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1 Introduction

The Description of Action (DoA) document states for deliverable D6.4:
“D6.4: An off-line auto-tuning framework based on heuristic search

Review of techniques for pruning the search space in the context of autotuning,
resulting in prototypes for an offline auto-tuning framework based on heuristic
search. Includes reporting on optimal circumstances for switching scheduling
approaches at runtime.”

This deliverable is in the context of Task 6.2 (Auto-Tuning).

In most pieces of scientific software there are a number of parameters that can be
tweaked to obtain better performance. These can take a variety of forms including con-
tinuous variables (e.g. a parameter in a model of some data), integer variables (e.g. the
number of threads to spawn in a parallel section of code), or even categorical variables
(e.g. on/off switches for compiler flags).

In this document we discuss, with a specific focus on the needs of the NLAFET project,
how to optimize such parameters via autotuning. We propose a methodology that can
be applied to the various pieces of software produced by the NLAFET consortium. In
particular we concentrate on off-line autotuning; meaning that the optimisation is per-
formed before the user runs the software on their own problems. An alternative approach
is on-line autotuning, where the parameters are allowed to vary during the execution of a
large problem. This latter approach will be covered in other NLAFET deliverables.

To begin, let us explain the specific needs of the NLAFET project with regards to
off-line autotuning. The NLAFET project aims to deliver software for a large number of
linear algebra problems, on both shared and distributed memory architectures, making
use of runtime systems such as OpenMP [4], StarPU [3], and PaRSEC [5].

Many of the algorithms employed to solve these linear algebra problems involve decom-
posing a large matrix into smaller “blocks”. These blocks are then dealt with by separate
cores (or nodes in the distributed memory setting) and are later combined to give the
final solution to the problem. This approach is the key idea behind the PLASMA and
MAGMA projects [1] and has been incorporated into many other libraries such as Intel
MKL. In terms of autotuning, this means that positive integers controlling the size of the
blocks must be chosen to maximize performance. Note that the optimal tile size may be
different for each linear algebra routine. For example, performing a matrix multiplication
may require a different tile size to an LU factorization.

Other algorithms, especially for sparse matrices, tend to be iterative in nature. In
particular some algorithms have two layers of iteration (an inner and outer iteration) and
the convergence tolerance of each iteration can differ. Increasing the error tolerance of
the iterations leads to a faster solution, sometimes at the expense of accuracy, making
these values continuous tunable parameters.

Finally, all these algorithms need to be compiled across a number of different architec-
tures with different compilers, various number of cores, and various number of GPUs etc.
The compiler flags used during the compilation can have a dramatic effect on the overall
performance. For example, whether or not vectorization is enabled when compiling with
gee will have a large impact on performance. Similarly using the flags -O1, -O2, or -O3
during the compilation can have a dramatic impact on the overall runtime. Further ex-
amples include parameters to select the runtime scheduling strategy in StarPU etc. These
categorical parameters also need to be optimized to achieve the best possible performance.
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The large number of parameters to optimize leads to a combinatorial explosion of possi-
ble options. Furthermore, due to the variety of parameter types that need to be optimized
(integer, continuous, and categorical) a very general optimization routine is required. We
believe that genetic algorithms are well-suited to optimize such high-dimensional problems
with various parameter types. Currently, many pieces of software attempt to perform a
“grid-sweep” which tries all (or a representative sample) of the parameter combinations
before selecting the best. The grid-sweep will act as a baseline for us to test the efficiency
of other optimisation strategies considered.

To test our choice of autotuning strategy, we will show the results when this procedure
is employed to tune the PLASMA library for dense linear algebra. For this particular
library we will be optimizing, and fitting models to, a single parameter. Extensions to
multiple parameters are discussed in the conclusions.

The rest of this report is organised as follows. In section 2 we compare a number of
existing off-line autotuning approaches, aiming to determine which one is most suitable
for the NLAFET project. In section 3 we give more details on how the chosen strategy
can be applied to linear algebra software by combining it with a Lua interface [7]. Then
in section 4 we analyze some typical behaviours exhibited by the tile size and show how
fitting curves to the tile size data allows us to select near-optimal tile sizes for all sizes
of input matrix. In section 5 we show how our tuning strategy improves the performance
of PLASMA for a number of different routines before giving some concluding remarks in
section 6.

2 Review of existing software

There are a number of off-line autotuning frameworks already available from the HPC
community, and they are largely split into two categories:

e those which require modification to the source code, and
e those which interface with the source code via, for example, a configuration file.

