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1 Introduction
The Description of Action (DoA) document states for deliverable D7.5:

“D7.5 Beta release of the NLAFET library
Beta release of parts of the NLAFET library and User’s Guide.”

This deliverable is in the context of Task 7.3 (Open source activities).

1.1 NLAFET repositories on GitHub
The codes developed and distributed in the context of the NLAFET project are hosted
on the GitHub platform and can be found using the link https://github.com/NLAFET/.
GitHub is a web-based application for managing source codes that relies on the version
control system Git (https://git-scm.com/). In addition to code management, GitHub
also provides many important features for software development and code distribution
such as the possibility of associating Wikis with every repository. It also includes a set
of bug tracking tools helping developers to get feedback from users and to maintain the
codes. Although it is possible to freely create an unlimited number of repositories for
open-source projects, GitHub also offers the possibility for academic users to create an
unlimited number of private repositories without any fees. Therefore in our NLAFET
project we can create a repository for each piece of software that we are developing and
can manage the access rights with great flexibility. Many of the repositories include several
pieces of software that together form a package of routines for a subset of fundamental
linear algebra operations considered in the NLAFET project. Typically, such a package
is organized in directories or even subdirectories to reflect different types of functionality,
tools and solvers.

For a given repository, the main three levels of access rights that we are interested in
are:

• Read/Write access for a particular team within the project and no access to any
other users.

• Read/Write access for a particular team plus a Read or Read/Write access for
another team in the context of a collaboration. By default, members of the projects
have Read access to any repository.

• Read/Write access for a particular team or teams and a public Read access when
the code is ready to be released.

These examples are the three main options used in the project but these rules might
be modified in many ways to allow further collaboration at various testing stages or for
potential reviewers.

The two main administrators for the GitHub NLAFET project are Samuel Relton at
UNIMAN and Florent Lopez at RAL but all NLAFET partners contribute in keeping the
GitHub up to date by managing the repositories they are responsible for. In addition,
every team involved in the project can create a repository and manage their own settings.
In particular, we will make repositories public whenever the codes are robust enough to
be released. In addition, new repositories will be added and occasionally some existing
repositories will be merged. Public releases will occur at several times during the project.
We have organized the description of the current repositories according to the following
topics:
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• Dense matrix factorizations and solvers (Section 2).

• Solvers and tools for standard and generalized dense eigenvalue problems (Section 3).

• Sparse direct factorizations and solvers (Section 4).

• Communication optimal algorithms for iterative methods (Section 5).

• Cross-cutting tools (Section 6).

As of this date, we have 12 repositories in the GitHub NLAFET project. Note that the
internal file organization for every repository depends on the team that is managing the
repository. However, for most of the repositories the following subdirectories (or obvious
equivalents) can be found:

• src containing the source code files.

• test containing test drivers.

• data with a set of inputs for testing the code.

• results containing the expected results for the test drivers when using the input
provided in the data directory.

Also each repository contains a Makefile and a README file (or User Guide) with a
description of the software and any special usage and install instructions. After installa-
tion, the tests based on the given data can be executed and compared with the expected
results.

Finally, in Section 7 we give a brief status report on the ongoing collaboration with
our application partners, and in Section 8 we summarize the repositories with current
access levels in a table and give an account of our coming software contributions to the
NLAFET library.

2 Dense factorizations and solvers

As of this date, the repositories for Batched BLAS and dense factorizations and solvers
are:

BBLAS-ref: Reference implementation of Batched BLAS routines.

• General matrix multiply, triangular matrix multiply, triangular solve, symmetric
rank-k update, symmetric rank-2k update, symmetric matrix multiple and their
complex counter parts (xgemm, xtrsm, xtrmm, xsyrk, xsyr2k, xherk, xher2k, xhemm,
xsymm).

plasma: Snapshot of the PLASMA library for dense linear algebra.

• the one-sided factorizations and solves (LU, Cholesky, QR, LQ, and symmetric
indefinite)

• inversion of matrices based on general, symmetric positive definite, symmetric in-
definite matrices, and triangular.
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• mixed precision LU and Cholesky factorizations and solves for iterative refinement,

• banded LU and triangular factorization and solves,

• bidiagonal factorization and Singular Value Decomposition (SVD),

• utility routines such as computing norms etc.

