
H2020–FETHPC–2014: GA 671633

D5.1
Requirements analysis

April 2017

NLAFET D5.1: Requirements analysis

Document information

Scheduled delivery 2017-04-30
Actual delivery 2017-04-27
Version 1.0
Responsible partner STFC

Dissemination level

PU — Public

Revision history

Date Editor Status Ver. Changes
2016-11-11 Iain Duff Draft 0.1 Draft based on Word template produced by

Lennart Edblom
2017-03-24 Iain Duff Draft 0.2 Draft prepared for internal review
2017-04-27 Iain Duff Final 1.0 Revision after internal reviews

Author(s)

Iain Duff, STFC

Internal reviewers

Bo Kågström, UMU
Sam Relton, UNIMAN
Olivier Tissot, Inria

Contributors

Laura Grigori, Inria, France
Bernd Klöss, DigSILENT GmbH
Radoslaw Stompor, CNRS, France
Olivier Tissot, Inria, France

Copyright

This work is c©by the NLAFET Consortium, 2015–2018. Its duplication is allowed only
for personal, educational, or research uses.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/13

NLAFET D5.1: Requirements analysis

Table of Contents
1 Introduction 3

2 Materials science and chemistry 3

3 Load flow in large scale power systems 4

4 Energy solutions and Code Saturne 8

5 Data analysis, astrophysics, and Midapack 11

List of Figures
1 Plot of sparsity pattern of typical matrix from power system applications. . 6
2 An example of dynamic reduction of the search directions. 10
3 Communication bottleneck of two algorithms, a dense linear solver based on

the LU factorization with partial pivoting (bottom) and a sparse iterative
solver applied to the map-making problem in astrophysics (top). 12

List of Tables
1 Influence of threshold parameter, u, on power system matrices. Time in

seconds. 5
2 Influence of switching to full code on power system matrices. The switch

to dense code happens when the Schur complement has the density shown.
Time in seconds. 7

3 Matrices used in our tests, their size, number of nonzeros, and smallest
(λ1) and largest (λn) eigenvalues. 9

4 Number of iterations to get the solution. 10

http://www.nlafet.eu/ 2/13

NLAFET D5.1: Requirements analysis

1 Introduction
The Description of Action document states for Deliverable D5.1:

“D5.1 Requirements analysis
Report describing the outcome of the requirements analysis for all
applications.”

This deliverable is in the context of Task–5.1 (Requirements analysis).

The novel numerical algorithms and software developed in NLAFET will be validated
and integrated into several challenging real-world applications. This will allow their
scalable execution on the emergent hierarchical models of extreme-scale machines, thus
facilitating new scientific discoveries and novel industrial solutions.

This deliverable discusses the requirements of the applications described in the
proposal in Workpackage 5. For each application, we identify the properties of the linear
algebra problems to be solved, the sizes of the problems that will be addressed during the
project, their sparsity properties, and the parameters that need to be taken into account
at execution. This deliverable serves as input for the implementation in Task 5.2 and also
gives input to the work in the research-oriented WPs (WP2–4, WP6). The applications
are:

1. Dense solvers/eigensolvers in materials science and chemistry. Collaboration with
ETH Zürich, Switzerland

2. Load flow based calculations in large-scale power systems and PowerFactory code.
Collaboration with DIgSILENT GmbH, Germany.

3. Energy solutions and Code Saturne. Collaboration with EDF France.

4. Data analysis in astrophysics and Midapack. Collaboration with University Paris 7,
France.

We discuss these in more detail in Sections 2 to 5.

2 Materials science and chemistry
The main NLAFET contact is Jack Dongarra and the main applications contact is Thomas
Schulthess of ETH Zürich, Switzerland.

We are collaborating with ETH Zürich who in turn interact with researchers at the
Swiss National Supercomputing Centre (CSCS) on developing large dense eigenvalue
solvers on hybrid architectures. This will provide us with an application platform
for validating and integrating novel algorithms in the area of nanostructure materials
developed at ETH Zürich.

