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1 Introduction
The Description of Action document states for deliverable D6.1:

“D6.1: Prototypes for runtime systems exhibiting novel types of scheduling
Prototype for runtime systems capable of scheduling at a varying level of gran-
ularity/abstraction (i.e., basic kernels, BLAS, LAPACK, etc), and runtime
systems that can execute the tasks along the critical path with an adaptive
level of parallelism.”

This deliverable is in the context of Task 6.1 (Scheduling and Runtime Systems).

Extreme-scale systems are projected to be hierarchical and heterogeneous in nature.
To match such architectures one needs schedulers for multi-level parallelism—essentially
a hierarchy of schedulers with different scopes (socket, accelerator, node, rack, etc). In
Section 2, we determine the demands which a run-time system must satisfy in order to be
useful for NLAFET. We make a brief comparison of the existing run-time systems. StarPU
emerges as a clear winner and is compared against OpenMP in the case of Cholesky
factorization.

One special case of multi-level scheduling consists of parallelizing the tasks along the
critical path to reduce the parallel execution time near the limit of strong scalability, i.e.,
where the critical path (rather than, say, the number of cores) limits/bounds the execution
time. In Section 3, we develop a prototype runtime system based on the principle of
parallelizing the critical path and evaluate its effectiveness.

Together, these recent developments contribute towards fulfilling the aims of Task 6.1.
Planned future work (e.g., Deliverable D6.3) will focus on applying these new tools to
codes developed as a part of other NLAFET work packages.

The work presented in Section 2 and Section 3 has mainly been done by UNIMAN
(Manchester) and UMU (Umeå), respectively.

2 Runtime systems for HPC

2.1 NLAFET requirements from runtime systems
Since task-based programming is a rather new model of programming, there is no general
consensus from the wider computing community on how tasks should be described and
scheduled. As such, there are a variety of different runtimes implemented, each supporting
a variety of different features and approaches, which are not compatible with one another.

The NLAFET project aims to provide a software library capable of performing linear
algebra operations on large-scale, distributed, heterogeneous machines. As such there are
a number of desired features that the NLAFET consortium would like to see.

First, it is essential that the runtime system supports distributed memory computation
in order to scale to large problems. Related to this, it is desirable for the runtime system
to handle all MPI calls itself, so the library developers need not make explicit MPI calls.
This improves the ease of programming for developers and allows the software to schedule
tasks dynamically (and therefore more efficiently and adaptively than a developer could).

Second, it has been shown repeatedly that the strategy used to assign tasks to cores
(or GPUs etc.) can have a dramatic impact on the overall performance of the routine.
Therefore it is important that the runtime system supports a variety of task scheduling
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Table 1: Summary of runtime systems against the requirements of the NLAFET project.
Each entry of the table is marked for yes, or left blank for no.

Requirement HPX Stapl Quark(-D) Pulsar ParSec StarPU OpenMP
Dist. memory × × × × × ×
Task scheduling × × ×

Custom scheduling × ×
GPU aware × × ×

Good documentation × ×

strategies, and it is desirable that there is a framework in place to add custom scheduling
strategies too.

Third, to run on heterogeneous clusters it is imperative that the runtime supports
offloading computation to GPUs and other accelerators (such as older models of the Intel
Xeon Phi). Ideally the runtime would automatically use any such devices found on each
node, instead of the library developer having to handle the hardware devices themselves.

Finally, from a pragmatic perspective, it would be sensible to use a runtime system
that is relatively mature, has good documentation, and has supportive developers who
are happy to answer questions and interact with users looking to push their runtimes to
the limit. If the runtime is fairly simple to use this will also be a benefit, as it can save a
lot of developer time.

Therefore our first task is to summarise how well each of the major runtime systems
fits the requirements above. We will be considering the following runtime systems.

• HPX – Stellar group from Louisiana State University.

• Stapl – Parasol group from Texas A&M University.

• Quark/Quark-D – ICL group from The University of Tennessee.

• Pulsar – ICL group from the University of Tennessee.

• ParSec – ICL group from The University of Tennessee.

• StarPU – STORM group from Inria Bordeaux.

• OpenMP – Standardised API for shared memory systems.

2.2 Comparison of existing runtime systems
A brief summary of how each runtime system fits the NLAFET requirements is given
in Table 1. We give a more detailed analysis of each runtime in the remainder of this
subsection.

First we consider the HPX runtime system. HPX is primarily focused upon an Active
Global Address Space, which is essentially an alternative model for distributed memory
that negates the need for MPI calls. It seems that they exhibit good scaling in shared
memory architectures but, in a distributed setting, are not currently matching state-of-
the-art performance. Furthermore HPX does not support GPU computation, though does
support Intel Xeon Phi, and the task scheduling process they use is neither described in
the documentation nor easily interchangeable.
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The Stapl runtime uses Intel TBB (Threading Building Blocks) for parallelism1. The
runtime itself does not support accelerators and is not readily available to download and
try. As far as we can tell, there is no available documentation so it is unclear how the
runtime system works internally.

Quark and Quark-D (the distributed version) support distributed memory operation
and various task scheduling strategies can be used (though it appears difficult to add
custom strategies). GPUs and other accelerators are not supported and there is very
little documentation. Neither runtime is currently under active development so there is
little chance of getting help from the developers to extend the system further.

The Pulsar runtime does not support multiple task scheduling strategies and it is
not currently possible to add any. Furthermore the documentation is not sufficiently
descriptive to fully understand the internal mechanisms of the runtime. Pulsar is also not
under active development at present.