In the NLAFET/BBLAS-ref repository, we have provided a complete reference imple-
mentation of the Batched Level-3 BLAS as part of Deliverable D7.3 (Draft Specification
for Hybrid BLAS). In an aim to utilize highly parallel computing resources more effi-
ciently, there is a current trend towards splitting large linear algebra problems into many
smaller, perhaps, thousands of smaller subproblems, which can be solved concurrently.
The solutions of these smaller problems are then combined to give the solution to the
original (large) problem. Examples of this is are in dense linear algebra and deep learning
methods which have small independent matrix multiple operations. The solution to these
potential inefficiency is to develop a new standard set of routines for carrying out linear
algebra operations on batches of small matrices, building on the well-known Basic Linear
Algebra Subproblems (BLAS) standard. The idea behind the Batched BLAS (BBLAS)
is to perform multiple BLAS operations in parallel on many small matrices, making more
efficient use of hardware than a simple for loop would allow.

The Batched BLAS (BBLAS) aims to make more efficient use of hardware resources
when multiple small BLAS calls are made simultaneously. Taking matrix multiplication
as an example we wish to solve problems of the form

Ci = αAiBi + βCi, i = 1: N.

This repository was intended as a starting point for further discussions with vendors
such as Intel, ARM, Cray, and NVIDIA to clarify a community-wide standard for Batched
BLAS operations. After two workshops and continuing discussions on the subject (see
the NLAFET Working Notes 4 and 12 for workshop reports [12, 11]), we will shortly be
updating this proposed standard. We plan to have a finalisation report with community
support for the NLAFET Deliverable D2.4 (due in month 36).

Currently, we are planning to move to the group-based user interface which appears in
current versions of cblas_dgemm_batch in Intel MKL. Ongoing discussions are debating
the type of error handling that will be supported by the community standard. We are also
looking to standardise other memory formats to store the batch of matrices, such as the
strided and interleaved memory formats; details in NLAFET Working Note 5 A Compar-
ison of Potential Interfaces for Batched BLAS Computations [16]. Our experiments have
shown that these alternative memory formats can increase performance more than 10×
for very small matrices. A repository exploring these alternative memory formats can be
found on Github1.

For dense factorizations and solvers, we have released an implementation of most of
the existing BLAS and LAPACK routines using the OpenMP task-based programming
paradigm. This appears as a new version of the PLASMA project for dense linear algebra,
which is a collaboration between The University of Tennessee and The University of
Manchester. A current snapshot of this project can be found in the NLAFET github
directory NLAFET/plasma whilst the main repository is at https://bitbucket.org/
icl/plasma.

1https://github.com/sdrelton/bblas_interleaved
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Though not all of these functions are entirely relevant for the NLAFET project, the
team at Manchester was responsible for (amongst other parts) the QR, LU , LLT and
LDLT factorizations and the BLAS operations within. These routines are competitive
with and often beat, implementations from the existing LAPACK collection and Intel‘s
MKL library. In particular, these four factorizations form the backbone of Deliverable
D2.1.

The excellent performance we see is due to the high levels of parallelism expressed
in the task-based framework along with an autotuning framework based on Lua. More
details on the runtime systems and task-based programming can be found in Deliverable
D2.1. Further detail about the autotuning involved can be found in section 6 of this
document and in Deliverable D6.4.

From this OpenMP version we were able to generate StarPU versions of the routines
by utlising the KStar source-to-source compiler2. By comparing these against an older
implementation in a runtime called Quark (developed at the University of Tennessee), plus
current versions of MKL and LAPACK, we give a comprehensive summary of differences
between the various runtimes that are suitable for the NLAFET project in Deliverable
D2.1.

The software has been fully tested on Haswell and Broadwell NUMA nodes, along
with the Intel Xeon Phi (codenamed Knights Landing).

3 Dense eigenvalue problems—tools and solvers

As of this date, the repositories for the tools and solvers of dense standard and generalized
eigenvalue problems are:

• SEVP-PDHSEQR-Alg953: Nonsymmetric standard eigenvalue problems—package of
routines for computing a real standard Schur form S = QTAQ.

• GEVP-PDHGEQZ: Nonsymmetric generalized eigenvalue problems—package of routines
for computing a real generalised Schur form (S, T ) = QT (A,B)Z.

• Eigenvectors: Eigenvector computations.