Scientific computing applications, ranging from computing frequencies that will
propagate through a medium, to an earthquake response of a bridge, or energy levels of
electrons in nanostructure materials, require the solution of eigenvalue problems. There
are many ways to formulate these problems mathematically and solve them numerically.

The Swiss Team has several codes that require a dense eigensystem solution. The
main ones are:

http://www.nlafet.eu/ 3/13

NLAFET D5.1: Requirements analysis

• QuantumESPRESSO: nanoscale materials modelling.

• CP2K: molecular dynamics for solid-state/liquid/biological systems.

• VASP: quantum-mechanical molecular dynamics.

• NWCHEM: computational chemistry package.

The major application of our contact at ETH Zürich is in materials design. Here a
materials database is used in conjunction with a powerful suite of first principles electronic
structure codes that can be run dynamically during the screening process to compute
observable quantities specific to the design goals for the material. It is thus important to
have very efficient algorithms for the first principle calculation. One way of doing this is
the self-consistent field (SCF) approach which requires the repeated solution of the Kohn-
Sham differential equation. These are commonly solved using the Linearized Plane Wave
(LAPW) method that has, at its core, the solution of a generalized eigenvalue problem
with dense complex Hermitian matrices of the form Ax = λBx, where A is a Hermitian
dense matrix and B is Hermitian positive definite [1]. That is to say such solvers are
needed to solve electronic structure problems in materials science and chemistry. The
complexity of the LAPW method is cubic in the number of atoms. Currently, because
of work from the Team at ICL in Tennessee [7] systems with over a 1,000 atoms can be
solved. For these problems the resulting generalized eigenvalue problem must be solved
for a dense, complex Hermitian matrix with dimension of order 105. Since in a materials
design problem these simulations will have to run on large parallel supercomputers that
cannot hold these matrices on individual nodes, the implementation must be designed for
distributed memory architectures. The generalized eigenvalue problem, using methods
discussed in detail in [5], is solved and the smallest eigenvectors are found. The number
of eigenvectors needed ranges from 10% to 50%. It is possible to use an iterative
diagonalization technique and reduce the computational cost, however the ‘safe default’
of major LAPW community codes is to solve the generalized eigenvalue problem with
the brute force dense matrix diagonalization. The material scientists would like to solve
even larger problems and to solve them faster, as this computation is at the heart of their
simulation and must be performed many times.

We will provide new Hermitian-definite eigenvalue problem solvers based on
factorization kernels and eigenvalue problem solvers delivered in WP2. We will integrate
the software into the application and evaluate the impact on scalability and performance.

3 Load flow in large scale power systems
The main NLAFET contact is Iain Duff and the main applications contact is Bernd Klöss
of DIgSILENT GmbH, Germany.

We are collaborating with the Research & Development Department of DIgSILENT
GmbH, a leading provider of power system analysis software. With offices in Australia,
South Africa, Italy, Spain, France, and Chile, DIgSILENT has software installations
and conducts services in more than 130 countries. Their software features, inter alia,
calculation functions for the analysis and optimisation of network flows and voltages
covering applications in generation, transmission, distribution, industrial systems, and
renewable energies.

http://www.nlafet.eu/ 4/13

NLAFET D5.1: Requirements analysis

As more and more power systems are being connected to each other, their users are
confronted with growing, large-scale networks. With classical load flow based calculations
at its core, this leads to a large number of similar very large linear systems that must
be solved fast and accurately. Typically, the systems are highly sparse, unsymmetric,
and very ill-conditioned. In order to tackle such problems, their software package
PowerFactory features direct and iterative linear solution methods built in-house.

Table 1: Influence of threshold parameter, u, on power system matrices. Time in seconds.

