
H2020–FETHPC–2014: GA 671633

D7.3
Draft specification for Hybrid (Batched)

BLAS

April 2016

NLAFET D7.3: Batched BLAS Specs

Document information

Scheduled delivery 2016-04-30
Actual delivery 2016-04-26
Version 0.1
Responsible partner UNIMAN

Dissemination level

PU — Public

Revision history

Date Editor Status Ver. Changes
21/04/2016 Pedro Valero-Lara Draft 0.1 -
26/04/2016 Pedro Valero-Lara Final - Revision w.r.t internal reviewers

comments

Author(s)

• Jack Dongarra. Innovative Computing Laboratory, University of Tennessee, Knoxville,
TN, USA; Oak Ridge National Laboratory, TN, USA; School of Computer Science
and School of Mathematics, The University of Manchester, Manchester, UK.

• Iain Duff, STFC Rutherford Appleton Laboratory, Harwell Oxford, UK.

• Mark Gates, Innovative Computing Laboratory, University of Tennessee, Knoxville,
TN, USA.

• Azzam Haidar, Innovative Computing Laboratory, University of Tennessee, Knoxville,
TN, USA.

• Sven Hammarling, School of Mathematics, The University of Manchester, Manch-
ester, UK.

• Nicholas J. Higham, School of Mathematics, The University of Manchester, Manch-
ester, UK.

• Jonathan Hogg, STFC Rutherford Appleton Laboratory, Harwell Oxford, UK.

• Pedro Valero-Lara, School of Mathematics, The University of Manchester, Manch-
ester, UK.

• Samuel D. Relton, School of Mathematics, The University of Manchester, Manch-
ester, UK.

• Stanimire Tomov, Innovative Computing Laboratory, University of Tennessee, Knoxville,
TN, USA.

http://www.nlafet.eu/ 1/22

NLAFET D7.3: Batched BLAS Specs

• Mawussi Zounon, School of Mathematics, The University of Manchester, Manch-
ester, UK.

Internal reviewers

Bo Kågström and Lars Karlsson, UMU.

Contributors

• The Innovative Computing Laboratory (ICL), the University of Tennessee.

• Intel Corporation.

Copyright

This work is c©by the NLAFET Consortium, 2015–2018. Its duplication is allowed only
for personal, educational, or research uses.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633. This material is based
upon work supported in part by the National Science Foundation under Grants No. CSR
1514286 and ACI-1339822, NVIDIA, the Department of Energy.

http://www.nlafet.eu/ 2/22

NLAFET D7.3: Batched BLAS Specs

Table of Contents

1 INTRODUCTION 4

2 NAMING CONVENTIONS 7

3 ARGUMENT CONVENTIONS 7
3.1 Arguments specifying options . 8
3.2 Arguments defining the sizes . 8
3.3 Arguments describing the input-output matrices 9
3.4 Arguments defining the input scalar . 9
3.5 Specification of the number of matrices . 9
3.6 Batch style specifications . 9
3.7 Error handling defined by the INFO array 9

4 SCOPE and SPECIFICATIONS OF THE LEVEL 3 BATCHED BLAS 9
4.1 Matrix-matrix products {s,d,c,z}gemm_batch 10
4.2 Hermitian matrix-matrix products {c,z}hemm_batch,

{s,d,c,z}symm_batch . 11
4.3 Rank-k updates of a symmetric/Hermitian matrix {c,z}syrk_batch,

{s,d,c,z}herk_batch . 12
4.4 Rank-2k updates of a symmetric/Hermitian matrix {s,d,c,z}syr2k_batch,

{c,z}her2k_batch . 14
4.5 Multiplying a matrix by a triangular matrix {s,d,c,z}trmm_batch 15
4.6 Solving triangular systems of equations with multiple right-hand

{s,d,c,z}trsm_batch . 16

5 SCOPE and SPECIFICATIONS OF THE LEVEL 1 and LEVEL 2 BATCHED
BLAS 18

6 BATCHED LAPACK 18

7 FUTURE DIRECTIONS AND FINAL REMARKS 19
List of Figures

1 Memory hierarchy of a heterogeneous system from the point of view of a
CUDA core of an NVIDIA K40c GPU with 2, 880 CUDA cores. 5

2 Speedup (Left) and power consumption (Right) achieved by the MAGMA
Batched LU factorization on NVIDIA K40c GPU vs. 16 cores of Intel Xeon
ES-2670 (Sandy Bridge) 2.60GHz CPUs. 6

3 Acceleration of different applications by using batched approach. 6

http://www.nlafet.eu/ 3/22

NLAFET D7.3: Batched BLAS Specs

Abstract

This paper proposes an API for Batched Basic Linear Algebra Subprograms
(Batched BLAS). We focus on many independent BLAS operations on small matri-
ces that are grouped together as a single routine, called Batched BLAS routine,
with the aim of providing more efficient, but portable, implementations of algorithms
on high-performance manycore architectures (like multi/manycore CPU processors,
GPUs, and coprocessors).

1 INTRODUCTION
The origins of the Basic Linear Algebra Subprograms (BLAS) standard can be traced back
to 1973, when Hanson, Krogh, and Lawson wrote an article in the SIGNUM Newsletter
(Vol. 8, no. 4, p. 16) describing the advantages of adopting a set of basic routines
for problems in linear algebra. This led to the development of the original BLAS [1],
which indeed turned out to be advantageous and very successful. It was adopted as a
standard and used in a wide range of numerical software, including LINPACK [2]. An
extended, Level 2 BLAS, was proposed for matrix-vector operations [3]. Unfortunately,
while successful for the vector-processing machines at the time, Level 2 BLAS was not
a good fit for the cache-based machines that emerged in the 1980’s. With these cache
based machines, it was preferable to express computations as matrix-matrix operations.
Matrices were split into small blocks so that basic operations were performed on blocks
that could fit into cache memory. This approach avoids excessive movement of data to
and from memory and gives a surface-to-volume effect for the ratio of operations to data
movement. Subsequently, Level 3 BLAS was proposed [4], covering the main types of
matrix-matrix operations, and LINPACK was redesigned into LAPACK [5] to use the
new Level 3 BLAS where possible.

The introduction of the GEMM Based Level 3 BLAS [6, 7] showed that it is possible
to develop a portable and high performance Level 3 BLAS library mainly relying on a
highly optimized GEMM, the routine for the general matrix multiply and add operation.
In turn, this promoted the use of a recursive blocked approach [8], which has the potential
to automatically adapt to a memory hierarchy.

