arising when solving this test case
with Code_Saturne. Code_Saturne a CFD software developped in EDF and one of the applica-
tion targets of NLAFET.

The elasticity matrices have been used in our group at Inria to assess the robustness of our
preconditioners and solvers [3, 2, 16, 10], they arise from the linear elasticity problem. In
infinitesimal strain theory, it may be written as follows:

div(σ(u))+ f = 0 on Ω, (5.1)
u = uD on ∂ΩD, (5.2)

σ(u) ·n = g on ∂ΩN , (5.3)

where Ω be a d-dimensional polygonal or polyhedral domain (d = 2 or 3), u ∈ Rd is the
unknown displacement field, the Dirichlet boundaries ∂ΩD = {(x,y,z) ∈ ∂Ω,x = 0} and the
remaining boundaries ∂ΩN are the Neumann boundaries, and f is some body force. The
Cauchy stress tensor σ(u) is given by Hooke’s law σ(u) = 2µε(u) + λTr(ε(u))I, where Tr
is the trace, µ,λ are the Lamé parameters, and are a property of the elastic material, and
ε(u) = 1

2(∇u + ∇uT ) is the strain tensor. Note that µ and λ can be expressed in terms of
Young’s modulus E and Poisson’s ratio ν as

λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

.

The numerical efficiency and robustness of our preconditioner is tested for the two- and
three-dimensional systems of linear elasticity on a rectangular and parallelepiped domain, re-
spectively. The domains are discretized with a triangular mesh and P1 finite elements. The
Young’s modulus E and Poisson’s ratio ν take two values, (E1,ν1) = (2 · 1011,0.25), and
(E2,ν2) = (107,0.45), the distribution is shown in Figure 1.

As stressed in the introduction, we are mainly interested in lowering the iteration count
because it corresponds to the number of global synchronizsations.
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(a) 2D case (b) 3D case

Figure 1: The distribution of the Young’s modulus.

5.1 Enlarged Conjugate Gradient
All the results are obtained with Matlab R2015b. PCG is the Matlab Preconditioned Conjugate
Gradient method. We always use a splitted block Jacobi preconditioner.

We compare BCG [11] and ECG [1] on two set of matrices coming from Code_Saturne and
linear elasticity problem. These matrices are displayed in Table 1 where we present their size,
the number of nonzeros, their smallest and largest eigenvalues.

Size Nonzeros λ1 λn
BUNDLE16 16 384 109 184 8.7e-10 9.8e-06
BUNDLE65 65 536 439 552 2.2e-10 9.8e-06
BUNDLE262 262 144 1 763 840 5.5e-11 9.8e-06
ELA25 9 438 312 372 2.7e-5 3.4
ELA50 18 153 618 747 1.9e-6 3.4
ELA100 36 663 1 231 497 2.6e-7 2.4

Table 1: Matrices used in our tests, their size, number of nonzeros, and smallest (λ1) and largest
(λn) eigenvalues.

In Table 2 are summarized the results obtained when increasing the number of right-hand
sides with ECG. PCG is Matlab Preconditioned Conjugate Gradient. There is no adaptive re-
duction of the search directions. The tolerance ε is chosen equal to 10−6 and the number of
blocks in the preconditioner is equal to 1024. As expected, both on BUNDLE and ELA ma-
trices the number of iterations decreases when the number of right-hand sides increases. On
BUNDLE262 matrix, ECG(4) performs almost 2 times less iterations than PCG and about 3
times more than ECG(32). On ELA100 matrix, ECG(4) performs more than 3 times less itera-
tions than PCG and 3 times more than ECG(32).
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Matrix PCG ECG(4) ECG(8) ECG(16) ECG(32)
BUNDLE16 172 103 79 63 53
BUNDLE65 207 117 92 66 53
BUNDLE262 325 180 127 93 70
ELA25 601 289 214 152 116
ELA50 1001 414 290 208 150
ELA100 955 308 236 155 109

Table 2: Number of iterations to get the solution. The method stops when the relative residual
is lower than 10−6. PCG is the usual preconditioned Conjugate Gradient method and ECG(t) is
the Enlarged Krylov Conjugate Gradient method where t is the enlarging factor, i.e. the number
of columns of the initial enlarged residual T (r0). The system is preconditioned with a block
diagonal preconditioner with 1024 blocks. When increasing the enlarging factor the number of
iterations decreases, half the number of iterations for ECG(32) compared to ECG(4) and around
4 times less compared to PCG.