Application Size Nonzeros Nonzeros in LU Time Bkwd error

Optimal Power Flow 427069 2378554

u = 0.0001 6491905 1.21 0.7× 10−18

u = 0.001 6808813 1.28 0.1× 10−18

u = 0.01 7183064 1.35 0.2× 10−17

u = 0.1 7823038 1.55 0.2× 10−17

Balanced load flow 197156 805839

u = 0.0001 1590324 0.23 0.6× 10−15

u = 0.001 1645314 0.24 0.4× 10−16

u = 0.01 1856003 0.27 0.2× 10−16

u = 0.1 1941067 0.28 0.1× 10−17

Balanced load flow 19202 128242

u = 0.0001 201015 .035 0.3× 10−13

u = 0.001 210159 .027 0.3× 10−15

u = 0.01 227984 .033 0.2× 10−15

u = 0.1 250683 .035 0.7× 10−17

Unbalanced load flow 202760 2406285

u = 0.0001 11353348 5.39 0.2× 10−16

u = 0.001 10413421 5.29 0.3× 10−17

u = 0.01 12260763 6.91 0.1× 10−16

u = 0.1 14465918 8.69 0.8× 10−18

We will provide new sparse linear system solvers and link them to the PowerFactory
code. Their performance and accuracy will then be compared with the existing solvers.
Using DIgSILENT’s extensive customer database, comparisons will be made based on
many real-world power systems for calculations such as classical load flow analysis, AC
optimal power flow (OPF) calculations, dynamic time-domain simulations, and modal
stability analysis.

There are many different matrix problems arising from this application. These include:

• Eigenvalue computation: generalized (Ax = kMx) and standard eigenvalue
problems must be solved, where the left and the right eigenvectors for a subset
of the eigenvalues are of interest. A simultaneous calculation of both (left and right
eigenvectors) would be very interesting for them.

http://www.nlafet.eu/ 5/13

NLAFET D5.1: Requirements analysis

• Solution of nonlinear systems: they must solve many sparse linear systems with the
same structure during iterations of a Newton-type algorithm. They currently have
both direct and iterative methods available but further enhancement using parallel
methods would be welcome.

• Multi-variable optimisation problems: they have to solve linear (linear
programming) and non-linear optimisation problems (using various methods, also
Newton-type methods). Many sparse linear systems are encountered there as well
and a parallel solver would be very welcome, in particular when thinking about
areas like security-constrained OPF calculations (SCOPF).

• Solution of linear systems with fixed matrix: moreover, they encounter problems
where they have to solve linear systems with a fixed matrix and for a large number
of right-hand sides. It would be interesting whether a fast parallel solution process
for factorized matrices can compete with their current approaches.

• Solution of large systems of ODEs arising in extensive time-domain simulations. In
the integration methods used in this solution, there is a need to solve many sparse
linear systems. For example, the simulation might be for 60 seconds with a step
size in the millisecond range. A good speed up in this case would be particularly
beneficial.

The structure of a typical matrix from this application is shown in Figure 1.

Figure 1: Plot of sparsity pattern of typical matrix from power system applications.

The team at RAL has tested a standard serial code on a range of matrices from these
applications. We were interested to see the effect of varying two important parameters,
the threshold parameter u and the point at which we switch to using a code for dense
matrices. The threshold parameter permits entries to be allowed as pivots only if their
modulus is larger than u times the entry of maximum modulus in their column. As the
LU factorization of a sparse matrix proceeds, fill-in occurs (that is zeros in the original
matrix become nonzero) and at a certain stage it is not beneficial to exploit sparsity so
we switch to using a code for dense factorization for the remainder of the factorization.
We show the results of these runs on four matrices from different applications in Tables 1
and 2, respectively. All the runs for both tables were performed on an Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz which has 4 cores and two threads per core. The code used was
HSL_MA48 from the HSL Library, which is a serial code that is essentially a precursor
to the parallel code being developed in Task 3.3 of the NLAFET project.

http://www.nlafet.eu/ 6/13

NLAFET D5.1: Requirements analysis

In Table 1 we see that as u is increased, we emphasize stability over sparsity so that the
time and number of entries in the factors increase while the backward error (as measured
by the scaled residual) decreases although the behaviour is not monotonic. It is noticeable
that there is not a huge effect from changing u which differs from other applications, for
example for unsymmetric matrices from PDEs, where the effect can be more dramatic.
This is even more surprising since the matrices in these tables are very ill-conditioned,
with condition numbers around 1010 as we saw by comparing the forward error (not in
the tables) with the backward error.