ParSec fits a number of the NLAFET requirements: it supports multiple task schedul-
ing strategies, it is possible to add customised ones, and the runtime can make use of
GPUs and other accelerators. The main issue with ParSec is that the system is rather
difficult to use since there is very little documentation and the method by which tasks
are created is somewhat complex: ParSec uses a “parameterised task graph” approach
as opposed to the “sequential task flow” model used by StarPU and other runtime sys-
tems. Essentially, this requires the developer to describe the entire DAG (Directed Acyclic
Graph) and specify the data dependencies in a ParSec-specific format before compiling the
code. The advantage of this approach is that the tasks can be scheduled very efficiently
with a small memory footprint. By contrast, in StarPU tasks can be added dynamically
at runtime by calling the relevant function within a loop. The additional flexibility in the
StarPU approach is helpful for sparse matrix algorithms, where the DAG is typically not
known at compile time. On the other hand, there is a large team of developers currently
working on ParSec who are happy to give advice to users.

The StarPU runtime from Inria Bordeaux also satisfies the NLAFET requirements. It
supports all the features that we are looking for, is fairly easy to use, and has extremely
good documentation along with a helpful development team. Another benefit of StarPU is
that it allows the use of OpenMP within tasks and has a source-to-source compiler called
KStar which converts OpenMP task-based code into StarPU code for easy comparison.
The only issue with StarPU when compared to ParSec is that StarPU is cannot scale as
efficiently when thousands of nodes are used simultaneously; this is something that the
StarPU development team are currently working on.

Finally, although it does not support distributed memory computation, we mention
OpenMP because it is standardised and very efficient on a single node of CPUs (including
the Intel Xeon Phi). One possibility is to use another runtime system at the distributed
level make calls to OpenMP from within a node.

To conclude this analysis, it seems clear that either StarPU or ParSec provide a suitable
runtime system for the NLAFET project and that, due to the ease of use, StarPU may be
preferred. However, it is important to compare against OpenMP at the node level since
it has shown extremely promising performance on NUMA nodes and the Intel Xeon Phi.

1Available from https://github.com/wjakob/tbb
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2.3 Comparing OpenMP and StarPU
As part of NLAFET Deliverable D2.1, we have been comparing the performance of various
runtime systems on matrix factorizations including Cholesky, LU , QR, and LDLT . Since
the full details of this comparison can be found in Deliverable D2.1, we will describe how
to install the relevant software to run our software using both OpenMP and StarPU.

All the comparisons were made using the PLASMA software library for dense linear al-
gebra. This software was recently rewritten into OpenMP in a collaboration between The
University of Manchester and The University of Tennessee. A snapshot of the PLASMA
version used to produce Deliverable D2.1 can be found in the NLAFET github directory2

whilst the current development version can be found at Bitbucket.3 (See also NLAFET
Deliverable D7.5.)

Once either version has been downloaded it is simple to compile the software with
OpenMP. We merely need to rename the make.inc.mkl-gcc file to make.inc and ensure
that the Intel MKL libraries have been loaded onto the path: typically this is done via
typing source /opt/intel/.../bin/compilervars.sh intel64 on the command line.
Note that the development version of PLASMA needs to use gcc version 6 or later in
order to make use of task priorities, which are not present in earlier versions. After this
is complete simply type make -j to compile the software in parallel.

After compilation is complete there will be a binary called test, found inside the test
folder, which can be used for our comparisons. Before launching the binary it is necessary
to set the number of OpenMP cores using the environment variable OMP_NUM_THREADS and
to set the environment variable PLASMA_TUNING_FILENAME to point to the default tuning
file (found in tuning/default.lua). The binary can then be used as follows:
./test routine - -dim=n - -test=c, where

• routine is a function name e.g. dgetrf for a double precision LU decomposition,

• n is an integer giving the size of the matrices, and,

• c is either y or n to determine whether or not the accuracy of the solution is compared
against the Intel MKL implementation.

Note that there are multiple other advanced options that can be used but are not required
here.

To install PLASMA using the StarPU runtime system, in order to test the advanced
scheduling strategies implemented, one needs only change the compiler from gcc to kstar
--runtime=starpu in the make.inc file. Clearly the KStar source-to-source compiler will
need to be installed before it can be used. KStar can be downloaded from the Inria
repositories.4 After this, we can simply compile the software and use the testing routine
as before.

Note that the scheduling strategy used by StarPU can be changed by modifying the
environment variable STARPU_SCHED. In particular we have been experimenting with the
eager, ws (work-stealing), and dmda (deque model data aware) strategies. Furthermore,
since we are simply converting OpenMP code rather than writing a native StarPU version,
we cannot take advantage of any GPUs attached to the node.

2https://github.com/NLAFET/plasma
3https://bitbucket.org/icl/plasma
4https://scm.gforge.inria.fr/anonscm/git/kstar/kstar.git
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Figure 1: Performance of Cholesky factorization on NUMA node. The top row has
double complex precision on the left and double precision on the right. The bottom row
has complex precision on the left and single precision on the right.

Whilst the full details of our runtime system comparison can be found in Deliverable
D2.1, we reproduce the results for the Cholesky decomposition here. In particular, we
compare LAPACK, Intel MKL, and an older version of PLASMA using the Quark runtime
against OpenMP and StarPU versions of PLASMA as the matrix size grows.

The experiments were performed on a NUMA node using Broadwell processors, in
particular a Xeon E5-2690 v4 chip with 2 sockets containing 14 cores each. The software
was compiled with gcc 5.4.0 and Intel MKL 17.0.1.