In Figure 2, we plot the error (left), as well as the size of the block (right), as a function
of the number of iterations when running ECG and BCG with the adaptive reduction of the
search directions. The exact solution is computed by using Matlab \. The method stops when
the relative residual is lower than 10−6 and εdef is chosen equal to εdef =

1√
t εsolver||b||2 as in

[2]. The initial block size is 32 and the number of blocks in the preconditioner is 1024. For
both matrices, we observe that the convergence of the error is far better for the block methods
compared to PCG even with the block size reduction (a factor of 4 for BUNDLE65 and 10 for
ELA100). Still there is a small plateau before convergence for all the methods which is a well
known phenomenon with Krylov methods [5]. The block size reduction and the error behave
similarly for both matrices, the block size is reduced when the system is starting to converge
(around iteration 45 for BUNDLE65 and iteration 60 for Ela100). For the two test cases, ECG
performs better than BCG, it reduces its search directions more than BCG while keeping a
similar convergence speed.
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Figure 2: Block size reduction and error decreasing as a function of the number of iterations
when using Orthodir with dynamic reduction of the search directions (Algorithm 2). The right
figures represent the plot of the error as a function of the number of iterations. We use a log10
scale for the error. The left figures represent the plot of the block size as a function of the
number of iterations. We only plot the block size for the block methods and not for PCG.

5.2 LORASC Preconditioner
In this section we analyze the efficiency of the LORASC preconditioner on a set of matrices aris-
ing from the discretization by the finite element methods of linear elasticity models, with highly
heterogeneous elastic moduli, on three-dimensional (3D) domains. We define the test cases and
build the different matrices via FreeFem++ [6], and we build our LORASC preconditioner us-
ing MatLab. First the matrices are permuted to a bordered block diagonal form as in equation
(4.1) by using the k-way partitioning routine from METIS [8]. Given a number of partitions
N, the separators corresponding to the first log2 N levels of recursion are grouped together and
correspond to AΓΓ, while the N disjoint subdomains correspond to the first N diagonal blocks.

To solve the linear systems we use CG via MatLab with the threshold 10−8 for the stopping
criteria of the algebraic iterative resolution. The smallest eigenvalues and associated eigenvec-
tors of the generalized eigenvalues problem are computed using ARPACK.

We refer to the number of nonzero elements as nnz, the number of deflated eigenvalues
as nEV. In tables 3, 4 we display Nmult, the number of matrix-vector multiplications used by
ARPACK to compute the required eigenvalues with a fixed tolerance of 10−3, and iterS̃−1 , the
number of iterations of CG preconditioned by LORASC. We also display the number of itera-
tions obtained with a diagonal preconditioner, referred to as iterA−1

ΓΓ

. This preconditioner M is
obtained once the matrix A has been permuted to a bordered block diagonal form as in equation
(4.1). It can be written as M = Block-Diag(A11,A22, ...,ANN ,AΓΓ) and its application during
the iterative process relies on the Cholesky factorization of the diagonal blocks of A. Hence

http://www.nlafet.eu/ 15/20

http://www.nlafet.eu/


NLAFET D4.2: Analysis and algorithm design

the only difference with LORASC lies in the approximation of the Schur complement S. In the
block diagonal preconditioner, S is approximated by AΓΓ.

As mentioned previously, the smallest eigenvalues and associated eigenvectors of the gen-
eralized eigenvalues problem are computed using ARPACK with a fixed tolerance of 10−3. The
numerical results focus on testing the behavior of the LORASC preconditioner in terms of weak
and strong scalability. In the weak scaling experiments, the size of the problem increases pro-
portionally with the partitions number. In the strong scaling experiments, the problem size is
fixed while the number of partitions increases.

5.2.1 Three-dimensional test case

We start by illustrating the behavior of the LORASC preconditioner in terms of weak scaling.
Table 3 displays the number of deflated eigenvalues and the number of matrix-vector multiplica-
tions performed by ARPACK for the two different thresholds τ = 102,τ = 2 ·102. The number
of matrix-vector multiplications required in the case of ε = 10−2 and ε = 2 · 10−3 increases
slightly. Overall an important gain is obtained by LORASC with respect to the block diagonal
preconditioner that uses A−1

Γ,Γ only to approximate S̃−1.