Table 2: Influence of switching to full code on power system matrices. The switch to
dense code happens when the Schur complement has the density shown. Time in seconds.

Application Size Nonzeros Nonzeros in LU Time Size dense matrix

Optimal Power Flow 427069 2378554

Switch density
0.2 7513629 1.39 715
0.4 7217808 1.35 399
0.6 7172420 1.36 286
0.8 7144564 1.36 81
1.0 7143398 1.36 14

Balanced load flow 197156 805839

Switch density
0.2 1909572 0.28 316
0.4 1863481 0.27 196
0.6 1854652 0.27 153
0.8 1846370 0.27 20
1.0 1846298 0.26 6

Balanced load flow 19202 128242

Switch density
0.2 253808 .048 220
0.4 229615 .036 127
0.6 223654 .030 60
0.8 222684 .030 34
1.0 222516 .029 14

Unbalanced load flow 202760 2406285

Switch density
0.2 16322021 6.36 2946
0.4 12902340 6.25 1904
0.6 11990647 7.17 1432
0.8 11426628 9.31 227
1.0 11416563 9.29 18

http://www.nlafet.eu/ 7/13

NLAFET D5.1: Requirements analysis

In Table 2 we examine the influence of changing the point at which we change to using
a dense code. Again the results for this class of matrices show a different effect from other
applications inasmuch as, even with a switch when the density is as low as 0.2 (20% dense)
the size of the Schur complement matrix is very small (relative to the order of the original
matrix). This is largely due to the fact that, contrary to matrices from discretizations
of PDEs, the Markowitz criterion keeps the amount of fill-in very low. One comment
can be made on the times: they are generally quite close to constant. This is interesting
because the HSL_MA48 analysis and factorization has two quite separate phases. The
first factorizes the matrix using a right-looking algorithm but does not keep the factors.
Also it stops as soon as we decide to switch to dense code. Thus the lower the switch
density, the sooner we switch and thus stop this phase so it becomes faster as the switch
density decreases. The second phase uses the pivot order obtained from the first phase to
factorize the matrix using a left-looking algorithm and switches to using a dense code at
the point determined by the first phase. Thus, as we see from the last column in the table,
the size of the matrix on which dense factorization is performed increases monotonically
with decreasing switch density. Thus, even though code for dense systems is more efficient,
the cost of the dense part of the subsequent factorization increases significantly as it has
complexity the cube of the dimension.

4 Energy solutions and Code Saturne
The main NLAFET contact is Laura Grigori and the main application contact is Yvan
Fournier from EDF, France.

We are interacting with EDF researchers on validating and integrating our novel
algorithms in simulations used at the R&D centre of EDF. The activities at the R&D
centre are focused on three top priorities: consolidating a carbon-free energy mix, planning
future electricity supply and developing a flexible range of low-carbon energy sources. As
part of these simulation activities, EDF develops and distributes a number of codes,
many of which are open source. An important fraction of the execution time of these
codes is spent in the linear solvers. The progress obtained by our project will potentially
impact several simulation activities. For our first test case we will use the CFD solver
Code Saturne that solves the Navier-Stokes equations for incompressible flows. This
code is developed in-house by EDF and is distributed under the GPL open source
licence (available at http://www.code-saturne.org). Code Saturne has been included
in the Unified European Applications Benchmark Suite of the PRACE project (see
http://www.prace-ri.eu/ueabs). It is used for a wide range of applications, many of which
are related to nuclear engineering, but increasingly with applications related to renewables.
We will focus on simulations such as the computation of fluid flow in tube bundles, either
cross-flow as in steam generators, or tangential as in PWR fuel assemblies, as these
applications are numerically quite representative of a broader range of applications, and
large-scale meshes for benchmarking are available.