For the emerging multicore architectures of the 2000’s, the PLASMA library [9] in-
troduced tiled algorithms and tiled data layouts. To handle parallelism, algorithms were
split into tasks and data dependencies among the tasks were generated, and used by run-
time systems to properly schedule the tasks’ execution over the available cores, without
violating any of the data dependencies. Overhead of scheduling becomes a challenge in
this approach, since a single Level 3 BLAS routine on large matrices would be split into
many Level 3 BLAS computations on small matrices, all of which must be analyzed,
scheduled, and launched, without using information that these are actually independent
data-parallel operations that share similar data dependencies.

In the 2010’s, the apparently relentless trend in high performance computing (HPC)
toward large-scale, heterogeneous systems with GPU accelerators and coprocessors made
the near total absence of linear algebra software optimized for small matrix operations
especially noticeable. The typical method of utilizing such hybrid systems is to increase
the scale and resolution of the model used by an application, which in turn increases both
matrix size and computational intensity; this tends to be a good match for the steady
growth in performance and memory capacity of this type of hardware (see Figure 1 for
an example of the memory hierarchy of this type of hardware). Unfortunately, numerous
modern applications are cast in terms of a solution of many small matrix operations; that

http://www.nlafet.eu/ 4/22

NLAFET D7.3: Batched BLAS Specs

is, at some point in their execution, such programs must perform a computation that is
cumulatively very large, but whose individual parts are very small; when such operations
are implemented naïvely using the typical approach, they perform poorly. Applications
that suffer from this problem include those that require tensor contractions (as in quantum
Hall effect), astrophysics [10], metabolic networks [11], CFD and resulting PDEs through
direct and multifrontal solvers [12], high-order FEM schemes for hydrodynamics [13],
direct-iterative preconditioned solvers [14], quantum chemistry [15], image [16], and signal
processing [17].

s i z e

registers

 L1 cache &
shared memory

L2 cache

GPU main memory

CPU main memory

Remote CPU main memory

total “per core”

1.33 KB

0.33 KB

0.53 KB

4.27 MB

 21 MB

 …
GBs

12 GB

60 GB

1.5 MB

 64 KB
x15

256 KB
 x15

 …
TBs

 time
cycles (1.34 ns)
to get 4 Bytes

 1

 2

 > 60

> 1,100

 > 3,000

11 GB/s (PCI-E Gen3)

 6 GB/s (Cray Gemini)

 288 GB/s

B
LA

S
P

B
 L

 A
 S

G

PU
 B

LA
S,

 B
at

ch
ed

 B
LA

S,
 e

tc
.

Figure 1: Memory hierarchy of a heterogeneous system from the point of view of a CUDA
core of an NVIDIA K40c GPU with 2, 880 CUDA cores.

One might expect that such applications would be well suited to accelerators or copro-
cessors, like GPUs. Due to the high levels of parallelism that these devices support, they
can efficiently achieve very high performance for large data parallel computations when
they are used in combination with a CPU that handles the part of the computation that is
difficult to parallelize [18, 19, 20]. But for several reasons, this turns out not to be the case
for applications that involve large amounts of data that come in small units. For the case of
LU, QR, and Cholesky factorizations of many small matrices, we have demonstrated that,
under such circumstances, by creating software that groups these small inputs together
and runs them in large “batches,” we can dramatically improve performance [21, 22]. By
using batched operations to overcome the bottleneck, small problems can be solved two
to three times faster on GPUs, and with four to five times better energy efficiency than on
multicore CPUs alone (subject to the same power draw). For example, Figure 2, Left il-
lustrates this for the case of many small LU factorizations – even in a multicore setting the
batched approach outperforms its non-batched counterpart by a factor of approximately
2, while the batched approach in MAGMA on a K40c GPU outperforms by about 2× the
highly optimized CPU batched version running on 16 Intel Sandy Bridge cores [21]. The
factorizations are organized as a sequence of batched BLAS calls. Note that NVIDIA is
already providing some optimized Batched BLAS implementations in CUBLAS [23], and
Intel has also included a batched matrix-matrix product (GEMM_BATCH) in MKL [24].
The performance improvement over this batched version from CUBLAS is due to batched
BLAS optimizations and some algorithmic improvements [21]. For example, these partic-
ular results were used to speed up a nuclear network simulation – the XNet benchmark,
as shown in Figure 3(a) – up to 3.6×, vs. using the MKL Library, and up to 2× speedup

http://www.nlafet.eu/ 5/22

NLAFET D7.3: Batched BLAS Specs

Matrix size
0 50 100 150 200 250 300 350 400 450 500

G
flo

p/
s

0

20

40

60

80

100

120

140

160

180

200

220 dgetrf with batchcount=2000

GPU: Batched LU (Magma)
GPU: Batched LU (cuBLAS)
CPU: Batched LU
CPU: Non-batched LU

times (ms)
0 1000 2000 3000 4000 5000 6000 7000 8000

Po
w

er
 (W

at
ts

)

0

50

100

150

200

250

300 dgetrf with batchcount=4500

CPU: Non-batched LU
CPU: Batched LU
GPU: Batched LU (Magma)

GPU: 312 joules

CPU: 1711 joules

CPU: 851 joules

Figure 2: Speedup (Left) and power consumption (Right) achieved by the MAGMA
Batched LU factorization on NVIDIA K40c GPU vs. 16 cores of Intel Xeon ES-2670
(Sandy Bridge) 2.60GHz CPUs.

over the MA48 factorization from the Harwell Subroutine Library [25], by solving hun-
dreds of matrices of size 150 × 150 on the Titan supercomputer at ORNL [26]. Another
example shown (in Figure 3(b)) is the astrophysical thermonuclear networks coupled to
hydrodynamical simulations in explosive burning scenarios [27] that was accelerated 7×
by using the batched approach.

MKL MA48 MAGMA
0

1

2

3

4
Speedup of the solver for matrix size 150

S
p

e
e

d
u

p

(a) Xnet speedup

Brock et al
(2015)

Haidar et al
(2015)

7X

(b) Astrophysics speedup

Figure 3: Acceleration of different applications by using batched approach.

Given the fundamental importance of numerical libraries to science and engineering
applications of all types [28], the need for libraries that can perform batched operations
on small matrices has clearly become acute. Therefore, to fill this critical gap, we propose
standard interfaces for batched BLAS operatons.