The primary advantages of frameworks that modify the source code directly (such as
the Periscope Tuning Framework [6], [8]) are that the developer has fine-grain control over
specifically what is being optimized and that different sections of the code can be opti-
mized independently, possibly speeding up the autotuning process. On the other hand,
the overall code must be linked up to the tuning library, which increases the number of
dependencies of the software. Issues can also arise in the future if the chosen autotun-
ing framework becomes unsupported due to lack of funding, or fails to compile on new
architectures.

Performing autotuning through some intermediary interface has one distinct advantage
over the previous approach: it is more modular and flexible. This separation between the
computational routines and the autotuning means that, if our chosen optimizer fails to
run on a certain architecture it can easily be replaced by another. One disadvantage of
this approach is that different parts of the software cannot be tuned independently: the
entire algorithm must be re-run to try a new set of parameters.

Since the NLAFET project targets multiple architectures, including upcoming ARM-
based HPC machines [9] that are not readily available at present, we prefer to take the
second approach and perform autotuning through a configuration interface. In order to
maximize the number of architectures where our autotuning can be performed, we would
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like our optimizer to be written in languages such as C or Python, which are supported
in all major operating systems.

Although there are a large number of autotuning frameworks available for download,
the only one we have found that fits all of our desired criteria is OpenTuner [2]. OpenTuner
is a Python module with minimal dependencies that can be used to optimize all the
quantities mentioned previously.

A particularly interesting feature of OpenTuner is its use of ensemble optimisation: a
large number of algorithms (including genetic optimisation and simulated annealing etc.)
are fed into a multi-armed bandit model which detects the algorithms that are performing
well on the current problem and gives them a larger share of the optimisation time. More
detail on the specifics can be found in the reference above.

3 Applying OpenTuner within NLAFET

Now that we have decided on a tuning approach, this section describes in more detail
how we plan to perform tuning withing NLAFET, using the PLASMA project (for dense
linear algebra) as an example.

To give an overview of our approach, we aim to use optimization software such as
OpenTuner (or even a full grid-sweep) to determine optimal values of the tile size for a
range of different matrix shapes and sizes. Once these values have been found, we need
to inform PLASMA which tile size is appropriate for each matrix via an intermediary
interface. However, instead of using a simple configuration file we opt to use a Lua script.

Lua is a lightweight, portable, embeddable, and open-source scripting language that is
ideal for making small extensions to larger software projects. Its only dependency is the
availability of a C compiler so it does not hamper the portability of the overall software.
In this scenario, we can use Lua to return an “optimal” tile size for matrices with sizes that
we haven’t tested by interpolating the values seen during our autotuning runs. Also, if
we can fit a smooth curve (or surface) to our optimal parameters (which will be explored
later) then this curve can be coded into Lua to provide parameters for matrices with
various sizes. This provides a much more powerful and flexible interface than a simple
configuration file allows.

Therefore, we have two separate problems to tackle. First, we need to use OpenTuner,
or some other method such as a grid-sweep, to find optimal parameters for a range of
matrix sizes. Second, we would like to fit a function to these points (so that a good
value of the tile size can be returned for any matrix size) before writing Lua code to
implement this function. From here, the software can simply call the Lua script to obtain
the parameters for any input matrix. This second issue is rather difficult to automate:
there are a variety of different functions needed to fit the various behaviours we observe
the tile size showing. However, it would be easy to automate this latter part by using
spline interpolation or kernel density estimation for example, at the expense of possibly
overfitting the observed parameters.

For the first issue, performing a grid-sweep over all tile sizes for a variety of matrix
sizes is very simple and the optimal parameters can easily be stored in a csv file. The
downside is that grid sweeps are extremely expensive. In order to use OpenTuner, to
reduce the time for the sweep, there is a small amount of extra work required: we must
define a Python class with the following 3 functions

e manipulator — to define the search space,

http://www.nlafet.eu/ 5/12



NLAFET D6.4: Off-line Autotuning

e run — to run our routine with the current parameters, and,
e save_final config — to save the final parameters.

In manipulator we simply define the tile size as a multiple of 8 (the width of the
vector units on most CPUs) between 80 and 520. Within run we simply run the routine
we are currently investigating with the current tile size and take the average time over
5 runs (where 5 is actually a user-chosen parameter). Finally in save_final_config we
output the “optimal” tile size in JSON format. A wrapper script collates the JSON files
for various matrix sizes into a single CSV file.