We will provide new sparse linear system solvers and test them in the context of
Code Saturne. The global performance and scalability of the code using communication-
avoiding methods will then be compared with that using legacy solvers already available
in Code Saturne.

During a six-week project, which took place in the context of Cemracs 20161, we
1For more information please visit http://smai.emath.fr/cemracs/cemracs16/index.php

http://www.nlafet.eu/ 8/13

NLAFET D5.1: Requirements analysis

have collaborated with Yvan Fournier and started testing our methods on several small
to medium size matrices. In Table 3 we describe these matrices, their size, number of
nonzero entries and their largest and smallest eigenvalues.

Table 3: Matrices used in our tests, their size, number of nonzeros, and smallest (λ1) and
largest (λn) eigenvalues.

Size Nonzeros λ1 λn

BUNDLE16 16 384 109 184 8.7e-10 9.8e-06
BUNDLE65 65 536 439 552 2.2e-10 9.8e-06
BUNDLE262 262 144 1 763 840 5.5e-11 9.8e-06

We have evaluated the enlarged Krylov subspace methods developed at Inria [2] in
the context of WP4. We use a domain decomposition approach to define enlarged
Krylov subspaces and the associated ECG(t) method. More precisely given a splitting
decomposition represented by the operator T ,

T (x) =



∗
...
∗
∗
...
∗

. . .
∗
...
∗
∗
...
∗


and the initial residual r0, the corresponding enlarged Krylov subspace is defined as

Kk,t = span{T (r0), AT (r0), . . . , Ak−1T (r0)}, (1)

where t is the number of columns of T (r0) and is called the enlarging factor. Using
this definition and the algebraic properties of the Conjugate Gradient method (Petrov-
Galerkin condition and A-orthogonality of the search directions), it is possible to derive
a so-called Enlarged Krylov Conjugate Gradient method [2]. At each iteration, t vectors
forming an A-orthonormal basis of the enlarged Krylov subspace are constructed. This
increases the arithmetic intensity of the method but can lead to inexact breakdowns [6]. It
is possible to detect such situations and reduce adaptively the number of search directions
without increasing the number of iterations [4].

All the numerical experiments were performed with Matlab 2015b. In Table 4 we
summarize the results obtained when running the Preconditioned Conjugate Gradient
(PCG) method and the Enlarged Krylov Conjugate Gradient method with an enlarging

http://www.nlafet.eu/ 9/13

NLAFET D5.1: Requirements analysis

factor t (ECG(t)). We use the Metis K-Way algorithm to partition the matrix into 1024
domains. The preconditioner is block Jacobi with 1024 blocks. In Table 4 we summarize
the results obtained when comparing ECG(t) and PCG without reduction in the number
of search directions. ECG(t) is always more effective than PCG in terms of iteration
count, almost half the number of iterations when t = 4 and as much as a quarter the
number of iterations when t = 32. As a consequence, ECG(t) scales better than PCG
when the matrix size increases. In Figure 2 we show the results obtained when comparing
ECG(t) and BCG(t) with dynamic reduction of the search directions. BCG(t) is the block
Conjugate Gradient method where the first right-hand side is b and the t − 1 others are
chosen randomly. Although the number of iterations is of the same order for BCG(32)
and ECG(32), the number of search directions is more effectively reduced with ECG(32).

Table 4: Number of iterations to get the solution. The method stops when the relative
residual is lower than 10−6. PCG is the usual preconditioned Conjugate Gradient method
and ECG(t) is the Enlarged Krylov Conjugate Gradient method where t is the enlarging
factor. The system is preconditioned with a block diagonal preconditioner with 1024
blocks. When increasing the enlarging factor the number of iterations decreases, half the
number of iterations for ECG(32) compared to ECG(4) and around 4 times less compared
to PCG.