The results of the experiment can be found in Figure 1. On the top row we plot
the results for double complex and double precision, whilst the bottom row contains
results for complex and single precision computations. We see that the LAPACK im-
plementation lags behind the others and that in most cases one of Quark, OpenMP, or
the various StarPU versions perform better than MKL. In particular the eager scheduler
within StarPU gives very good performance for this particular routine, and results for the
outer routines can be found in NLAFET Deliverable D2.1.

In summary, we have found that NLAFET software should attempt to use the StarPU
runtime where possible to maximize performance and ease the transition to heterogeneous
and distributed computation.

3 The PCP runtime
A task-based parallel program modeled by a directed acyclic graph (DAG) and scheduled
dynamically on a multi-core machine with shared memory often efficiently utilizes the
cores by avoiding many synchronization points not mandated by the inherent data de-
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pendencies. Consider, for example, a tiled Cholesky factorization algorithm parallelized
using a dynamically scheduled DAG. The size of a tile, b, is a tunable parameter that has
a significant impact on performance. The tile size determines both the task granularity
and the degree of concurrency. The task granularity in turn affects both the efficiency
with which a task can be executed (coarser tasks are generally more efficient) and the
scheduling overhead (finer granularity leads to more overhead due to more tasks). The
degree of concurrency shrinks as the tile size increases, making it more difficult to keep
all cores busy. These competing forces imply that an optimal tile size must be neither
too small nor too large.

Suppose that the tile size is so large that the critical path of the DAG is limiting
the overall execution time. For Cholesky factorization in particular, and many matrix
algorithms in general, shrinking the tile size reduces the weight (i.e., the total number of
flops) of the critical path. Shrinking the tile size will shorten the length (i.e., the execution
time) of the critical path if the reduction in work along the critical path outweighs the
resulting loss in task efficiency (of the critical tasks) and increased overhead (along the
critical path) associated with a finer task granularity. Any reduction in the length of the
critical path translates into a reduction in the overall parallel execution time if the critical
path continues to be the limiting factor.

Now suppose instead that the tile size is far too small. Then the cores are almost
never going to be idle since there are many tasks to execute. However, this comes at the
expense of having very inefficient tasks with plenty of scheduling overhead. In this case,
increasing the tile size would simultaneously improve the task efficiency and reduce the
overhead. This ought to translate into a shorter overall parallel execution time.
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Figure 2: The speed profile (efficiency) s(b) of a task.

Let us illustrate this discussion with a simple model that takes the granularity-
dependent task efficiency into account. Consider a computation with a total of n2 flops
distributed over tasks operating on tiles of size b× b and each involving b2 flops. Suppose
that the weight of the critical path is (n/b)b2 = nb flops. A task is assumed to execute
more efficiently for larger values of b in accordance with the speed profile illustrated in
Figure 2. When the task granularity is very fine, then the parallel execution time on p
cores is bounded below by

T (n, b, p) ≥ n2/p

s(b) . (1)
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This inequality assumes that all n2 flops are executed with the speed s(b) and that there
is perfect speedup when using all p cores in parallel. If instead the task granularity is very
coarse, then the critical path will dominate the execution time and we get the following
second lower bound:

T (n, b, p) ≥ nb

s(b) . (2)

This inequality assumes that all nb flops on the critical path are executed with the speed
s(b). The bounds (1) (“work bound”) and (2) (“critical path bound”) are illustrated in
Figure 3a for n = 4000 and p = 28. According to this model, the optimal tile size occurs
where the two curves intersect.
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(a) The bounds (1) and (2).
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(b) The bounds (3) and (4) for q = 2 with 75%
parallel efficiency of the critical tasks. The
curves from Figure 3a are shown as dashed
lines for comparison.

Figure 3: The bounds on the parallel execution time illustrated for two different ways of
executing the tasks when n = 4000 and p = 28.

Figure 3a suggests the following idea. What if one could scale down the “critical path
bound” by a factor α ∈ (0, 1)? The intersection point between the two curves would then
shift to the right and the optimal execution time would therefore be reduced given that
the work bound is monotonically decreasing. One way to accomplish this in practice is to
reserve q > 1 cores for the sole purpose of executing (in parallel across all reserved cores)
all critical tasks (and no other tasks). But parallelizing tiny tasks would be difficult to
achieve with perfect speedup, so let E(b, q) ∈ (0, 1) denote the parallel efficiency one can
obtain by parallelizing a task that operates on a tile of size b across q cores. Under this
extended model, the “critical path bound” changes to

T (n, b, p, q) ≥ nb

qE(b, q)s(b) . (3)

In addition, since reserving q cores also reduces the number of cores available to execute
the non-critical tasks, the “work bound” changes to

T (n, b, p, q) ≥ (n2 − nb)/(p− q)
s(b) . (4)
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The numerator captures the fact that the non-critical tasks account for n2 − nb flops
and are executed by p − q cores at speed s(b). These modified bounds are illustrated in
Figure 3b. Note that the intersection point has shifted to the right and despite the slight
increase in the work bound, the optimal execution time has been reduced.

In deliverables D6.1 and D6.3, we are investigating if and why this idea of parallelizing
the critical path can improve the optimal execution time of various matrix computations.
In this demonstrator Deliverable D6.1, we are presenting a prototype runtime system for
shared-memory machines designed specifically for the purpose of investigating the merits
of this idea. We include two simple examples to validate the implementation. In the
upcoming Deliverable D6.3, we will apply the runtime system to challenging eigenvalue
computations of particular interest to the NLAFET project.