The interfaces are intentionally designed to be close to the BLAS standard and to
be hardware independent. They are given in C for use in C/C++ programs, but
extensions/implementations can be called from other languages, e.g., Fortran. The goal
is to provide the developers of applications, compilers, and runtime systems with the
option of expressing many small BLAS operations as a single call to a routine from the
new batch operation standard, and thus to allow the entire linear algebra (LA) community
to collectively attack a wide range of small matrix problems.

http://www.nlafet.eu/ 6/22

NLAFET D7.3: Batched BLAS Specs

2 NAMING CONVENTIONS
The name of a Batched BLAS routine follows, and extends as needed, the conventions of
the corresponding BLAS routine. In particular, the name is composed of 5 characters,
specifying the BLAS routine and described below, followed by the suffix _batch:

o The first character in the name denotes the data type of the matrix, as follows:

- s float
- d double
- c complex
- z double complex (if available)

o Characters two and three in the name refer to the kind of matrix involved, as
follows:

- ge All matrices are general rectangular
- he One of the matrices is Hermitian
- sy One of the matrices is symmetric
- tr One of the matrices is triangular

o The fourth and fifth, and in one case sixth, characters in the name denote the
operation. For example, for the Level 3 Batched BLAS, the operations are given as
follows:

- mm Matrix-matrix product
- rk Rank-k update of a symmetric or Hermitian matrix
- r2k Rank-2k update of a symmetric or Hermitian matrix
- sm Solve a system of linear equations for a matrix of right-hand sides

The Level 1 and Level 2 Batched BLAS operations follow the corresponding Level 1
and Level 2 BLAS operations.

3 ARGUMENT CONVENTIONS
We follow a convention for the list of arguments that is similar to that for BLAS, with
the necessary adaptations concerning the batched operations. The order of arguments is
as follows:

1. Array of arguments specifying options

2. Array of arguments defining the sizes of the matrices

3. Array of descriptions of the input-output matrices

4. Array of input scalars (associated with input-output matrices)

5. Integer that specifies the number of matrices in the batch

6. An enumerated value that specifies the style for the batched computation

7. Array of info parameters
Note that not every category is present in each of the routines.

http://www.nlafet.eu/ 7/22

NLAFET D7.3: Batched BLAS Specs

3.1 Arguments specifying options
The arguments that specify options are of enum type with names side, transa, transb,
trans, uplo, and diag. These arguments, along with the values that they can take, are
described below:

o side has two possible values which are used by the routines as follows:

- BatchLeft: Specifies to multiply a general matrix by symmetric, Hermitian,
or triangular matrix on the left;

- BatchRight: Specifies to multiply general matrix by symmetric, Hermitian,
or triangular matrix on the right.

o transa, transb, and trans can have three possible values each, which is used to
specify the following:

- BatchNoTrans: Operate with the matrix as it is;
- BatchTrans: Operate with the transpose of the matrix;
- BatchConjTrans: Operate with the conjugate transpose of the matrix.

Note that in the real case, the values ‘BatchTrans’ and ‘BatchConjTrans’ have
the same meaning.

o uplo is used by the Hermitian, symmetric, and triangular matrix routines to specify
whether the upper or lower triangle is being referenced, as follows:

- BatchLower: Lower triangle;
- BatchUpper: Upper triangle.

o diag is used by the triangular matrix routines to specify whether the matrix is unit
triangular, as follows:

- BatchUnit: Unit triangular;
- BatchNonUnit: Nonunit triangular.

When diag is supplied as ‘BatchUnit’, the diagonal elements are not referenced.

3.2 Arguments defining the sizes
The sizes of matrices Ai, Bi, and Ci for the ith BLAS operation are determined by the
corresponding values of the arrays m, n, and k at position i (see the routine interfaces
in Section 4). It is permissible to call the routines with m and/or n = 0, in which case
the routines do not reference their corresponding matrix arguments and do not perform
any computation on the corresponding matrices Ai, Bi, and Ci. If m and n > 0, but
k = 0, the Level 3 BLAS operation reduces to C = βC (this applies to the gemm, syrk,
herk, syr2k, and her2k routines). The input-output matrix (B for the tr routines, C
otherwise) is always m × n if working with rectangular A, and n × n if A is a square
matrix. If the batch_opts argument specifies Batched BLAS operations on matrices of
the same sizes (see Section 3.6), the m, n, and k values for all matrices are specified by
the m[0], n[0], and k[0] values, respectively.

http://www.nlafet.eu/ 8/22

NLAFET D7.3: Batched BLAS Specs

3.3 Arguments describing the input-output matrices
The description of the matrix consists of the array name (arrayA, arrayB, or arrayC)
followed by an array of the leading dimension as declared in the calling function (lda,
ldb, or ldc). The ith values of the arrayA, arrayB, and arrayC are pointers to the
arrays of data Ai, Bi, and Ci, respectively. Similarly, the values of lda[i], ldb[i], and ldc[i]
correspond to the leading dimensions of the matrices Ai, Bi, and Ci, respectively. For
batch style with the same leading dimensions (see Section 3.6), the leading dimensions are
specified by lda[0], ldb[0], and ldc[0] for all corresponding {Ai}, {Bi}, and {Ci} matrices.
3.4 Arguments defining the input scalar
Arrays of scalars are named alpha and beta, where values at position i correspond to the
α and β scalars for the BLAS operation involving matrices Ai, Bi, and Ci. For batch style
with the same scalars (see Section 3.6), the scalars are given by alpha[0] and beta[0].
3.5 Specification of the number of matrices
The batch_count argument is an integer that indicates the number of matrices to be
processed.
3.6 Batch style specifications
The batch_opts argument is an enumerated value that specifies the style for the batched
computation. Permitted values are either BATCH_FIXED or BATCH_VARIABLE,
which stand for computation of matrices with same or variable sizes (including operation
options, sizes, matrix leading dimensions, and scalars), respectively.

Note that through these options one can specify constant size or variable size Batched
BLAS operations. If a constant size batch is requested, the arguments point to the
corresponding constant value. The goal of this parameter is to remove the need for
users to prepare and pass arrays whenever they have the same elements. Based on the
batch_opts value, an expert routine specific to the value/style can be called while keeping
the top interface the same.
3.7 Error handling defined by the INFO array
The following values of arguments are invalid:

o Any value of the character arguments side, transa, transb, trans, uplo, or diag
whose meaning is not specified;

o If any of m, n, k, lda, ldb, or ldc is less than zero.