Matrix PCG ECG(4) ECG(8) ECG(16) ECG(32)
BUNDLE16 172 103 79 63 53
BUNDLE65 207 117 92 66 53
BUNDLE262 325 180 127 93 70

50 100 150 200
iterations

-6

-5

-4

-3

-2

-1

0

lo
g1

0(
er

ro
r)

BUNDLE65, tol = 1e-6, nj = 1024

ECG(32)
BCG(32)
PCG

20 40 60 80
iterations

5

10

15

20

25

30

bl
oc

k
si

ze

BUNDLE65, tol = 1e-6, nj = 1024

ECG(32)
BCG(32)

Figure 2: An example of dynamic reduction of the search directions. We terminate
the iterations when the relative residual is lower than 10−6. The system is preconditioned
with a block diagonal preconditioner with 1024 blocks. BCG(t) denotes a block Conjugate
Gradient method with t right-hand sides, the first is b and the other are random vectors.
The dynamic reduction of the search directions does not increase the number of iterations
(54 against 53) although ECG reduces the number of search directions more effectively.

http://www.nlafet.eu/ 10/13

NLAFET D5.1: Requirements analysis

5 Data analysis, astrophysics, and Midapack
The main NLAFET contact is Laura Grigori and the principal application contacts are
Radek Stompor from APC/CNRS, France, and Carlo Baccigalupi of SISSA Italy.

Studies of the minute fluctuations of the intensity and polarization of primordial
photons, called CMB for Cosmic Microwave Background, have been one of the main
sources of invaluable information about our universe and the fundamental laws of physics.
Astrophysicists produce and analyse multi-frequency 2D images of the universe when it
was 5% of its current age. The new generation of CMB experiments observe the sky with
thousands of detectors over many years, producing overwhelmingly large and complex
data sets. For example, Planck is a keystone satellite mission which has been developed
under the auspices of the European Space Agency (ESA). Planck has been surveying the
sky since 2010. It produces Terabytes of data and requires 100 Petaflops to compute
each image of the universe. This next generation of observational efforts promise to
revolutionise our understanding in these areas. This information has to be extracted from
data sets collected by increasingly more ambitious efforts by observatories, which over
the last two decades have kept producing data sets with volumes consistently growing at
Moore’s Law rate. One of the main computational challenges in the CMB data processing
involves reconstructing a 2-dimensional map of the sky from these data sets. This problem,
called a map-making problem, is difficult for a number of reasons, including data volumes,
long-term noise correlations and presence of parasitic signals, inter alia. With current
algorithms, the reconstruction of the sky maps from the data available by early 2020 will
require 100 Exaflops. In the analysis of any CMB data, the map-making step may need
to be performed hundreds if not thousands of times as, for instance, is the case whenever
popular Monte Carlo sampling algorithms are used to characterize the uncertainties of
the estimated sky maps.

The map-making problem can be formulated as a generalized least-squares problem
with non-trivial weights, leading to the following linear system,

(AT N−1A) x = AT N−1 d. (2)

Here d stands for the vector of observations, with dimension nt between 1013 and 1015.
The weight matrix, N−1, has rank nt × nt and is structured, e.g., block Toeplitz, or
diagonal plus low rank correction, and the matrix A, with nt rows and up to the order of
106 columns, is very sparse with only a handful of nonzeros per row.

Given the size of the system matrix, AT N−1A, the solution, x, is most readily
obtained using iterative algorithms, and is facilitated by the fact that efficient methods
for multiplying a vector by the matrices A and N−1 exist and have been implemented in
the MIDAPACK Library2. The volumes of the data and the requirement to process the
entire data set in one step in order to deal with and properly account for the long-term
noise correlations, requires use of the largest available supercomputers with their complex
architectures and communication networks and appropriate numerical algorithms.