• Eigen-reorder: Eigenvalue reordering in Schur forms.

The parallel distributed algorithms and software contributions for computing Schur forms
of standard and generalized eigenvalue problems, and available in the first two listed repos-
itories above, represent the front line of research today. Within the NLAFET project, we
make new contributions that both improve on and extend the functionalities to be able to
efficiently compute eigenvectors corresponding to an arbitrary user selection of eigenval-
ues. Moreover, in our effort of addressing extreme scale systems we are developing task-
based counter parts of the functionalities already available in the SEVP-PDHSEQR-Alg953
and GEVP-PDHGEQZ repositories. Some of these results are available in the respositories
Eigenvectors and Eigen-reorder. More is to come during the project.
SEVP-PDHSEQR-Alg953: The repository contains a clone of ALGORITHM 953 of the
Collected Agorithms of ACM authored by Robert Granat, Bo Kågström, Daniel Kressner
and Meiyue Shao, which is a state-of-the-art package of library routines for computing a

2http://kstar.gforge.inria.fr
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standard Schur decomposition S = QTAQ, where A is a general square matrix with real
entries and Q is an orthogonal transformation matrix. The associated scientific paper is
published by ACM Transactions of Mathematical Software [9].

The main routine PDHGEQR is based on our parallel multishift QR algorithm with
aggressive early deflation for computing the standard real Schur decomposition S. The real
and complex conjugate pairs of eigenvalues appear as 1× 1 and 2× 2 blocks, respectively,
along the diagonal of S and can be reordered in any order. Typically, this functionality is
used to compute an orthogonal basis for an invariant subspace corresponding to a selected
set of eigenvalues. The parallel algorithms and software are developed by the Umeå team
in collaboration with EPFL. The software is MPI based, written in Fortran 90 for double
precision real arithmetic, and targets distributed memory HPC systems.

The software is complemented by a PDHGEQR User’s Guide, available in the reposi-
tory, which includes sections on installation, compilation and usage of the parallel library
routines. The Guide also contains instructions and scripts for tuning of parameters.
GEVP-PDHGEQZ: The repository contains a state-of-the-art package of library routines for
computing a generalized Schur decomposition (S, T ) = QT (A,B)Z, where A and B are
general square matrices with real entries and Q and Z are orthogonal transformation
matrices. The real and complex conjugate pairs of eigenvalues appear as 1× 1 and 2× 2
blocks, respectively, along the diagonals of (S, T ) and can be reordered in any order.
Typically, this functionality is used to compute orthogonal bases for a pair of deflating
subspaces corresponding to a selected set of eigenvalues. The parallel algorithms and
software are developed by the Umeå team in collaboration with EPFL (Daniel Kressner)
and based on our scientific work published by SIAM Journal on Scientific Computing [1].
The software is MPI based, written in Fortran 90 for double precision real arithmetic,
and targets distributed memory HPC systems.

The main routine is PDHGEQZ, which is based on our parallel multishift QZ algo-
rithm with aggressive early deflation for computing the generalized real Schur form of a
matrix pair (A,B) in Hessenberg-triangular (HT) form [1]. A novel parallel algorithm for
identifying and deflating infinite eigenvalues such that they do not inflict damage to other
eigenvalues, due to round-off, is part of the software.

The software is complemented by a User’s Guide, namely NLAFET Working Note 2
PDGEQZ User Guide [2]. The calling sequences for the main driver routines with input
and output parameters are described in detail. In addition, a set of tunable parameters
and their usage with default values are discussed. During the build process, internal tests
are performed to ensure the software works as intended. Both sequential and parallel
tests are performed, with validation of the computed results.

The package also includes our MPI-based implementation, PDGGHRD, for the re-
duction of a real general matrix pair (A,B) to Hessenberg-triangular form (H,T ), which
is the first main step in the computation of a generalized Schur form (S, T ) of (A,B).
PDGGHRD is a one-stage distributed algorithm with wave-front scheduling. The static
scheduler addresses the problem of underutilized processes caused by two-sided updates of
matrix pairs based on sequences of rotations. For more details see the NLAFET Working
Note 1 Distributed One-Stage Hessenberg-Triangular Reduction with Wavefront Scheduling
[3].
Eigenvectors: We have developed a new parallel distributed memory algorithm for si-
multaneous computation of a set of eigenvectors X (columns of X( associated with a user
selection of eigenvalues for matrices in Schur form S = UHAU . Optionally, the algorithm
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computes the eigenvectors of A by back-transformation, i.e. X ← UX. The algorithm
has been implemented for the standard eigenvalue problem Ax = λx for double precision
complex floating point arithmetic. The new parallel implementation is MPI based. A
summary of the new algorithm, its implementation and performance can be found in the
deliverable report D2.5: Eigenvalue problem solvers.