The main purpose of the runtime system presented here is to evaluate the idea of
parallelizing the critical path. If the idea turns out to be sufficiently advantageous, then
we will pursue the development/enhancement of support in mature runtime systems such
as StarPU.

3.1 Installation
Download the source code by cloning the NLAFET/pcp-runtime.git repository on GitHub.
Follow the compilation instructions given in the file 1-COMPILE to build the runtime sys-
tem library and executables for the two examples. Follow the instructions in the file
2-TEST to test the correctness and performance of the two examples. Follow the instruc-
tions in the file 3-ANALYZE to analyze the results of the performance tests and see the
effect of using the idea.

3.2 Runtime system design
Recall that the purpose of the runtime system is to test a particular idea, not to propose
a mature runtime system design. Some of the design decisions, such as pre-generating
and analyzing the entire DAG, are certainly not recommended in production code but
they do make the prototype easier to implement without affecting our ability to evaluate
the idea.

3.2.1 Threads, cores, and the reserved set

The runtime system uses p threads pinned to cores (one thread per core). We will therefore
use the terms thread and core interchangeably. The threads/cores are ranked from 0 to
p− 1. Thread/core 0 (i.e., the first thread) is referred to as the master thread/core and
all other threads/cores are known as slaves. All threads participate in the execution of
tasks.

At any given moment, q ∈ {0, 1, . . . , p − 1} of the threads are reserved for the sole
purpose of executing critical tasks. This set of threads is referred to as the reserved set
and always contains the first q threads.

3.2.2 Scheduling and the critical path

The tasks are scheduled by a list scheduling algorithm. Each task is assigned a priority
and as soon as a thread becomes idle it selects a task with maximum priority from the
set of ready tasks and executes it sequentially (or idles if there are no ready tasks). The
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priority of a task is set to the height of the task, which is defined as the length of the
longest path (as measured by the number of tasks) starting at the task. The critical path
is defined as (any one of) the longest path(s) in the DAG (again measured by the number
of tasks). The tasks on the critical path are referred to as critical while all other tasks
are referred to as non-critical.

The scheduling is dynamic and distributed. Associated with each task is a counter
that keeps track of the current number of incoming edges from unfinished tasks. When a
task’s counter reaches zero it signals that the task is ready for execution. As soon as a
thread completes a task, the counter of each successor task is decremented by one and any
tasks that become ready as a result are added to a shared priority queue. The thread then
distributes ready tasks (in the order specified by the task priorities) to all idle threads in
rank order.

3.2.3 Execution modes

The runtime system has four different execution modes:

Regular mode All threads are treated the same (i.e., the reserved set is empty). The
tasks are allowed to execute on any thread regardless if they are critical or not.

Fixed mode A fixed number of q ≥ 1 threads are reserved for the (parallel) execution
of critical tasks. All critical tasks (and no other tasks) are executed by the reserved
set.

Prescribed mode The user prescribes for each critical task a desired number of threads
to use for its execution. The runtime system attempts to honor these requests but
will refrain from adding synchronization overhead when attempting to grow the
reserved set (see Section 3.6).

Adaptive mode The runtime system tries to adapt the size of the reserved set during
the execution in an attempt to optimize the parallel execution time.

Note that the fixed mode with q = 1 is very similar—but not identical—to the regular
mode. The difference is that the fixed mode will reserve one thread for the execution
of critical tasks, whereas the regular mode will not. Therefore, the core utilization is
expected to be lower for the fixed mode than the regular mode whenever the critical path
is not a limiting factor.

The regular mode is the baseline for our comparisons since it is identical to the fixed
mode except that it neither parallelizes the critical path nor gives special treatment to
critical tasks. This gives us a controlled environment in which the only variable that has
changed is the application of the idea.

The prescribed mode can be used together with an external auto-tuner to find an
optimal (possibly dynamic) size for the reserved set. This report does not contain results
obtained from using this mode.

The adaptive mode is an example of online tuning. There are two major potential
advantages of the adaptive mode. First, the adaptive mode may yield better performance
than the fixed mode by allowing the reserved set to dynamically vary in size. Second, the
adaptive mode may achieve performance close to the prescribed mode after auto-tuning
but without the significant tuning cost. However, the control algorithm that determines
when and how much to adapt the size of the reserved set has not yet been developed.
This report does not contain results obtained from using this mode.
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3.2.4 Statistics

The runtime system can report statistics on aspects of the execution that are relevant for
understanding the benefits and limitations of the parallel critical path idea.

The parallel execution time measures the time from the start of the first task to the
completion of the last task. The cost (processor time product) measures the amount of
consumed CPU resources. The resource utilization reports the fraction of the cost that
can be attributed to executing tasks.

The cost is further partitioned into what can be attributed to the reserved (and non-
reserved) set of threads. Similarly, the cost is also partitioned into what can be attributed
to the critical (and non-critical) tasks. From these partitioned cost metrics one can derive,
for example, the resource utilization of the reserved (and non-reserved) set of threads.

The execution time of the critical path is also reported, along with the execution time
of the longest path (which may be longer than the critical path; see Section 3.2.2).

3.2.5 Traces

The runtime system can generate basic traces in the form of a LATEX document containing
a TikZ picture. The trace distinguishes between different task types as well as sequential
and parallel tasks and also shows the dynamic size of the reserved set. For an example of
a trace see Figure 4 on page 16.

3.3 Usage of the runtime system
Recall that the runtime system has been designed to evaluate a specific idea. All design
decisions which are irrelevant for this purpose have been chosen to simplify the imple-
mentation of the runtime system and the toy examples.