If a routine is called with an invalid value for batch_count, the routine will return an
error in info[0] that refers to the number of the batch_count argument (counting from
one). Otherwise, if a routine is called with an invalid value for any of its other arguments
for a BLAS operation at position i, the routine will return an error in info[i] that refers
to the number of the first invalid argument (counting from one).
4 SCOPE and SPECIFICATIONS OF THE LEVEL 3 BATCHED BLAS
The Level 3 Batched BLAS routines described here have been derived in a fairly obvious
manner from the interfaces of their corresponding Level 3 BLAS routines. The advantage
in keeping the design of the software as consistent as possible with that of the BLAS is
that it will be easier for users to replace their BLAS calls by calling the Batched BLAS
when needed, and to remember the calling sequences and the parameter conventions. In

http://www.nlafet.eu/ 9/22

NLAFET D7.3: Batched BLAS Specs

real arithmetic, the operations proposed for the Level 3 Batched BLAS have an interface
described as follows.
4.1 Matrix-matrix products {s,d,c,z}gemm_batch
This routine performs a batch of one of the matrix-matrix operations described below:

Cm×n = α · Am×k ×Bk×n + β · Cm×n,

Cm×n = α · AT
k×m ×Bk×n + β · Cm×n,

Cm×n = α · AH
k×m ×Bk×n + β · Cm×n,

Cm×n = α · Am×k ×BT
n×k + β · Cm×n,

Cm×n = α · Am×k ×BH
n×k + β · Cm×n,

Cm×n = α · AT
k×m ×BT

n×k + β · Cm×n,

Cm×n = α · AH
k×m ×BH

n×k + β · Cm×n.

The calling routine is described as follows:

{s, d, c, z}gemm_batch(enum ∗transa,
enum ∗transb,
integer ∗m,
integer ∗n,
integer ∗k,
{s, d, c, z}precision ∗alpha,
{s, d, c, z}precision ∗ ∗ arrayA,
integer ∗lda,
{s, d, c, z}precision ∗ ∗ arrayB,
integer ∗ldb,
{s, d, c, z}precision ∗beta,
{s, d, c, z}precision ∗ ∗ arrayC,
integer ∗ldc,
integer batch_count,
enum batch_opts,
integer ∗info)

where {s,d,c,z}precision denotes one of the four standard floating-point arithmetic pre-
cisions (float, double, complex, or double complex). The transa and transb arrays can
be of size one for the same size batch and of size at least batch_count for the variable
sizes case. For the latter, each value defines the operation on the corresponding matrix.
In the real precision case, the values BatchTrans and BatchConjTrans have the same
meaning. The m, n, and k arrays of integers are of size at least batch_count, where each
value defines the dimension of the operation on each corresponding matrix. The alpha
and beta arrays provide the scalars α and β, described in the equation above. They are
of the same precision as the arrays A, B, and C. The arrays of pointers arrayA, arrayB,

http://www.nlafet.eu/ 10/22

NLAFET D7.3: Batched BLAS Specs

and arrayC are of size at least batch_count and point to the matrices {Ai}, {Bi}, and
{Ci}. The size of matrix Ci is m[i] × n[i]. The sizes of the matrices Ai and Bi depend
on transa[i] and transb[i]; their corresponding sizes are mentioned in the equation above.
The arrays of leading dimensions lda, ldb, and ldc define the leading dimension of each of
the matrices {Ai(lda, ∗)}, {Bi(ldb, ∗)}, and {Ci(ldc, ∗)}, respectively.

If the batch_opts argument specifies that the batch is of BATCH_FIXED type, only
transa[0], transb[0], m[0], n[0], k[0], alpha[0], lda[0], ldb[0], beta[0], and ldc[0] are used
to specify the gemm parameters for the batch.

The array info defines the error array. It is an output array of integers of size
batch_count where a value at position i reflects the argument error for the gemm with
matrices Ai, Bi, and Ci.
4.2 Hermitian matrix-matrix products {c,z}hemm_batch,

{s,d,c,z}symm_batch
This routine performs a batch of matrix-matrix products, each expressed in one of the
following forms:

Cm×n = α · Am×m ×Bm×n + β · Cm×n if side = BatchLeft
Cm×n = α ·Bm×n × An×n + β · Cm×n if side = BatchRight,

where the matrices A, B, and C are real symmetric ({s,d}symm_batch), complex sym-
metric ({c,z}symm_batch), or complex Hermitian ({c,z}hemm_batch), and α and β are
scalars.

The calling routine is described as follows:

{s, d, c, z}symm_batch(enum ∗side,
enum ∗uplo,
integer ∗m,
integer ∗n,
{s, d, c, z}precision ∗alpha,
{s, d, c, z}precision ∗ ∗ arrayA,
integer ∗lda,
{s, d, c, z}precision ∗ ∗ arrayB,
integer ∗ldb,
{s, d, c, z}precision ∗beta,
{s, d, c, z}precision ∗ ∗ arrayC,
integer ∗ldc,
integer batch_count,
enum batch_opts,
integer ∗info)

The side array is of size at least batch_count and each value defines the operation on each
matrix as described in the equations above. The uplo array is of size at least batch_count
and defines whether the upper or the lower triangular part of the matrix is to be referenced.
The m and n arrays of integers are of size at least batch_count and define the dimension

http://www.nlafet.eu/ 11/22

NLAFET D7.3: Batched BLAS Specs

of the operation on each matrix. The alpha and beta arrays provide the scalars α and
β described in the equation above. They are of the same precision as the arrays A,
B, and C. The arrays arrayA, arrayB, and arrayC are the arrays of pointers of size
batch_count that point to the matrices {Ai}, {Bi}, and {Ci}. The size of matrix Ci is
m[i] × n[i]. The sizes of the matrices Ai and Bi depend on side[i]; their corresponding
sizes are mentioned in the equations above. The arrays of leading dimensions lda, ldb,
and ldc define the leading dimension of each of the matrices {Ai(lda, ∗)}, {Bi(ldb, ∗)},
and {Ci(ldc, ∗)}, respectively.

If the batch_opts argument specifies that the batch is of BATCH_FIXED type, only
side[0], uplo[0], m[0], n[0], alpha[0], lda[0], ldb[0], beta[0], and ldc[0] are used to specify
the symm parameters for the batch.