The actual optimization is taken care of by OpenTuner itself, meaning that there is
nothing else to do but to limit the number of tests performed (i.e. function calls) using
the command-line argument --test-limit=x. This was set to 30 for our experiments
whereas doing a full grid sweep over all tile sizes requires 55 runs for each matrix size; we
can save almost half the sweep time by using OpenTuner.

We can also define multiple initial guesses for the optimal tile size using the command-
line argument - -seed-configuration=f where f is a JSON file containing, for example,
{"blocksize": 256}. We used this latter option to define a few initial guesses for the
powers of 2 etc. We found that OpenTuner was able to identify maxima close to those
provided by a grid sweep with half the number of runs per matrix size: reducing the overall
optimization time (for all the routines we considered) from 12 to 6 hours. Note that we
have only considered 4 routines in this report (in both single and double precision) from
over 50 routines in the current version of PLASMA, so using OpenTuner could reduce the
optimization time by a number of days in a larger experiment.

4 Curve fitting

Once we have found the optimal tile sizes for a variety of matrix sizes we would like to fit
a curve to the resulting data, which can then be coded in Lua. Using this fitted curve we
can then return near-optimal parameters for any input matrix, regardless of its size. The
following experiments were performed on a 2 socket NUMA node with 20 Haswell cores
(2 x Xeon(R) CPU E5-2650 v3, 2.30GHz).

In this section we will show the variety of behaviours that the optimal tile size can
take as the matrix size changes, propose a number of models to fit the resulting data,
and describe how the parameters of such models can be estimated. We found that the
following four models can cover all of the routines we investigated.

e Constant models - tile size does not depend on the input matrix size.
e Linear models - tile size increases linearly with the input matrix size.
e Logarithmic models - tile size increases logarithmically with the input matrix size.

e Piecewise models - A combination of the other three models is required, for example
a step function is a combination of constant models.

First we investigate the performance of DGEMM for matrix multiplication. As we can
see from Figure 1, the optimal tile size is largely independent of the matrix size. Therefore,
we use the mean of all the values to return a constant tile size: in this case the constant is
304. The reason for the lack of dependence on the matrix size is fairly straightforwards,
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Figure 1: The optimal tile size for DGEMM is independent of the matrix size, so a
constant model is most appropriate. On this architecture the constant is 304.

since DGEMM is very arithmetic intensive, involving only fused multiply-adds, the tile
size is affected only by the memory hierarchy and cache size.
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Figure 2: The optimal tile size for DGETRF appears to depend linearly on the matrix
size. In this model the intercept is 92.25 with a gradient of 0.008.

Next we investigate DGETRF for LU factorization with partial pivoting in Figure 2.
In this experiment it is clear that a linear model provides a much better fit for the data.
Doing a least-squares fit gives an intercept of 92.25 and a gradient of 0.008.

In Figure 3 we observe that the tile size for SPOTRF (Cholesky factorization in single
precision) increases logarithmically with the matrix size. The least-squares fit of a model
y = a + blog(z) on a set of k data points (z;,y;) gives the parameters

_ k> yilog(z;) — >y > log(x;)
kY log(w;)? — (X log(zi))*
0= Yy — b log(x;)
k

Fitting this model to our data gives the model y = —898 + 135 log(x).

Finally, by looking at the performance of DPOTRF (Cholesky factorization in double
precision) in Figure 4, we see an example of a routine where a piecewise function is the
best choice to model the data. In this particular case a step function is an appropriate
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Figure 3: The optimal tile size for SPOTRF appears to depend logarithmically on the
matrix size. The least-squares fit provides the tile size function y = —898 + 135 log(x).

500

400

300 ®

block size
[ ]
[ )
[ ]
[ ]

0 5000 10000 15000 20000 25000 30000

n

Figure 4: The optimal tile size for DPOTRF appears to be a step function. The three
constants in this step function are 124, 291, and 487.

model, though there are other routines where initially the function is logarithmic before
settling at some constant value. In this particular step function the value changes when
the matrix sizes are 5000 and 19000, whilst the three constants are 124, 291, and 487.

In summary there are a variety of different behaviours that the tile size can exhibit
depending upon the routine in question. Note that even performing the same routine in
different precisions can lead to drastically differing behaviours (compare Figures 3 and 4).
This is likely due to the complex interaction between the memory hierarchy and the width
of the SIMD units within each core.