The following list provides an overview of a typical user work flow:

1. Start the runtime system
The number of threads/cores, p, is specified and the runtime system creates p −
1 internally managed slave threads and pins all threads to separate cores. The
execution mode is chosen and the size of the reserved set, q, is specified if the fixed
mode is selected.
Relevant API functions:

• pcp_start Initialize the runtime system, create slave threads, and pin threads
to cores. Takes the number of threads/cores as an argument.
• pcp_set_mode Set the execution mode.
• pcp_set_reserved_set_size Set the size of the reserved set (if the fixed mode

is used).

2. Register task types
All the task types along with their sequential and possibly also parallel implemen-
tations are registered with the runtime system prior to building the DAG.
Relevant API function:

• pcp_register_task_type Register a task type. Takes a structure containing
pointers to a sequential and (optionally) a parallel implementation of a given
task type as an argument and returns a handle to the task type.
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3. Build the DAG
Tasks and task dependencies are manually inserted in a topological ordering.
Relevant API functions:

• pcp_begin_graph Prepare to receive tasks and dependencies.
• pcp_insert_task Insert a task by specifying the handle to its task type and a

user-defined void* argument specifying the task parameters. Returns a handle
to the inserted task.
• pcp_insert_dependence Insert a dependence between two previously inserted

tasks. Takes two task handles as arguments.
• pcp_end_graph End the construction of the DAG.

4. Execute the DAG
The DAG is executed and the user thread regains control once all tasks have com-
pleted.
Relevant API function:

• pcp_execute_graph Execute the graph in parallel and return after all tasks
have completed.

5. Analyze statistics and traces
Statistics and/or traces are extracted and manually analyzed.
Relevant API functions:

• pcp_view_statistics_stdout Print the internally gathered statistics (see
Section 3.2.4).
• pcp_view_trace_tikz Save the trace as a TikZ-based LATEX document (see

Section 3.2.5).

6. Stop the runtime system
The slave threads are terminated and internal resources are freed.
Relevant API functions:

• pcp_stop Shut down the runtime system.

3.4 Example: Triangular solver
In this example, a lower triangular linear system

LX = B

with multiple right-hand sides is solved using a tiled task-based forward substitution
algorithm. The matrix L ∈ Rn×n is lower triangular and partitioned into an N × N tile
matrix, where N = dn/be, with tiles of size b× b. The matrix B ∈ Rn×m initially contains
the m right-hand sides as columns and will be overwritten by the solution matrix X. The
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matrices B and X are partitioned into row tiles compatible with L. For example, if N = 5
we have the partitioned matrices

L11 0 0 0 0
L21 L22 0 0 0
L31 L32 L33 0 0
L41 L42 L43 L44 0
L51 L52 L53 L54 L55




X1
X2
X3
X4
X5

 =


B1
B2
B3
B4
B5

 .

There is one task for each (non-zero) tile of L. The Lii tile on the diagonal is associated
with a trsm task that computes Xi ← L−1

ii Bi by a call to the dtrsm BLAS routine. The
Lij tile, where i > j, is associated with a gemm task that computes Bi ← Bi−LijXj by a
call to the dgemm BLAS routine. There are i− 1 dgemm tasks that update the same block
Bi. We nevertheless allow for parallel execution of these tasks and avoid race conditions
by safely computingW ← LijXj into local scratch spaceW and then updating the shared
tile Bi ← Bi−W while holding a lock associated with Bi. The overhead of protecting the
matrix addition by a lock in this way is negligible considering that the preceding matrix
multiplication is far more costly (O(b3) flops compared to O(b2) flops).

3.4.1 The critical path

The critical path (as defined in Section 3.2.2) consists of the tasks associated with the
tiles

L1,1 → L2,1 → L2,2 → · · · → LN,N

and hence alternates between trsm tasks and gemm tasks. This implies that both of these
task types must be parallelized.

3.4.2 Parallel kernels

Both the trsm tasks and the gemm tasks are trivially parallelized by partitioning the right-
hand sides into column blocks with a uniform width. Each thread in the reserved set calls
the dtrsm respectively dgemm BLAS routines using only its own block of the right-hand
sides as an argument.

3.4.3 Usage

The source code for this example is located in the directory src/examples/dtrsm/. The
resulting executable test-dtrsm.x takes five command line arguments:

1. n: the number of equations,

2. m: the number of right-hand sides,

3. b: the tile size,

4. p: the total number of threads,

5. q: the size of the reserved set.

For q ∈ {1, 2, . . . , p − 1} the fixed mode (see Section 3.2.3) will be used. For q = 0 the
regular mode will be used instead.

For example, to run the example with n = 5000, m = 500, b = 200, p = 14, and q = 1,
use the command
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0 0.041050 0.082100

Figure 4: Trace obtained from the command ./test-dtrsm.x 5000 500 200 14 1.
(The exact cause of the above-average task execution times in the early stages of the
execution is unknown but is possibly due to frequency scaling.)

./test-dtrsm.x 5000 500 200 14 1

Figure 4 illustrates a resulting trace.

3.4.4 Results

For a given problem of size (n,m) and a given number of cores p, we are interested in
the question: How does the fixed mode (q ≥ 1) compare to the regular mode (q = 0)
under optimal parameter settings? In particular, will dedicating additional cores to the
critical path, q > 1, yield any speedup? Table 2 provides answers to this question for
n ∈ {2000, 4000, 6000, 8000, 10000} and p ∈ {7, 14, 21, 28} on the Kebnekaise5 system at
High Performance Computing Center North (HPC2N), Umeå University. Each node of
Kebnekaise contains two sockets (Intel Broadwell processors) with 14 cores each for a
total of 28 cores. The largest observed speedup is 1.625 (for n = 6000 and p = 28).