The array info defines the error array. It is an output array of integers of size
batch_count where a value at position i reflects the argument error for the symm with
matrices Ai, Bi, and Ci.
4.3 Rank-k updates of a symmetric/Hermitian matrix {c,z}syrk_batch,

{s,d,c,z}herk_batch
This routine performs a batch of rank-k updates of real symmetric ({s,d}syrk_batch),
complex symmetric ({c,z}syrk_batch), or complex Hermitian ({c,z}herk_batch) matrices
in the form:

Cn×n = α · An×k × AT
n×k + β · Cn×n for syrk if trans = BatchNoTrans

Cn×n = α · AT
k×n × Ak×n + β · Cn×n for syrk if trans = BatchTrans

Cn×n = α · An×k × AH
n×k + β · Cn×n for herk if trans = BatchNoTrans

Cn×n = α · AH
k×n × Ak×n + β · Cn×n for herk if trans = BatchConjTrans

The calling routine is described as follows:

{s, d, c, z}syrk_batch(enum ∗uplo,
enum ∗trans,
integer ∗n,
integer ∗k,
{s, d, c, z}precision ∗alpha,
{s, d, c, z}precision ∗ ∗ arrayA,
integer ∗lda,
{s, d, c, z}precision ∗beta,
{s, d, c, z}precision ∗ ∗ arrayC,
integer ∗ldc,
integer batch_count,
enum batch_opts,
integer ∗info)

The uplo array is of size at least batch_count and defines whether the upper or the lower
triangular part of the matrix is to be referenced. The trans array is of size at least
batch_count where each value defines the operation on each matrix. In the real precision
case, the values ‘BatchTrans’ and ‘BatchConjTrans’ have the same meaning. In the

http://www.nlafet.eu/ 12/22

NLAFET D7.3: Batched BLAS Specs

complex case, trans = BatchConjTrans is not allowed in xsyrk_batch. The n and
k arrays of integers are of size at least batch_count and define the dimensions of the
operation on each matrix. The alpha and beta arrays provide the scalars α and β described
in the equation above. They are of the same precision as the arrays A and C. The arrays
of pointers arrayA and arrayC are of size batch_count and point to the matrices {Ai}
and {Ci}. The size of matrix Ci is n[i] × n[i]. All matrices {Ci} are either real or
complex symmetric. The size of the matrix Ai depends on trans[i]; its corresponding size
is mentioned in the equation above. The arrays of leading dimensions lda and ldc define
the leading dimension of each of the matrices {Ai(lda, ∗)} and {Ci(ldc, ∗)}, respectively.

If the batch_opts field specifies that the batch is of BATCH_FIXED type, only uplo[0],
trans[0], n[0], k[0], alpha[0], lda[0], beta[0], and ldc[0] are used to specify the syrk pa-
rameters for the batch.

The array info defines the error array. It is an output array of integers of size
batch_count where a value at position i reflects the argument error for the syrk with
matrices Ai and Ci.

{c, z}herk_batch(enum ∗uplo,
enum ∗trans,
integer ∗n,
integer ∗k,
{s, d}precision ∗alpha,
{c, z}precision ∗ ∗ arrayA,
integer ∗lda,
{s, d}precision ∗beta,
{c, z}precision ∗ ∗ arrayC,
integer ∗ldc,
integer batch_count,
enum batch_opts,
integer ∗info)

The {c,z}herk_batch routine is only available for the complex precision. It has the same
parameters as the {s,d,c,z}syrk_batch except that the trans = BatchTrans is not al-
lowed in xherk_batch and that alpha and beta are real. The matrices {Ci} are complex
Hermitian.

If the batch_opts argument specifies that the batch is of BATCH_FIXED type, only
uplo[0], trans[0], n[0], k[0], alpha[0], lda[0], beta[0], and ldc[0] are used to specify the
herk parameters for the batch.

The array info defines the error array. It is an output array of integers of size
batch_count where a value at position i reflects the argument error for the herk with
matrices Ai and Ci.

http://www.nlafet.eu/ 13/22

NLAFET D7.3: Batched BLAS Specs

4.4 Rank-2k updates of a symmetric/Hermitian matrix {s,d,c,z}syr2k_batch,
{c,z}her2k_batch

This routine performs batched rank-2k updates on real symmetric ({s,d}syr2k_batch),
complex symmetric ({c,z}syr2k_batch), or complex Hermitian ({c,z}her2k_batch) ma-
trices of the form:
Cn×n = α · An×k ×BT

n×k + α ·Bn×k × AT
n×k + β · Cn×n for syr2k if trans = BatchNoTrans

Cn×n = α · AT
k×n ×Bk×n + α ·BT

k×n × Ak×n + β · Cn×n for syr2k if trans = BatchTrans
Cn×n = α · An×k ×BH

n×k + ᾱ ·Bn×k × AH
n×k + β · Cn×n for her2k if trans = BatchNoTrans

Cn×n = α · AH
k×n ×Bk×n + ᾱ ·BH

k×n × Ak×n + β · Cn×n for her2k if trans = BatchConjTrans
The calling routine is described as follows:

{s, d, c, z}syr2k_batch(enum ∗uplo,
enum ∗trans,
integer ∗n,
integer ∗k,
{s, d, c, z}precision ∗alpha,
{s, d, c, z}precision ∗ ∗ arrayA,
integer ∗lda,
{s, d, c, z}precision ∗ ∗ arrayB,
integer ∗ldb,
{s, d, c, z}precision ∗beta,
{s, d, c, z}precision ∗ ∗ arrayC,
integer ∗ldc,
integer batch_count,
enum batch_opts,
integer ∗info)

The uplo array is of size batch_count and defines whether the upper or the lower triangular
part of the matrix is to be referenced. The trans array is of size batch_count where
each value defines the operation on each matrix. In the real precision case, the values
‘BatchTrans’ and ‘BatchConjTrans’ have the same meaning. In the complex case,
trans = BatchConjTrans is not allowed in xsyr2k_batch. The n and k arrays of integers
are of size batch_count and define the dimensions of the operation on each matrix. The
alpha and beta arrays provide the scalars α and β described in the equations above.
They are of the same precision as the arrays A, B, and C. The arrays arrayA, arrayB,
and arrayC are the arrays of pointers of size batch_count that point to the matrices
{Ai}, {Bi}, and {Ci}. The size of matrix Ci is n[i] × n[i]. All matrices {Ci} are either
real or complex symmetric. The size of the matrices Ai and Bi depends on trans[i]; its
corresponding size is mentioned in the equation above. The arrays of leading dimensions
lda, ldb, and ldc define the leading dimension of the matrices {Ai(lda, ∗)}, {Bi(ldb, ∗)},
and {Ci(ldc, ∗)}, respectively.