The goal remains to develop a task based algorithm for the problem of computing
eigenvectors and the work is in progress. As there was no existing software for the parallel
computation of eigenvectors, we first addressed the problem within the familiar setting of
MPI programming. In its own right our MPI software is an important contribution that
extends the functionality of the current state of the art.
The fundamental problems associated with the efficient computation of eigenvectors are:
• The computation of any eigenvector can overflow.

• The computation of a single eigenvector is memory bound.
The potential overflow problem is likely to manifest itself when the corresponding

eigenvalue is part of a cluster of nearby eigenvalues. In LAPACK, there exits a sequential
algorithm for addressing overflow in the computation of a single eigenvector. Unfor-
tunately, this algorithm can not be parallelized efficiently as global synchronization is
required at the end of every single iteration. This problem has now been solved! We now
understand how scalings can be applied in a parallel context to fight overflow. These tech-
nical details are discussed in the NLAFET Working Note 9 Robust solution of triangular
systems [14].

The computation of a single eigenvector is memory bound. This is an inescapable
consequence of modern computer architectures with deep memory hierarchies. However,
it is possible to interleave the computation of several eigenvectors and increase the arith-
metic intensity. We now understand how this can be done! The arithmetic intensity can
be increased even more by merging the computation of eigenvectors of the Schur matrix
S with the back transformation to eigenvectors of the original matrix A. These techni-
cal details are discussed in the NLAFET Working Note 10 Towards Highly Parallel and
Compute-Bound Computation of Eigenvectors of Matrices in Schur Form [4].
Eigen-reorder: We have developed a new parallel algorithm for eigenvalue reordering in
Schur forms. The algorithm has been implemented for the standard eigenvalue problem
for matrices in real Schur form, double precision arithmetic. The new implementation
is task based and can be executed using StarPU. A summary of the new algorithm, its
implementation and performance can be found in the deliverable report D2.5: Eigenvalue
problem solvers.

The previous state of the art was established by an MPI based algorithm, implemented
in ScaLAPACK as PBDTRSEN, a parallel blocked code for reordering eigenvalues in
real Schur forms (an earlier contribution by the Umeå group and is also a part of the
library within SEVP-PDHSEQR-Alg953). Many of its key features, such as multiple moving
windows for increased concurrency and accumulation of local transformations for increased
arithmetic intensity have been retained in the new algorithm. The main obstacle has been
to redesign and develop the algorithm into a task based algorithm. For this problem we
have been successful, as demonstrated by performance results in the deliverable report
D2.5. The measured results are from shared memory NUMA nodes on the Abisko and
Kebnekaise systems at HPC2N, Umeå University.

The lessons learned are directly applicable for the standard eigenvalue problem for
complex matrices A, as well as for both real and complex flavours of the generalized

http://www.nlafet.eu/ 9/18

http://www.nlafet.eu/


NLAFET Library software — Part 1

eigenvalue problem Ax = λBx. In addition, our understanding on how to cope with
the non-trivial data dependencies caused by the two-sided transformations in eigenvalue
reordering will facilitate the development of algorithms and software for the eigenvalue
problems to be addressed.

Much more technical information can be found in the NLAFET Working Note 11
Task-Based Parallel Algorithms for Eigenvalue Reordering in Real Schur Forms [15]. We
are currently in the process of reconfiguring the task based code to run on a distributed
memory machine using the runtime system StarPU3, a research project with its own
development team. We have been very pleased with their responses to our comments,
proposals and questions.

4 Sparse direct factorizations and solvers

As of this date, the repositories for the sparse direct solvers are:

• Highly-Unsymmetric: Sparse solver for highly unsymmetric systems.

• SpLLT: Sparse Cholesky solver for symmetric, positive-definite systems.

• SpLDLT: Sparse LDLT solver for symmetric, indefinite systems.