Table 2: Speedup by using (the best) q ∈ {1, 2, 3} compared to using q = 0 for various
combinations of n and p with m = 500. The notation (x/y : z) means that x and y are
the optimal tile sizes for q = 0 (regular mode) and q ∈ {1, 2, 3} (fixed mode), respectively,
and z is the optimal value for q.

p = 7 p = 14 p = 21 p = 28
n = 2000 1.133 (100/190:2) 1.499 (50/110:3) 1.528 (80/70:3) 1.540 (60/130:3)
n = 4000 1.026 (180/360:2) 1.206 (90/170:2) 1.610 (100/160:3) 1.620 (100/130:3)
n = 6000 0.994 (280/280:1) 1.094 (130/240:2) 1.455 (110/230:3) 1.625 (110/180:3)
n = 8000 0.990 (390/410:1) 1.043 (180/360:2) 1.375 (130/300:3) 1.477 (130/230:3)
n = 10000 0.994 (460/490:1) 1.019 (220/380:2) 1.287 (170/380:3) 1.392 (130/280:3)

Let us take a closer look at the data behind the observation with the largest speedup
(n = 6000, p = 28). Figure 5a illustrates the parallel execution times for q = 0, 1, 2, 3 as
we vary the tile size from 50 to 500 in increments of 10. Figure 5b shows the speedup
when using the best q ∈ {1, 2, 3} compared to using the regular mode (q = 0) for each tile
size. According to Table 2, the optimal tile size for the regular mode is b = 110 whereas
it is b = 180 for the fixed mode using the optimal q = 3.

The length of the longest path in the DAG can be computed after the execution based
on measurements of the task execution times. These data are illustrated in Figure 6a.
Figure 6b expresses the length of the longest path as a fraction of the parallel execution
time (Figure 5a).

5https://www.hpc2n.umu.se/resources/hardware/kebnekaise
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Figure 5: Illustration of the impact that the tile size has on the execution time of the
triangular solver for various choices of q when n = 6000, m = 500, p = 28 (full node).
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Figure 6: Illustration of the impact that the tile size has on the length of the longest path
for the triangular solver for various choices of q when n = 6000, m = 500, p = 28 (full
node).
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3.4.5 Conclusions

Figure 6a suggests that parallelizing the critical path can reduce the length of both the
critical path and the longest path (as measured after the execution) provided that the tile
size is sufficiently large for the parallelization to yield speedup.

The length of the critical path can limit the parallel execution time when the tile size
is sufficiently large. The scheduler in the runtime system can realize an execution time
that is close to this limit. This is evident from Figure 6b.

The optimal tile size can be larger than the smallest tile size for which the critical
path is a limiting factor. According to Table 2, the optimal parameters for n = 6000
and p = 28 are b = 180 and q = 3. Comparing with Figure 6b, we see that for q = 3
the critical path becomes a limiting factor already at b = 150, yet the optimal tile size is
larger than that.

The data in Table 2 suggests that the speedup achieved by the fixed mode is largest
when p is large and the problem size is simultaneously neither too large nor too small.
As the problem becomes larger, the regular mode can afford to use larger (and therefore
more efficient) tile sizes without sacrificing concurrency. This can explain why the speedup
drops for larger problems. As the problem becomes smaller, the fixed mode ends up with
a smaller optimal tile size and the resulting tasks are therefore less efficiently parallelized.
This can explain why the speedup drops for smaller problems.

The optimal tile sizes are almost always larger for the fixed mode compared to the
regular mode, which is evident from Table 2.

3.5 Example: Cholesky factorization
Let A ∈ Rn×n be a symmetric positive definite matrix. The aim is to compute its Cholesky
factorization A = LLT , where L ∈ Rn×n is a lower triangular matrix. From the partitioned
matrix equation [

A11 ?
A21 A22

]
=

[
L11 0
L21 L22

] [
LT

11 LT
21

0 LT
22

]
we can construct the following recursive scheme:

1. compute the Cholesky factorization A11 = L11L
T
11,

2. compute L21 ← A21L
−T
11 ,

3. update A22 ← A22 − L21L
T
21, and

4. continue recursively on A22 (i.e., repeat 1–4 on A22).
With A11 chosen to be of a fixed size b× b and the tail recursion replaced by iteration we
obtain the so-called right-looking variant of Cholesky factorization.

A tiled algorithm is obtained by partitioning A into tiles of size b × b and split the
trsm (Step 2) and syrk (Step 3) updates into sets of independent tile updates. The
corresponding DAG is constructed by identifying the data dependencies.

3.5.1 The critical path

The critical path, as defined in Section 3.2.2, consists of potrf on tile A1,1, trsm on A2,1,
and syrk on A2,2, all from the same (first) iteration. This pattern then repeats itself for
all subsequent iterations (i.e., potrf on A2,2, trsm on A3,2, and so on). The affected tiles
are those on the diagonal and first sub-diagonal.
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3.5.2 Parallel kernels

The update step in the Cholesky algorithm is a symmetric rank-k update of the form A←
LLT . This kernel is parallelized (see Algorithm 1) without synchronization by partitioning
the columns of A into one block column per thread. Each thread independently updates
its block of A. The number of flops is proportional to the number of updated elements,
which means that non-uniform blocks are necessary to balance the load. For a lower
triangular matrix of size n × n, there are w = n(n + 1)/2 entries to update. Given t
threads, each thread should ideally process w/t entries. We can come close to the ideal
partitioning by incrementally building blocks from left-to-right until the load associated
with the current block reaches or exceeds w/t.