If the batch_opts argument specifies that the batch is of BATCH_FIXED type, only
uplo[0], trans[0], n[0], k[0], alpha[0], lda[0], ldb[0], beta[0], and ldc[0] are used to specify
the syr2k parameters for the batch.

http://www.nlafet.eu/ 14/22

NLAFET D7.3: Batched BLAS Specs

The array info defines the error array. It is an output array of integers of size
batch_count where a value at position i reflects the argument error for the syr2k with
matrices Ai, Bi, and Ci.

{c, z}her2k_batch(enum ∗uplo,
enum ∗trans,
integer ∗n,
integer ∗k,
{c, z}precision ∗alpha,
{c, z}precision ∗ ∗ arrayA,
integer ∗lda,
{c, z}precision ∗ ∗ arrayB,
integer ∗ldb,
{s, d}precision ∗beta,
{c, z}precision ∗ ∗ arrayC,
integer ∗ldc,
integer batch_count,
enum batch_opts,
integer ∗info)

The {c,z}her2k_batch routine is only available for the complex precision. It has the same
parameters as the {s,d,c,z}syr2k_batch routine except that the trans = BatchTrans
is not allowed in xher2k_batch and that beta is real. The matrices {Ci} are complex
Hermitian.

If the batch_opts argument specifies that the batch is of BATCH_FIXED type, only
uplo[0], trans[0], n[0], k[0], alpha[0], lda[0], ldb[0], beta[0], and ldc[0] are used to specify
the her2k parameters for the batch.

The array info defines the error array. It is an output array of integers of size
batch_count where a value at position i reflects the argument error for the her2k with
matrices Ai, Bi, and Ci.
4.5 Multiplying a matrix by a triangular matrix {s,d,c,z}trmm_batch
This routine performs a batch of one of the following matrix-matrix products, where the
matrix A is an upper or lower triangular matrix, and α is scalar:

Bm×n = α · Am×m ×Bm×n if side = BatchLeft and trans = BatchNoTrans
Bm×n = α · AT

m×m ×Bm×n if side = BatchLeft and trans = BatchTrans
Bm×n = α · AH

m×m ×Bm×n if side = BatchLeft and trans = BatchConjTrans
Bm×n = α ·Bm×n × Am×m if side = BatchRight and trans = BatchNoTrans
Bm×n = α ·Bm×n × AT

m×m if side = BatchRight and trans = BatchTrans
Bm×n = α ·Bm×n × AH

m×m if side = BatchRight and trans = BatchConjTrans

http://www.nlafet.eu/ 15/22

NLAFET D7.3: Batched BLAS Specs

{s, d, c, z}trmm_batch(enum ∗side,
enum ∗uplo,
enum ∗trans,
enum ∗diag,
integer ∗m,
integer ∗n,
{s, d, c, z}precision ∗alpha,
{s, d, c, z}precision ∗ ∗ arrayA,
integer ∗lda,
{s, d, c, z}precision ∗ ∗ arrayB,
integer ∗ldb,
integer batch_count,
enum batch_opts,
integer ∗info)

The side array is of size batch_count and each value defines the operation on each matrix
as described in the equations above. The uplo array is of size batch_count and defines
whether the upper or the lower triangular part of the matrices {Ai} are to be referenced.
The trans is an array of size batch_count where each value defines the operation on each
matrix. In the real precision case, the values ‘BatchTrans’ and ‘BatchConjTrans’
have the same meaning. The diag array is of size batch_count where each value defines
whether the corresponding matrix A is assumed to be unit or non-unit triangular. The m
and n arrays of integers are of size batch_count and define the dimension of the operation
on each matrix. The alpha array provides the scalars α described in the equation above.
It is of the same precision as the arrays A and B. The arrays of pointer arrayA and
arrayB are of size batch_count and point to the matrices {Ai} and {Bi}. The size of
matrix Bi is m[i]× n[i]. The size of matrix Ai depends on side[i]; its corresponding size
is mentioned in the equation above. The arrays of leading dimensions lda and ldb define
the leading dimension of the {Ai(lda, ∗)} and {Bi(ldb, ∗)} matrices, respectively.

If the batch_opts argument specifies that the batch is of BATCH_FIXED type, only
side[0], uplo[0], trans[0], diag[0], m[0], n[0], alpha[0], lda[0], and ldb[0] are used to specify
the trmm parameters for the batch.

The array info defines the error array. It is an output array of integers of size
batch_count where a value at position i reflects the argument error for the trmm with
matrices Ai and Bi.
4.6 Solving triangular systems of equations with multiple right-hand

{s,d,c,z}trsm_batch
This routine solves a batch of matrix equations. Each equation is described below, where
the matrix A is an upper or lower triangular matrix, and α is scalar:

http://www.nlafet.eu/ 16/22

NLAFET D7.3: Batched BLAS Specs

Bm×n = α · A−1
m×m ×Bm×n if side = BatchLeft and trans = BatchNoTrans

Bm×n = α · A−T
m×m ×Bm×n if side = BatchLeft and trans = BatchTrans

Bm×n = α · A−H
m×m ×Bm×n if side = BatchLeft and trans = BatchConjTrans

Bm×n = α ·Bm×n × A−1
m×m if side = BatchRight and trans = BatchNoTrans

Bm×n = α ·Bm×n × A−T
m×m if side = BatchRight and trans = BatchTrans

Bm×n = α ·Bm×n × A−H
m×m if side = BatchRight and trans = BatchConjTrans

{s, d, c, z}trsm_batch(enum ∗side,
enum ∗uplo,
enum ∗trans,
enum ∗diag,
integer ∗m,
integer ∗n,
{s, d, c, z}precision ∗alpha,
{s, d, c, z}precision ∗ ∗ arrayA,
integer ∗lda,
{s, d, c, z}precision ∗ ∗ arrayB,
integer ∗ldb,
integer batch_count,
enum batch_opts,
integer ∗info)

The side array is of size batch_count where each value defines the operation on each
matrix as described in the equation above. The uplo array is of size batch_count and
defines whether the upper or the lower triangular part of the matrices {Ai} are to be ref-
erenced. The trans array is of size batch_count where each value defines the operation on
each matrix. In the real precision case, the values ‘BatchTrans’ and ‘BatchConjTrans’
have the same meaning. The diag array is of size batch_count where each value defines
whether the corresponding matrix A is assumed to be unit or non-unit triangular. The m
and n arrays of integers are of size batch_count and define the dimension of the operation
on each matrix. The alpha array provides the scalars α described in the equation above.
It is of the same precision as the arrays A and B. The arrays of pointers arrayA and
arrayB are of size batch_count and point to the matrices {Ai} and {Bi}. The size of
matrix Bi is m[i] × n[i]. The size of the matrix Ai depends on side[i]; its corresponding
size is mentioned in the equation above. The arrays of leading dimension lda and ldb
define the leading dimension of the matrices {Ai(lda, ∗)} and {Bi(ldb, ∗)}, respectively.