We are developing two different solvers for sparse symmetric systems that are kept
in two separate repositories. First we have SpLLT, a Cholesky solver for positive definite
systems and secondly SpLDLT for solving symmetric indefinite problems. Table 1 gives a
summary of the parallel codes for symmetric systems involved in Task–3.2 of our project.

In the context of positive definite systems, we have developed SpLLT using a runtime
system approach for enabling portability and maintainability of the code. In addition,
the runtime system provides a high-level API allowing us to express the parallel code in
a simple manner. The runtime system is then responsible for handling the dependency
management and data coherency across the architecture. In this context, HSL_MA87 cor-
responds to our reference solver and relies on a classical design where the solver itself
handles the task dependencies and scheduling. As a result of this approach, the cost
of handling the task-graph is kept extremely low compared to a generic runtime system
such as StarPU but HSL_MA87 suffers from a lack of portability and maintainability. We
implemented the algorithms in SpLLT using several runtime systems and programming
models and we reported our results in the NLAFET Working Note 7 Experiments with
sparse Cholesky using a sequential task-flow implementation [7]. The goal of this study
was to ensure that our approach would lead to an implementation that is competitive in
terms of performance compared to a state-of-the-art solver. The compilation process for
SpLLT is handled by the CMake tools (https://cmake.org/) and the different variants
of our solver that are OpenMP, StarPU or Parsec can be obtain by setting the variable
RUNTIME when configuring the compilation Makefile. The software package includes a test
driver called spllt_test located in the test directory for testing the performance and
correctness of the solver and uses the runtime system that has been chosen during the con-
figuration of the compilation. Note that SpLLT also contain the test driver run_ma87.f90
for testing HSL_MA87 which is useful when conducting performance comparison against
our solver.

3http://starpu.gforge.inria.fr/
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For now, our solver has been proven to be efficient on multicore architectures and
although it is capable of running on a GPU system thanks to the portability provided by
the StarPU runtime system, we still need to improve the GPU-version to make it efficient
on heterogeneous CPU-GPU platforms.

In the context of indefinite systems, we are developing the SpLDLT solver which uses
the a posteriori threshold pivoting (APTP) algorithm designed by Jonathan Hogg and
implemented in SSIDS V2 mainly in the context of the NLAFET project (see NLAFET
Working Note 6 A new sparse LDLT solver using a posteriori threshold pivoting[13]). The
idea is to extend the SSIDS solver and move to a fully task parallel approach as in SpLLT
using a runtime system. We plan to compare our solver against the two state-of-the-
art solvers PARDISO and HSL_MA97 which implement two different strategies for solving
indefinite systems. HSL_MA97 implements a numerically stable algorithm which limits
the parallelism whereas PARDISO offers as much parallelism as possible but may lead to
inaccurate results on numerically challenging problems.

In the context of Task–3.3, we are developing a solver for unsymmetric systems that
are both structurally and numerically unsymmetric. This code implements a Markow-
itz/threshold scheme for the LU factorization and is specifically designed to exploit par-
allelism. The first part of our study in this work consists in comparing the serial version
of our code to the state-of-the-art solver HSL_MA48 which is a pure serial code and once
we match the performance given by our reference solver we will then extend our approach
by implementing the parallel version of our code.

5 Communication optimal algorithms for iterative methods

As of this date, the repositories for communication avoiding (CA) algorithms and tools
for iterative methods are:

• preAlps: Kernels for preconditioned iterative methods.

• enlargedKrylov: Enlarged Krylov methods.

The INRIA team has been involved in the development of the packages PreAlps and
enlargedKrylov available through the NLAFET Github repository. The main purpose
of the PreAlps library is to provide robust algebraic preconditioners that can be used to
solve linear systems arising from challenging applications. The first release of preAlps
contains highly optimized kernels that are the building blocks of the iterative methods and
preconditioners that we develop in this project, and that can also be used on their own in
other applications. It is described in Deliverable D4.1: Computational Kernels for Pre-
conditioned Iterative Methods, prototype software, phase 1. The package enlargedKrylov
corresponds to the software in preparation about enlarged Krylov methods that are pre-
sented in Deliverable D4.2: Analysis and algorithm design, and will be released as Deliv-
erable D4.3: Prototype software, phase 2 in M24.
In summary, the current version of the library PreAlps released as Deliverable D4.1
provides a routine for computing the sparse matrix–matrix product and routines for com-
puting a low rank approximation of a sparse matrix based on communication avoiding
sparse QR and CUR factorization kernels. The library also provides several sequential
and parallel routines that can be used to perform basic linear algebra operations on sparse
matrices. Our experiments show that our kernels lead to significant speedups on large
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Table 1: Parallel codes for symmetric systems.