As such, we can only recommend that each routine is treated independently and no
initial assumptions are made about their behaviour. Furthermore, these results are only
measured on a Haswell NUMA node. Moving to more recent architectures, or the Intel
Xeon Phi (codenamed Knights Landing) may lead to drastically different behaviours.
Clearly, once these trends have been found, they need to be coded within Lua functions
so that the software can find the appropriate tile sizes at runtime. As an example, the
Lua code for the single and double precision variants of the Cholesky factorization is given
in Figure 5.
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function potrf_nb (dtype, n)
if dtype == ’S’ then
if n <= 1000 then
return 128
else
return math.min(512,
math.floor(-898.372659 + 134.77263 * math.log(n)))
end
elseif dtype == ’D’ then
if n < 5000 then
return 124
elseif n < 19000 then
return 291
else
return 487
end
else
return 256
end
end

Figure 5: Lua code implementing the curves fitted to the single and double precision
Cholesky factorizations. The arguments to the function are dtype, a character which
determines the precisions of the computation, and n, the size of the matrix.

5 Performance results

In this section we aim to demonstrate the improvements in performance that can be
gained by applying the procedure described in the previous sections. Using a 2 socket
NUMA node with 20 Haswell cores (2 x Xeon(R) CPU E5-2650 v3, 2.30GHz) we ran the
OpenTuner procedure to obtain the best tile sizes for various matrix sizes and fit various
curves to the resulting data—as described in section 4—before encoding these curves in
Lua functions.

We will compare the performance of OpenMP PLASMA using the default parameters
(i.e. taking a tile size of 256) against our tuned version for four different routines: matrix
multiplication, Cholesky factorization, LU factorization, and Q)R factorization. In each
case we will show the performance using square matrices of various sizes in both single
and double precision.

First, in Figure 6, we look at the performance of GEMM (matrix multiplication) before
and after tuning. Single precision is on the left and double precision on the right. As we
can see, the tuned version always performs at least as well as the untuned version and is
often superior. Both versions converge to a similar level of performance, with the tuned
version being marginally better.

Next we consider POTRF (the Cholesky decomposition) in Figure 7. As before we
see that the tuned version is almost always superior to the untuned version and the two
versions appear to converge to similar GFlop rates.

In Figure 8 we see the results of GETRF (the LU factorization). In this case we see
that the tuned version is always preferable and the gap between the two versions has
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Figure 6: Tuned and untuned performance for the GEMM kernel. Single precision is on
the left and double precision on the right.

spotrf_haswell dpotrf_haswell
1200 500
untuned untuned
1000 tuned 400 tuned
800
. » 300
~ ~
5600 g
5 S 200
400
200 100
0 0
0 5000 10000 15000 20000 0 5000 10000 15000 20000

n n

Figure 7: Tuned and untuned performance for Cholesky factorization. Single precision is
on the left and double precision on the right.

widened significantly. Indeed for the larger matrices in our tests we see a performance
gap of over 100 GFlop/s between them, in both precisions.

Finally, Figure 9 shows the results for GEQRF (the QR factorization). In single
precision arithmetic the tuned version is only slightly better than the untuned version.
However, in double precision, the tuned version is far superior and is around 150 GFlop/s
faster at one point. In both cases the two versions converge to a similar performance as
the matrix size increases, though the tuned version is slightly faster.

6 Conclusions

To conclude, we have described a process to move from a piece of software with no tuning
whatsoever towards software which is highly tuned for a given architecture. Our process
makes use of the OpenTuner optimization software to find optimal parameters, combined
with data analysis and curve fitting techniques which can then be translated to the Lua
scripting language.

As seen from our experiments with the PLASMA library for dense linear algebra, we
can obtain results that are superior to untuned versions in almost every test case.

Future work in this area could focus on functions with multiple tuning paramers. In
such functions it may be more difficult to fit a surface to the data found by OpenTuner.
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Figure 8: Tuned and untuned performance for LU factorization. Single precision is on
the left and double precision on the right.
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Figure 9: Tuned and untuned performance for QR factorization. Single precision is on
the left and double precision on the right.

Some possible ways to tackle this may be to fit each parameter separately and use a copula
(an idea borrowed from statistics), or to apply Gaussian process regression in this multi-
dimensional setting. We could also use spline interpolation or kernel density estimation
as mentioned previously.

Further research could also look at simulating performance results as opposed to mea-
suring them directly. This would significantly reduce the time needed to optimize the
parameters, but reliability may suffer as a result. Simulators such as SimGrid (tied to
StarPU) have shown promising results in this area.
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