Algorithm 1: A = ParallelSYRK(A,L)
Data: Diagonal block A ∈ Rn×n to be updated using t threads {p1, . . . , pt}.
Result: Updated diagonal block A← A− LLT .
// Balance the load

1 Partition A into block columns , one per thread, such that the load per thread is
approximately balanced;

// Update in parallel
2 Let j1 : j2 denote the range of m = j2− j1 + 1 columns of A assigned to this thread;
3 Partition A(j1 : n, j1 : j2), , into a triangular part, , and a rectangular part, ;
4 Update the triangular part using dsyrk;
5 Update the rectangular part using dgemm;
6 return A;

The Cholesky factorization (potrf) kernel is parallelized with barrier synchronization
and one level of look-ahead using the right-looking variant as outlined in Algorithm 2.
The idea is to partition the matrix into column panels of width b (e.g., b = 32) and apply
potrf and trsm to factor a panel and syrk to update the trailing matrix. The trsm and
syrk computations are parallelized by partitioning the rows of the output matrix into
one block per thread. The trsm is load-balanced by uniform blocks, whereas the syrk
needs non-uniform blocks with similar numbers of non-zeros to be balanced. A barrier
ensures that the data dependencies from potrf to trsm in the next iteration are respected.
Another barrier ensures the same for the data dependencies from trsm to syrk in the same
iteration. The data dependencies from syrk to potrf in the next iteration are respected
without synchronization since thread p1 performs both the potrf and the overlapping
portion of the preceding syrk, so the dependencies are automatically respected by the
program order.

3.5.3 Usage

The source code for this example is located in the directory src/examples/dpotrf/. The
resulting executable test-dpotrf.x takes four command line arguments:

1. n: the size of the matrix,

2. b: the tile size,

3. p: the total number of threads,
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Algorithm 2: L = ParallelPOTRF(A)
Data: Diagonal block A ∈ Rn×n to be factorized using t threads {p1, . . . , pt}.
Result: Cholesky factor L such that A = LLT .

1 Choose a block size b (e.g., b = 32);
2 N ← dn/be is the number of iterations;

3 Partition A =
[
A11 ?
A21 A22

]
such that A11 ∈ Rb×b;

4 Apply POTRF to A11 on thread p1;
5 for k ← 1, 2, . . . , N − 1 do
6 Barrier;

7 Partition A21 =


A

(1)
21
...

A
(t)
21

 into uniform blocks;

8 Compute A(i)
21 ← A

(i)
21A

−T
11 using DTRSM on thread pi in parallel;

9 Barrier;

10 Partition A22 =


A

(1)
22
...

A
(t)
22

 into blocks with the same number of non-zeros with the

constraint that A(1)
22 must contain at least b rows;

11 Re-partition A21 =


A

(1)
21
...

A
(t)
21

 conformally with A22;

12 Compute A(i)
22 ← A

(i)
22 − A

(i)
21A

T
21 using DSYRK and DGEMM on thread pi in parallel;

13 Apply POTRF to the leading b× b submatrix of A(1)
22 on thread p1;

14 Re-partition A22 =
[
A11 ?
A21 A22

]
such that A11 ∈ Rb×b;

15 return A;
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4. q: the size of the reserved set.

For q ∈ {1, 2, . . . , p − 1} the fixed mode (see Section 3.2.3) will be used. For q = 0 the
regular mode will be used instead.

For example, to run the example with n = 5000, b = 200, p = 14, and q = 1, use the
command

./test-dpotrf.x 5000 200 14 1

3.5.4 Results

For a given problem of size n and a given number of cores p, we are again interested in
the question: How does the fixed mode (q ≥ 1) compare to the regular mode (q = 0)
under optimal parameter settings? In particular, will dedicating additional cores to the
critical path, q > 1, yield any speedup? Table 3 provides answers to this question for
n ∈ {1000, 2000, 3000, 4000, 5000, 6000} and p ∈ {7, 14, 21, 28}. The largest observed
speedup is 1.129 (for n = 1000 and p = 21). However, the optimal value q = 1 associated
with all speedups > 1 shows that the speedups are actually not attributable to the effects
of parallelizing the critical path (since all tasks run sequentially when q = 1).

Table 3: Speedup by using (the best) q ∈ {1, 2, 3, 4, 5} compared to using q = 0 for various
combinations of n and p. The notation (x/y : z) means that x and y are the optimal tile
sizes for q = 0 and q ∈ {1, 2, 3, 4, 5}, respectively, and z is the optimal value for q.

p = 7 p = 14 p = 21 p = 28
n = 1000 0.990 (110/120:1) 1.071 (90/70:1) 1.129 (130/60:1) 1.026 (90/100:1)
n = 2000 0.910 (120/200:1) 1.003 (120/120:1) 1.022 (120/120:1) 1.022 (140/120:1)
n = 3000 0.899 (200/240:1) 0.971 (160/160:1) 0.988 (160/160:1) 0.986 (160/160:2)
n = 4000 0.897 (360/380:1) 0.952 (240/240:1) 0.995 (160/200:1) 0.997 (200/200:1)
n = 5000 0.867 (400/460:1) 0.954 (240/240:1) 0.983 (240/240:1) 0.986 (240/240:1)
n = 6000 0.856 (440/440:1) 0.956 (320/320:1) 0.965 (320/320:1) 0.980 (240/240:1)

The case n = 3000 and p = 28 helps us gain insight into the lack of speedup. Figure 7a
illustrates the parallel execution times for q = 0, 1, . . . , 5 as we vary the tile size from 50
to 500 in increments of 10. Figure 7b shows the length of the longest path as a fraction
of the execution time. According to Table 3, the optimal tile sizes are b = 160 in both
cases.