Symmetric positive definite
MA87 HSL Task-based Supernodal multicore OpenMP (2.0)
SpLLT NLAFET Task-based Supernodal.

Multicore OpenMP (4.0, Task-based). Very efficient.
Multicore Parsec (no data distribution). Performance
issues.
Multicore StarPU. Runs on heterogeneous CPU-GPU
machines using MAGMA and CUBLAS kernels (potrf, trsm,
syrk, gemm) plus a scatter/assemble kernel. Still not
efficient.

No distributed memory. Plan to port the StarPU code
on distributed memory. We need to work on the data
distribution.

Symmetric indefinite
MA97 HSL Task-based Multifrontal. OpenMP (2.0)

Bit-compatible
MA86 HSL Task-based Supernodal. OpenMP (2.0)
SSIDS V1 SPRAL Batched Multifrontal. Runs entirely on GPU using

CUDA with a CPU driver.
SSIDS V2 SPRAL Task-based Multifrontal on multicore and batched

Multifrontal factorization of subtrees on GPU (SSIDS
V1). Work on CPU and GPU quite separated.

SpLDLT NLAFET Task-based Multifrontal.
StarPU multicore still under development.
Plan to implement a CPU-GPU version with StarPU code.

Current routine has pdef option but quite primitive
in both supernodal and multifrontal mode.
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problems.

One of the main kernels developed in PreAlps is the spMSV (sparse matrix-set of vec-
tors product) routine which is used to compute the product C = A · B of two sparse
matrices A and B, where A is sparse and B is formed by a set of vectors. spMSV will be
used by the enlarged Krylov subspace solvers that we develop in NLAFET, reported in
M18 and released in M24. It is important to note that spMSV can also be used to compute
efficiently a parallel sparse matrix-vector multiplication or a parallel sparse matrix-dense
matrix multiplication, as those two operations are instances of our algorithm when the
matrix B is formed by only one vector or a set of dense vectors, respectively. We evaluate
the performance of spMSV on a set of matrices from the University of Florida sparse matrix
collection [5] (those matrices arise from various real applications), and we compare the
performance with respect to MKL. As MKL supports only shared memory, we tested two
routines of MKL on a single node in order to determine how they linearly scale compared
to spMSV. The first routine, MKL(sparse x sparse), performs the product of two sparse
matrices stored using CSR format. The second routine, MKL(sparse x dense), performs
the product of two matrices where the first is sparse and stored using CSR format, and the
second is dense. Our experiments in Deliverable D4.1 show that spMSV is on average 28
times faster than MKL(sparse x dense) with a maximum speedup of 90, and on average
12 times faster than MKL(sparse x sparse) with a maximum speedup of 25.

The library preAlps also includes two routines to perform a low-rank approximation
of a sparse matrix based on QR and CUR factorizations. They both call the routine
preAlps_tournamentPivoting which manages the parallelization using a reduction op-
eration with a local (intra-processors) flat tree and a global (inter-processors) binary tree.
This reduction technique is called tournament pivoting and has been used to construct
communication avoiding algorithms, e.g., see [6] and [10]. Given a sparse matrix A of size
m × n, the routine preAlps_tournamentPivotingQR finds a rank-k QR approximation,
i.e. AΠ ≈ QR where Π is a permutation matrix obtained by tournament pivoting, Q is
an orthogonal matrix implicitly defined using Householder reflections and R is a upper
triangular matrix. For some cases, the diagonal elements of R can be taken as an approx-
imation of the singular values of the matrix [6].
Interpretability of a low-rank approximation is very important in diverse applications,
for that we propose the routine preAlps_tournamentPivotingCUR which allows to find a
rank-k approximation of a sparse matrix using its rows and columns, i.e. ΠrAΠc ≈ CUR
where Πr and Πc are permutation matrices obtained using tournament pivoting, C is a
m × k matrix formed by k selected columns of A, U is a k × k dense matrix and R is a
k × n matrix formed by k selected rows of A.
The experiments presented in Deliverable D4.1 show that the low-rank approximation
routines have a good scalability and can be used for treating problems from diverse ap-
plications.