If the batch_opts argument specifies that the batch is of BATCH_FIXED type, only
side[0], uplo[0], trans[0], diag[0], m[0], n[0], alpha[0], lda[0], and ldb[0] are used to specify
the trmm parameters for the batch.

The array info defines the error array. It is an output array of integers of size
batch_count where a value at position i reflects the argument error for the trsm with
matrices Ai and Bi.

http://www.nlafet.eu/ 17/22

NLAFET D7.3: Batched BLAS Specs

5 SCOPE and SPECIFICATIONS OF THE LEVEL 1 and LEVEL 2 BATCHED
BLAS

Similarly to the derivation of a Level 3 Batched BLAS form the Level 3 BLAS, we derive
Level 1 and Level 2 Batched BLAS from the corresponding Level 1 and Level 2 BLAS
routines. Examples are given below for the Level 1 y = αx + y (axpy) and the Level 2
y = αAx+ βy (gemv) BLAS routines.

{s, d, c, z}axpy_batch(integer ∗n,
{s, d, c, z}precision ∗alpha,
{s, d, c, z}precision ∗ ∗ x,
integer ∗incx,
{s, d, c, z}precision ∗ ∗ y,
integer ∗incy,
integer batch_count,
enum batch_opts,
integer ∗info).

{s, d, c, z}gemv_batch(enum ∗trans,
integer ∗m,
integer ∗n,
{s, d, c, z}precision ∗alpha,
{s, d, c, z}precision ∗ ∗ arrayA,
integer ∗lda,
{s, d, c, z}precision ∗ ∗ x,
integer ∗incx,
{s, d, c, z}precision ∗beta,
{s, d, c, z}precision ∗ ∗ y,
integer ∗incy,
integer batch_count,
enum batch_opts,
integer ∗info).

Here incx[i] and incy[i] from the ith BLAS operation must not be zero and specify the
increments for the elements of x[i] and y[i], respectively.
6 BATCHED LAPACK
The batched approach to BLAS can be applied to higher-level libraries, and in particu-
lar to LAPACK. In this extension, the Batched LAPACK routines are derived from the
interfaces of their corresponding LAPACK routines, similarly to the derivation of Level 3

http://www.nlafet.eu/ 18/22

NLAFET D7.3: Batched BLAS Specs

Batched BLAS from BLAS. For example, the specification for the batched LU factoriza-
tions (using partial pivoting with row interchanges) of general M-by-N matrices specified
through arrayA, is derived from the LAPACK’s getrf routine as follows:

{s, d, c, z}getrf_batch(integer ∗m,
integer ∗n,
{s, d, c, z}precision ∗ ∗ arrayA,
integer ∗lda,
integer ∗ ∗ ipiv,
integer batch_count,
enum batch_opts,
integer ∗info).

7 FUTURE DIRECTIONS AND FINAL REMARKS
Defining a Batched BLAS interface is a response to the demand for acceleration of new
(batched) linear algebra routines on heterogeneous and manycore architectures used in
current applications. While flattening the computations in applications to linear algebra
on matrices (e.g., Level 3 BLAS) works well for large matrices, handling small matrices
brings new challenges. The batched approach works, but there are cases, where for exam-
ple, operands {Ai}, {Bi}, and {Ci} share data, operands are not directly available in the
BLAS matrix format, or where the flattening may just lose application-specific knowledge
about data affinity, etc., in which cases there would be overheads that could possibly be
avoided. For instances where the operands originate from multi-dimensional data, which
is a common case, we are looking at new interfaces and data abstractions, e.g., tensor-
based, where 1) explicit preparation of operands can be replaced by some index operation;
2) operands do not need to be in matrix form, but instead, can be directly loaded in ma-
trix form in fast memory and proceed with the computation from there; 3) flattening will
not lead to loss of information, e.g., that can be used to enforce certain memory affinity
or other optimization techniques, because the entire data abstraction (tensor/s) will be
available to the routine (and to all cores/multiprocessors/etc.) [29, 30].

Finally, we reiterate that the goal is to provide the developers of applications, compil-
ers, and runtime systems with the option of expressing many small BLAS operations as a
single call to a routine from the new batch operation standard. Thus, we hope that this
standard will help and encourage community efforts to build higher-level algorithms, e.g.,
not only for dense problems as in LAPACK, but also for sparse problems as in precondi-
tioners for Krylov subspace solvers, sparse direct multifrontal solvers, etc., using Batched
BLAS routines. Some optimized Batched BLAS implementations are already available
in the MAGMA library, and moreover, industry leaders like NVIDIA, Intel, and AMD,
have also noticed the demand and have started providing some optimized Batched BLAS
implementations in their own vendor-optimized libraries.

http://www.nlafet.eu/ 19/22

NLAFET D7.3: Batched BLAS Specs

References
[1] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra

subprograms for fortran usage. ACM Trans. Math. Softw., 5(3):308–323, September
1979.

[2] J. J. Dongara, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK Users’
Guide. SIAM, Philadelphia, PA, 1979.

[3] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An
extended set of FORTRAN basic linear algebra subprograms. ACM Trans. Math.
Softw., 14(1):1–17, 1988.

[4] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Duff. A set of level
3 basic linear algebra subprograms. ACM Trans. Math. Softw., 16(1):1–17, March
1990.

[5] Edward Anderson, Zhaojun Bai, Christian Bischof, Suzan L. Blackford, James W.
Demmel, Jack J. Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven J. Hammar-
ling, Alan McKenney, and Danny C. Sorensen. LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, Third edition, 1999.

[6] B. Kågström, P. Ling, and C. Van Loan. GEMM-Based Level 3 BLAS: High-
Performance Model Implementations and Performance Evaluation Benchmark. ACM
Trans. Math. Software, 24(3):268–302, 1998.