Figure 8a illustrates the length of the longest path, and Figure 8b illustrates the length
of the critical path.

3.5.5 Conclusions

According to Table 3, no speedup from parallelizing the critical path could be observed.
Small speedups are reported for some cases, but since the optimal value for q in these
cases are q = 1, these results are actually not due to the effect of parallelizing the critical
path.

Figure 8b shows a significant reduction in the length of the critical path when q > 1.
However, according to Figure 8a this reduction has only a minor effect on the length of
the longest path. Since the longest path is the factor that actually limits the performance
(according to Figure 7b), there is no advantage by accelerating the critical path in this
case.
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Figure 7: Illustration of the impact that the tile size has on the execution time of the
Cholesky factorization algorithm for various choices of q when n = 3000 and p = 28 (full
node).
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Figure 8: Illustration of the impact that the tile size has on the lengths of the longest
path and the critical path for the Cholesky factorization algorithm for various choices of
q when n = 3000 and p = 28 (full node).
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3.6 Implementation details
The runtime system is implemented using POSIX threads and assumes a Linux-based
operating system running on a shared-memory multicore system with processors of the
x86-64 architecture. Porting to other architectures and operating systems is estimated to
be straightforward but not a priority since the runtime system is a tool for evaluating an
idea and not meant for production codes.

The p threads are made up of one master thread and p− 1 slave threads. The master
thread is borrowed from the user and the slave threads are managed internally by the
runtime. All threads participate in the execution of tasks.

Each thread has its own thread-safe message queue consisting of a queue data structure
and a condition (synchronization) variable which the thread waits on when there are no
messages in its queue. An execute message is sent by any thread to demand that a
particular thread executes a given ready task. Tasks are assigned to idle threads in rank
order. A terminate message is sent by the master to shut down a slave thread. A
warmup message is sent by the master to demand a warmup to nominal clock frequency
(to limit the negative effect of dynamic frequency scaling). A recruit message is sent
by the master to demand that a thread joins the reserved set. The reserved set always
consists of the first q threads so that these tightly synchronized threads are physically
close.

All non-critical tasks (and also all critical tasks in the regular mode) are scheduled
for execution by being sent to an idle thread through an execute message. The critical
tasks are scheduled differently. All critical tasks lie on the same path and therefore are
executed one-by-one in sequence. All cores presently in the reserved set participate in the
execution of the next critical task and synchronize by means of a (low-latency) barrier.
To execute a task, the master writes information about the task to shared memory and
waits on the barrier to signal the other threads. All reserved threads then partake in the
parallel execution using the user-defined parallel implementation. Completion is signaled
by waiting on the barrier a second time.

Adjusting the size of the reserved set at runtime requires an orderly replacement of the
barrier to accommodate the changing number of threads. Shrinking the set is relatively
easy since all the affected cores are idle at that point. The master sets up a new (smaller)
barrier and waits on the (original) barrier to signal all reserved threads. The threads that
remain in the reserved set continue using the new barrier whereas the other threads go
back to waiting for messages. Since the reserved set consists of the first q threads, the
threads with the highest ranks will leave the set first.

Growing the reserved set is more complicated since some of the threads that will be
requested to join the set may be currently busy executing non-critical tasks. Waiting for
these threads to finish would effectively stall the critical path for an unknown duration.
Instead, the reserved set grows in an asynchronous fashion in two steps. First, the master
sets up a new (larger) barrier and sends it via a recruit message to all threads that
should join the set. This is an immediate operation and the master continues without
any delay. As soon as a thread receives (after some delay) a recruit message, it signals
the master that it is available and waits on the new (larger) barrier. When the master
eventually detects that all recruits are available, it coordinates the replacement of the
barrier with all previously reserved threads and all new recruits. More precisely, the
master waits on the (old) barrier to signal the previously reserved threads and then waits
on the (new) barrier to signal all recruits.

To reduce the measurement noise caused by dynamic frequency scaling, all cores are

http://www.nlafet.eu/ 23/24



NLAFET D6.1: Runtime system prototypes

warmed up to (at least) the nominal clock frequency immediately prior to starting the
execution of tasks.

3.7 Conclusions and future work
The idea of parallelizing the critical path works well for some types of matrix computations
(e.g., triangular solves) while not at all for others (e.g., Cholesky factorization). In general,
the idea has potential for a particular computation if shortening the critical path also
shortens the longest path. Interestingly, this is more likely to happen for computations
that are more difficult to parallelize. Indeed, for a perfectly parallel computation the idea
would be useless since every path is a critical path. At the other extreme, the idea would
work optimally for a linear graph since there is only one path.

Future work includes applying the idea to other types of matrix computations. Based
on the findings presented here, the QR algorithm for Schur decomposition and eigenvalue
reordering algorithms are candidates that are likely to benefit.

Developing an effective control logic for the adaptive mode is another direction for
future work. To what extent mature runtime systems such as StarPU are capable of
supporting the idea and what (if anything) needs to be done to improve the support will
be investigated if the idea proves to be beneficial after more realistic examples have been
studied.

Finally, extensions to distributed-memory can be considered. Linda Sandström has
made a preliminary study of the idea in an MPI setting using triangular solve as an
example in her Master’s Thesis conducted at Umeå University. Her results and conclusions
warrant further investigation of an MPI extension and the associated open questions she
identified.
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