The subdirectories in preAlps repository follow the structure suggested in the intro-
duction of the document, and include instructions to install and run the program. The src
directory contains the source code of our main kernels spMSV, TournamentPivotingQR,
TournamentPivotingCUR, and sequential and parallel routines developed in the library
such as loading, distributing, and partitioning a matrix in parallel. The test directory
contains code for testing. By using the routine test_spMSV, test_prototypeQR and
test_prototypeCUR, the end-user can test these routines to perform a matrix-matrix
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product, and compute low-rank communication avoiding approximations based on QR
and CUR factorizations of sparse matrices.

We have started the development of two new approaches for solving sparse linear
systems of equations Ax = b involving symmetric and positive definite matrices arising
from the discretization of partial differential equations on unstructured two-dimensional
(2D) and three-dimensional (3D) grids. The first approach based on enlarged Krylov
methods, and the second is a robust algebraic Schur complement preconditioner based
on low rank corrections. Both approaches are described in details in Deliverable D4.2:
Analysis and algorithm design, and reported in M18, and the software will be available for
use as Deliverable D4.3: Prototype software, phase 2 in M24. As of this date, a prototype
of the enlarged Krylov methods is available as enlargedKrylov through the NLAFET
Github repository. We have also started to test our methods on large matrices provided
by our EDF partner (see Deliverable D5.1: Requirements analysis, M18 ).

6 Cross-cutting tools

As of this date, the repositories for cross cutting tools and software are:

• pcp-runtime: Parallelizing the critical path.

The UNIMAN team has been involved in cross-cutting issues from two different angles.
First, we have explored many of the available runtime systems used for task-based pro-
gramming and determined their suitability for the NLAFET project. Since there are a
large number of different runtime systems we first performed a subjective analysis of their
various features, focusing on heterogeneity, support for distributed memory, ease of use,
and the possibility to use different task schedulers. From this analysis we narrowed the
search down to just a few runtime systems whose performance is explored in more de-
tail within Deliverable D2.1. To summarise, we believe that StarPU is the most suited
runtime system for our project.

Second, we have worked on producing a framework for off-line autotuning within the
NLAFET project. Specifically we have focused on tuning PLASMA at this stage, though
our approach is applicable to the other pieces of software from the NLAFET consortium.
The PLASMA software offers rich autotuning opportunities. To facilitate autotuning and
ease of switching between different CPU architectures (Intel, ARM, POWER), PLASMA
incorporates the Lua scripting language (see http://www.lua.org). Tuning mechanics can
be defines in a Lua file, allowing for maximum flexibility and power of expression. Settings
can be changed without recompiling the PLASMA library and files can be easily swapped
for different target hardware/software environments. The full power of the Lua language
can be use to define the tuning mechanics, switch statements, lookup tables, etc. In
more detail: we have defined a Lua interface to our code for selecting the optimal tuning
parameters at runtime.

Lua is a lightweight, portable, embeddable, and open-source scripting language that is
ideal for making small extensions to larger software projects. Its only dependency is the
availability of a C compiler so it does not hamper the portability of the overall software.
In this scenario, we use Lua to return an “optimal” tile size for matrices with sizes that
we haven’t tested by interpolating the values seen during our autotuning runs. Also, if
we can fit a smooth curve (or surface) to our optimal parameters (which will be explored
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later) then this curve can be coded into Lua to provide parameters for matrices with
various sizes.

This is more flexible than a standard configuration file since arbitrary functions can be
implemented within Lua to, for example, interpolate optimal parameters for known matrix
sizes to get good parameters for previously unseen matrix sizes. In Deliverable D6.4 we
show that, for some routines, the optimal parameters in PLASMA can be approximated
by fitting a logarithmic curve to our tuning data; this curve can then be coded up directly
in Lua.

Once this Lua interface is defined, we need to perform some optimization to find the
optimal parameters for a variety of matrix sizes. We need this data to perform the curve
fitting explained above. The standard method of performing such an optimization is
to use a grid-swep: iterating over all possible combinations of parameters and selecting
the best one. However, some kernels coming from the NLAFET consortium will require
optimizing over many parameters with various types (integers, floating point values for
tolerances etc.) which are not well-suited to grid-sweeps due to the high cost and, for
floating point parameters, the impossibility of testing all possible values.