[7] B. Kågström, P. Ling, and C. Van Loan. Algorithm 784: GEMM-Based Level 3
BLAS: Portability and Optimization Issues. ACM Trans. Math. Software, 24(3):303–
316, 1998.

[8] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström. Recursive Blocked Al-
gorithms and Hybrid Data Structures for Dense Matrix Library Software. SIAM
Review, 46(1):3–45, 2004.

[9] Emmanuel Agullo, James Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien
Langou, Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical linear
algebra on emerging architectures: The PLASMA and MAGMA projects. J. Phys.:
Conf. Ser., 180(1), 2009.

[10] O.E.B. Messer, J.A. Harris, S. Parete-Koon, and M.A. Chertkow. Multicore and ac-
celerator development for a leadership-class stellar astrophysics code. In Proceedings
of "PARA 2012: State-of-the-Art in Scientific and Parallel Computing.", 2012.

[11] J.C. Liao Khodayari A., A.R. Zomorrodi and C.D. Maranas. A kinetic model of es-
cherichia coli core metabolism satisfying multiple sets of mutant flux data. Metabolic
engineering, 25C:50–62, 2014.

[12] Sencer N. Yeralan, Tim A. Davis, and Sanjay Ranka. Sparse mulitfrontal QR on the
GPU. Technical report, University of Florida Technical Report, 2013.

[13] Tingxing Dong, Veselin Dobrev, Tzanio Kolev, Robert Rieben, Stanimire Tomov, and
Jack Dongarra. A step towards energy efficient computing: Redesigning a hydrody-
namic application on CPU-GPU. In IEEE 28th International Parallel Distributed
Processing Symposium (IPDPS), 2014.

http://www.nlafet.eu/ 20/22

NLAFET D7.3: Batched BLAS Specs

[14] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization frame-
work for sparse matrix kernels. Int. J. High Perform. Comput. Appl., 18(1):135–158,
February 2004.

[15] Alexander A Auer, Gerald Baumgartner, David E Bernholdt, Alina Bibireata,
Venkatesh Choppella, Daniel Cociorva, Xiaoyang Gao, Robert Harrison, Sriram Kr-
ishnamoorthy, Sandhya Krishnan, Chi-Chung Lam, Qingda Luc, Marcel Nooijene,
Russell Pitzerf, J Ramanujamg, P Sadayappanc, and Alexander Sibiryakovc. Au-
tomatic code generation for many-body electronic structure methods: the tensor
contraction engine. Molecular Physics, 104(2):211–228, 2006.

[16] J.M. Molero, E.M. Garzón, I. García, E.S. Quintana-Ortí, and A. Plaza. Poster: A
batched Cholesky solver for local RX anomaly detection on GPUs, 2013. PUMPS.

[17] M.J. Anderson, D. Sheffield, and K. Keutzer. A predictive model for solving small
linear algebra problems in gpu registers. In IEEE 26th International Parallel Dis-
tributed Processing Symposium (IPDPS), 2012.

[18] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parellel Comput. Syst. Appl., 36(5-6):232–240,
2010.

[19] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond
Namyst, Samuel Thibault, and Stanimire Tomov. Faster, Cheaper, Better – a Hy-
bridization Methodology to Develop Linear Algebra Software for GPUs. In Wen mei
W. Hwu, editor, GPU Computing Gems, volume 2. Morgan Kaufmann, September
2010.

[20] Azzam Haidar, Chongxiao Cao, Asim Yarkhan, Piotr Luszczek, Stanimire Tomov,
Khairul Kabir, and Jack Dongarra. Unified development for mixed multi-GPU and
multi-coprocessor environments using a lightweight runtime environment. In Pro-
ceedings of the 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, IPDPS ’14, pages 491–500, Washington, DC, USA, 2014. IEEE Com-
puter Society.

[21] Azzam Haidar, Piotr Luszczek, Stanimire Tomov, and Jack Dongarra. Towards
batched linear solvers on accelerated hardware platforms. In Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2015, San Francisco, CA, 02/2015 2015. ACM, ACM.

[22] Azzam Haidar, Piotr Luszczek, Stanimire Tomov, and Jack Dongarra. Optimiza-
tion for performance and energy for batched matrix computations on GPUs. In 8th
Workshop on General Purpose Processing Using GPUs (GPGPU 8) co-located with
PPOPP 2015, PPoPP 2015, San Francisco, CA, 02/2015 2015. ACM, ACM.

[23] CUBLAS 7.5, 2016. Available at http://docs.nvidia.com/cuda/cublas/.

[24] Murat Guney, Sarah Knepper, Kazushige Goto, Vamsi Sripathi, Greg Henry, and
Shane Story. Batched Matrix-Matrix Multiplication Operations for Intel Xeon Pro-
cessor and Intel Xeon Phi Co-Processor, 2015. http://meetings.siam.org/sess/
dsp_talk.cfm?p=72187.

http://www.nlafet.eu/ 21/22

NLAFET D7.3: Batched BLAS Specs

[25] HSL. A collection of Fortran codes for large scale scientific computation, 2013. http:
//www.hsl.rl.ac.uk.

[26] T. Dong, A. Haidar, P. Luszczek, A. Harris, S. Tomov, and J. Dongarra. LU Factor-
ization of Small Matrices: Accelerating Batched DGETRF on the GPU. In Proceed-
ings of 16th IEEE International Conference on High Performance and Communica-
tions (HPCC 2014), August 2014.

[27] Benjamin Brock, Andrew Belt, Jay Jay Billings, and Mike Guidry. Explicit In-
tegration with GPU Acceleration for Large Kinetic Networks. J. Comput. Phys.,
302(C):591–602, December 2015.

[28] David Keyes and Valerie Taylor. NSF-ACCI task force on software for science and
engineering. https://www.nsf.gov/cise/aci/taskforces/TaskForceReport_
Software.pdf, March 2011.

[29] A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar,
I. Karlin, T. Kolev, I. Masliah, and S. Tomov. High-Performance Tensor Contractions
for GPUs. University of Tennessee Computer Science Technical Report, (UT-EECS-
16-738), 01-2016 2016.

[30] M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin,
T. Kolev, I. Masliah, and S. Tomov. Towards a high-performance tensor algebra pack-
age for accelerators. http://computing.ornl.gov/workshops/SMC15/presentations/,
2015. Smoky Mountains Computational Sciences and Engineering Conference
(SMC’15), Gatlinburg, TN, Sep 2015.

http://www.nlafet.eu/ 22/22