S̃−1,ε = 0.01 S̃−1,ε = 0.005 A−1
Γ,Γ

n N nnz nEV Nmult iterS̃−1 nEV Nmult iterS̃−1 iterA−1
Γ,Γ

4719 2 153057 0 0 71 0 0 71 71
9438 4 312372 5 92 65 3 83 89 113

18513 8 618747 10 111 63 8 95 84 207
36663 16 1231497 15 132 60 11 111 76 267
72963 32 2456997 42 325 55 24 230 64 592

Table 3: Weak scaling results for 3D test cases. The results for LORASC are given in the
columns S̃−1 for two values of the parameter ε . The results for the block diagonal preconditioner
are given in the column A−1

Γ,Γ.

Strong scaling results are presented in Table 4. We note that the size of the deflation space
and the number of matrix-vector multiplications performed by ARPACK increases slightly for
the two choices of the parameter ε . When comparing the number of matrix-vector multipli-
cations needed to deflate the required smallest eigenvalues plus the number of iterations of
LORASC (Nmult+ iterS̃−1), with the number of iterations of the block diagonal preconditioner
(iterA−1

Γ,Γ
), we observe that LORASC outperforms the diagonal block precondiitoner. The gain

obtained by LORASC is more important when the partition number increases, and a factor of
roughly 2 is obtained for ε = 5 ·10−3.

Finally, we mention that similar results with the 2D case are obtained when we use more
rough (ε = 10−1) or smooth (ε = 10−3) lower bound, for both weak and strong scaling. That is,
no significant gain is obtained by LORASC with respect to the block diagonal preconditioner.

Table 5 compares the number of nonzeros in LORASC with respect to the number of nonze-
ros in the Cholesky factor of the matrix A. This is a 3D case, and the underlying discretization
grid has dimensions 200×10×10. The matrix A is of dimension 72963×72963 and the num-
ber of nonzeros of A is nnz(A) = 2456997. The number of partitions N varies from 8 to 64.
The fourth column gives the number of nonzeros in the Cholesky factor of A. This number
changes slightly for different partitions numbers since the permutation returned by Metis can
be different. For LORASC we display in the fifth column the average number of nonzeros of
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S̃−1,ε = 0.01 S̃−1,ε = 0.005 A−1
Γ,Γ

N nEV Nmult iterS̃−1 nEV Nmult iterS̃−1 iterA−1
Γ,Γ

2 6 83 58 4 83 74 87
4 13 119 65 8 110 75 168
8 23 202 61 13 119 74 322

16 32 249 61 18 159 69 465
32 42 325 55 24 230 64 592

Table 4: Strong scaling results for 3D test cases for n = 72963, and nnz = 2456997. The results
for LORASC are given in the columns S̃−1 for two values of the parameter ε . The results for
the block diagonal preconditioner are given in the column A−1

Γ,Γ.

the Cholesky factors of the first N diagonal blocks. The last column displays the number of
nonzeros of the Cholesky factor of AΓΓ. We note that the number of nonzeros in the Cholesky
factor of AΓΓ increases by a factor slightly bigger than 2 when the number of partitions is dou-
bled. We note that here we simply use nested dissection from Metis to permute the matrix A to
a bordered block diagonal form, any other ordering can be used.

LORASC
A = LLT Aii = LiiLiiT , i = 1, . . . ,N AΓΓ = LΓΓLT

ΓΓ

n N nnz(A) nnz(L) ∑
N
i=1 nnz(Lii)/N nnz(LΓΓ)

72963 8 2.4e+06 25.2e+06 2.2e+06 2.3e+05
72963 16 2.4e+06 25.4e+06 8.2e+05 4.8e+05
72963 32 2.4e+06 25.3e+06 2.3e+05 1.2e+06
72963 64 2.4e+06 25.3e+06 7.2e+04 2.8e+06
72963 128 2.4e+06 25.4e+06 6.1+04 5.1e+06

Table 5: Comparison of the number of nonzeros of the Cholesky factor of A with respect to the
Cholesky factors of the diagonal blocks of A