The goal of this project is to adapt and validate communication-avoiding iterative
methods in the context of the CMB map-making problem and to make them available
to the CMB community by integrating them with the MIDAPACK package. Previous
experiments show that the communication is the bottleneck that prevents scaling the map
making problem to a very large number of processors. Figure 3 displays the performance
of preconditioned conjugate gradients used currently for solving the generalized least

2http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/software/midapack/ver1.1/index.html

http://www.nlafet.eu/ 11/13

NLAFET D5.1: Requirements analysis

squares problem arising in the map making problem. This performance result is extracted
from [3]3 where a more detailed description of the algorithms can be found. It shows
the cost of a single iteration of the conjugate gradient iterative solver preconditioned
by a block diagonal preconditioner, together with the time spent on computation and
communication. These runs were performed on a Cray XE6 system; each node of the
system is composed of two twelve-core AMD MagnyCours. It can be seen that the
communication becomes quickly very costly, potentially dominating the runtime of the
solver when more than 6000 cores are used (each MPI process uses 6 cores).

0.010

0.100

1.000

10.000

 64 128 256 512 1024

Ti
m

e
[s

]

Number of MPI processes

1 It. with MBD
Computation
Communication

Figure 3: Communication bottleneck of two algorithms, a dense linear solver based on
the LU factorization with partial pivoting (bottom) and a sparse iterative solver applied
to the map-making problem in astrophysics (top).

We will focus on novel preconditioning techniques, which are suitable for single runs
but also on preconditioners appropriate for multiple sequential solves with different right-
hand sides, where the information from the previous runs is accumulated and exploited in
the forthcoming runs or a precomputation is used to construct a better and more efficient
preconditioner. In either case, the methods we are seeking should not merely lead to a
decrease in the number of required iterations but should also lead to reducing the time-
to-solution. Thus the required preconditioners need to be cheap to construct and apply
in a massively parallel context appropriate for modern computer architectures.

References
[1] T. Auckenthaler, V. Blum, H. Bungartz, T. Huckle, R. Johanni,

L. Krämer, B. Lang, H. Lederer, and P. Willems, Parallel solution of
partial symmetric eigenvalue problems from electronic structure calculations, Parallel
Computing, 37 (2011), pp. 783–794.

[2] L. Grigori, S. Moufawad, and F. Nataf, Enlarged Krylov Subspace Conjugate
Gradient Methods for Reducing Communication, SIAM Journal on Scientific
Computing, 37 (2016), pp. 744–773. Also as INRIA TR 8266.

3Courtesy of M. Szydlarski

http://www.nlafet.eu/ 12/13

NLAFET D5.1: Requirements analysis

[3] L. Grigori, R. Stompor, and M. Szydlarski, A parallel two-level preconditioner
for cosmic microwave background map-making, Proceedings of the ACM/IEEE
Supercomputing SC12 Conference, (2012).

[4] L. Grigori and O. Tissot, Reducing the communication and computational costs
of Enlarged Krylov subspaces Conjugate Gradient, NLAFET Working Note WN-13,
April, 2017. Also as INRIA Research Report 9023, Project Team Alpines, France.

[5] A. Haidar, S. Tomov, J. Dongarra, R. Solcà, and T. C. Schulthess, A
novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations
based on fine grained memory aware tasks, International Journal of High Performance
Computing Applications, 28 (2014), pp. 196–209.

[6] M. Robbé and M. Sadkane, Exact and inexact breakdowns in the block GMRES
method., Linear Algebra Appl., 419 (2006), pp. 265–285.

[7] R. Solcà, A. Kozhevnikov, A. Haidar, S. Tomov, T. C. Schulthess,
and J. Dongarra, Efficient implementation of quantum materials simulations on
distributed CPU-GPU systems, in The International Conference for High Performance
Computing, Networking, Storage and Analysis (SC15), Austin, TX, 11-2015 2015,
ACM, ACM.

http://www.nlafet.eu/ 13/13