We suggest that, instead of using a grid-sweep, optimization software such as Open-
Tuner4 can be used to speed-up the optimization step. Since OpenTuner primarily uses
various genetic algorithms, it is well-suited to solving problems with different input types
and can even optimize compiler flags. A full description of our proposed autotuning frame-
work can be found in Deliverable D6.4, where we apply our methodology to routines from
the dense linear algebra project PLASMA.

The ongoing work by the UMU team on the evaluation of auto-tuning techniques
will be reported in future deliverables. Partial results on a tunability case study are
presented in NLAFET Working Note 8 Evaluation of the Tunability of a New NUMA-
Aware Hessenberg Reduction Algorithm [8]. Software tools that emerge from the auto-
tuning studies will also appear on GitHub/NLAFET.

As a part of Deliverable D6.1, the UMU team has developed a prototype runtime sys-
tem (called pcp) to evaluate a specific idea for potentially enhancing the strong scalability
of task-based codes. The purpose of the runtime system is to evaluate the idea—not re-
place or compete with existing runtime systems. If the idea turns out to work sufficiently
well, then we will consider implementing optimized support for it in mature runtime
systems such as StarPU.

The idea is to parallelize the critical path (hence the name) across a few cores in
addition to optimizing the tile size in tiled task-based codes globally. The reasoning is
that doing so would allow for a coarser optimal task granularity which would lead to more
efficient task executions and overall less scheduling overhead. The end result is a faster
parallel execution time using optimal parameter settings.

At this stage, we provide two examples to validate the implementation and tentatively
evaluate the idea. The dtrsm (triangular solver) example solves a lower triangular linear
system with multiple right-hand sides using a tiled task-based algorithm. The dpotrf
(Cholesky factorization) example computes a Cholesky factorization of a dense symmetric
positive definite matrix using a tiled task-based algorithm.

The runtime system supports homogeneous shared-memory machines and currently
expects a Linux-based operating system with an x86-64 processor architecture. Porting
to other operating systems and processor architectures is expected to be straightforward.

4http://opentuner.org/
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The source code for the runtime system, two toy examples used to validate the im-
plementation, test drivers, and test results can be found in the pcp-runtime repository
under the NLAFET organization on GitHub. More specifically, the repository contains
the directories:

• src/ Source code for the runtime system and the two examples.

• src/runtime/ Source code for the runtime system library.

• src/examples/dtrsm/ Source code for the dtrsm example.

• src/examples/dpotrf/ Source code for the dpotrf example.

• test/ Drivers for testing the examples and analyzing the results.

• data/ Input for the test drivers.

• results/ Expected results (on Kebnekaise) for the examples.

7 Challenging applications

The outcome of the requirements analysis for the selected applications is described in
the report for Deliverable 5.1. The integration of NLAFET software in the respective
application software libraries will be described in forthcoming deliverables D5.2 and D5.3.

8 Summary and future contributions

In Table 2, we list the current repositories on GitHub NLAFET with their current level
of access. As mentioned in the introduction, we will make repositories public (instead of
private) whenever the codes are robust enough to be released. In addition, new repositories
will be added and occasionally some existing repositories will be merged. Public releases
occur at several times during the project and will be announced on the NLAFET website.

Table 2: GitHub NLAFET repositories.

Repository name Access WP Brief description
BBLAS-ref Public WP2 Batched BLAS reference implementation
plasma Public WP2 Snapshot of PLASMA library
SEVP-PDHSEQR-Alg953 Public WP2 Standard eigenvalue problem solvers
GEVP-PDHGEQZ Public WP2 Generalized eigenvalue problem solvers
Eigen-reorder Private WP2 Eigenvalue reordering in Schur forms
Eigenvectors Private WP2 Eigenvector computation
Highly-Unsymmetric Private WP3 Sparse solver for highly unsymmetric
SpLLT Private WP3 Sparse LLT solver for A = AT , pos. definite
SpLDLT Private WP3 Sparse LDLT solver for A = AT , indefinite
preAlps Private WP4 Kernels for preconditioned iterative methods
enlargedKrylov Private WP4 Enlarged Krylov methods
PCP-runtime Private WP6 Parallelizing the critical path
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