5.2.2 Multilevel results

Table 6 shows the results of the multilevel formulation of LORASC for a large elasticity 3D
problem of size 1161963× 1161963, with 39221997 nonzeros entries. The number of parti-
tions N varies from 8 to 128. We denote by LORASC (Level 1), the first call of LORASC, that
is, for solving the global system, and LORASC (Level 2), the second call of LORASC, that is,
for solving the system involving A−1

Γ,Γ.
For LORASC (Level 1) and LORASC (Level 2), we use ε = 0.01, and we solve the system
with the precision 10−8. The column PCG shows the results of Block Jacobi for solving the
global system. The column iterA−1

Γ,Γ
shows the average number of iterations required to solve the

system with AΓ,Γ, while the column iterA−1 shows the number of iterations to solve the global
system with A.
We observe that all the computed eigenvalues of AΓ,Γ at the second level are greater than
ε = 0.01, hence none of them are selected with our deflation technique. Indeed, for the second
level, any other preconditioner such as Block Jacobi (PCG) could be used. In our experiments,
we found that solving the system at the second level using PCG leads to the same number of
iterations as using LORASC at that level. We note that, on contrary to the elasticity problem,
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some large problems might lead to an ill-conditioned matrix AΓ,Γ for which, using deflation
technique such as LORASC will still be required to achieve fast convergence.
We note that the number of iterations of LORASC decreases considerably when the number of
processors increases. The multilevel version of LORASC outperforms Block Jacobi in terms
of iterations. For example, for N = 128, Solving the system using LORASC requires 95 itera-
tions, while using Block Jacobi preconditioner requires 18899 iterations. We also observe that
the number of matrix-vector products required to build LORASC (Level 1) increases with the
number of processors, this is due to the increasing number of eigenvalues to deflate. However,
these matrix-vector products are more suitable for parallelism.

LORASC (Level 2) LORASC (Level 1) PCG
N nEV Nmult iterA−1

Γ,Γ
nEV Nmult iterA−1 iterA−1

8 0 35 5 25 4424 247 3747
16 0 57 4 54 5233 159 5861
32 0 69 6 113 8085 120 9704
64 0 173 5 231 15055 98 13408

128 0 769 5 454 28880 95 18899

Table 6: Strong scaling results for 3D test cases for n = 1161963, and nnz = 39221997. The
results for LORASC are given for two levels in the columns Level1 and Level2. The results for
the block diagonal preconditioner are given in the column PCG.

6 Conclusion
In this deliverable, we introduced some new algorithms for solving a symmetric positive definite
linear system. On massively parallel machines, communication is the performance bottleneck.
That is why those algorithms are designed in order to reduce the communication in parallel.

On one hand, we explained a method to reduce the number of search directions adaptively
during the iterations of Enlarged Conjugate Gradient (ECG) [1, 2]. This method is cheap be-
cause its arithmetic overhead is low, just a SVD decomposition on a small matrix, and it does
not need any communication. It is also completely algebraic and could be applied to any block
Krylov Conjugate Gradient variant. On the other hand, we detailed the construction and appli-
cation of LORASC preconditioner [3], a robust and algebraic preconditioner. We have shown
how it can be built and applied in parallel. To assess the effectivity of these methods, we per-
formed several numerical experiments on a set of matrices including some coming from EDF
CFD code Code_Saturne which is one of the industrial application of NLAFET (see Deliver-
able D5.1: Requirements Analysis). Numerical results on a set of matrices arising from the
discretization by the finite element method of linear elasticity models illustrate the robustness,
and show the fast convergence and efficiency of LORASC preconditioner. When testing ECG
with or without adaptive reduction of the search directions, the numerical results show that our
method allows to reduce the computational cost of ECG while maintaining a convergence rate
very close to the one of ECG, and much better than the one of PCG.

To conclude, we introduced two methods that give promising results for solving SPD linear
systems in parallel. These methods are currently implemented in parallel and they will be tested
on massively parallel machines. Those results and the associated source code will be presented
in details in Deliverable D4.3. In particular, we will test the implementation on Code_Saturne
test cases and for the Cosmic Microwave Background problem in astrophysics (see Deliverable
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5.1: Requirements Analysis). In addition, we will consider using LORASC as a preconditioner
for ECG.
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