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1 Introduction
The Description of Action (DoA) states for deliverable D2.2:

“D2.2: Scalability and Tunability of Factorization Algorithms
Report on scalability and tunability of the software implementing novel fac-
torization algorithms.”

The deliverable is in the context of Task 2.1 (“Linear System Solvers”) and is based on
work reported in the M18 deliverable D2.1 and extensions thereof. More precisely, we
characterize both the tunability and the scalability of the Cholesky, symmetric indefinite,
LU, and QR factorization functions implemented in the plasma1 library. This library
is built on top of OpenMP and supports homogeneous shared-memory systems. An
evaluation of a StarPU version of plasma called PlaStar, with support for distributed
memory, was originally planned but the software was not ready for large-scale testing
at the time of writing. This is partly due to limitations and bugs in 3rd party software
beyond our control (see also Remark 1 on page 7).

The rest of this report is organized as follows. We clarify in Section 2 the aims and
scope of the evaluations. We describe the experiments we performed to gather data in
Section 3. The results are grouped per factorization in Sections 4– 7. We end by some
concluding remarks in Section 8.

2 Aims and Scope of the Evaluation

2.1 Tunability
With the tunability part of the evaluation we aim to answer the following three questions:

1. How large performance gains can be expected from auto-tuning?

2. How does each parameter separately affect the performance?

3. How good are randomly selected parameter settings?

Note that the aim of the evaluation is to characterize how the performance is affected by
the tunable parameters. In particular, we are not attempting in this report to evaluate
appropriate ways to automatically tune the various implementations.

2.2 Scalability
With the scalability part of the evaluation we aim to characterize the weak and strong
scalability in terms of core utilization, i.e., a kind of parallel efficiency measured relative
to the peak rate of the machine rather than the best sequential implementation. There
are several reasons for this choice. First, it avoids possible criticisms for choosing (and
tuning) a specific sequential reference implementation over another. Second, it reduces
the amount of data to report since it avoids the need to produce a comparison both against
a reference implementation and against the machine. Third, it avoids the issue of fairness
when comparing a single-core run with a multi-core run in the presence of dynamic voltage

1https://bitbucket.org/icl/plasma, changeset 3304b1b119c9cad3aaf35312da55f3c4d92488b9
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and frequency scaling (which, arguably unfairly, benefits the former but not the latter).
Fourth, it makes it practical (and meaningful) to run tests too large to fit in the memory
of one core or too large to complete within a reasonable amount of time on a single core.

The core utilization metric of parallel efficiency2 is defined as

C(n, p) = F (n)
pRT (n, p) ∈ (0, 1], (1)

where n is the matrix dimension, p is the core count, R is the peak rate of one core,
F (n) is the flop count, and T (n, p) is the parallel execution time. The flop count F (n) is
taken to be the flop count of a sequential unblocked algorithm in order to avoid potential
inflation due to redundant/extra computations in the parallel cache-blocked algorithms.

A plot of the core utilization versus the core count conveys two important pieces
of information at once. The level of the graph (i.e., where the utilization lies in the
range from 0% to 100%) reveals the performance (high utilization translates into high
performance). The slope of the graph (e.g., increasing, constant, decreasing) reveals the
scalability (linear speedup translates into a horizontal line).

Our aim is to find the problem size threshold above for which the scaling is linear.
Below this threshold the problem size can thus be considered “too small” to use the
software/hardware combination efficiently.

3 Experiments
In this section we describe the experiments conducted to gather the data that underlies
our tunability and scalability evaluations.

3.1 Tunability experiments
We carried out three different experiments to evaluate the tunability. Figure 1 illustrates
(conceptually) how the various experiments explore the parameter space.

The Auto-Tune experiment. To answer the first question listed in Section 2.1, we ran
a hill-climbing auto-tuner to find optimized (not optimal) parameters. By measuring the
performance using both default and optimized parameters we can measure the performance
gains that are achievable through (auto-)tuning. However, these numbers should not be
taken out of context since they say more about how appropriate the default configuration
happens to be for the particular problem size, machine, and core count.

The Sweep experiment. To answer the second question, we performed one-dimensional
sweeps over each parameter. The other parameters (if any) were set to (a) their default
values and (b) their optimized values.

The Random experiment. To answer the third question, we repeatedly sampled the
set of reasonable parameters uniformly at random.

2Note that this definition of efficiency is not equivalent to the widely used definition E = Ts/(pTp).
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DEFAULT

OPTIMIZED

Figure 1: Conceptual illustration of how the tunability experiments probe the parameter
space. There are two parameters (one on each axis). Their reasonable ranges (delineated
on the axes) define the highlighted set of reasonable parameter values. The black and
gray discs show the default and optimized parameters, respectively. The solid vertical
and horizontal lines show the probes made in a “Sweep” experiment. The circles show
the random samples probed in a “Random” experiment.

3.2 Scalability experiments
We carried out two different experiments to evaluate the scalability.

The Strong Scalability experiment. To evaluate the strong scalability we fixed the
problem size to a few different values and varied the core count.

The Weak Scalability experiment. To evaluate the weak scalability we scaled the
dimension n to keep the memory-load-per-core ratio n2/p constant when varying the core
count p. We repeated the experiment for a few different memory loads.

3.3 Machines
All computational experiments were performed on the Kebnekaise system at High Per-
formance Computing Center North (HPC2N), Umeå University. One compute node of
Kebnekaise consists of 28 Intel Xeon E5-2690v4 cores, grouped into 2 NUMA islands, each
with 14 cores. The cores run with a base frequency of 2.6 GHz and a peak performance
of 46.4 GFlops/s (with Turbo Mode frequency). The node has a total memory of 128
GB. Tests for the plasmalibrary were performed on one full compute node (28 cores).
The node was used exclusively during the experiments. All tests were performed three
times and all data points are reported in the results to give an indication of the amount
of variance.
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4 Results for the Cholesky Factorization
A symmetric and positive definite matrix A ∈ Rn×n admits a Cholesky factorization
A = LLT , where L is lower triangular. A Cholesky factorization can be stably computed
by a sequence of elementary row operations (without row interchanges/pivoting). By
exploiting symmetry, the flop count is F (n) = n3/3 +O(n2).

The plasma version of dpotrf has one tunable parameter, namely, the tile size nb.
The tile size may range from 1 to n, but in practice one would consider range 64–512.
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Figure 2: Tunability of plasma dpotrf for n = 20000.

The results of the tile size sweep are reported in Figure 2a. The results of the Ran-
dom experiment are summarized in the form of empirical distributions (with performance
normalized as core utilization). In other words, a point (x, y) on the curve says that the
probability that randomly chosen parameters will lead to a core utilization C(n, p) ≤ x is
y ∈ [0, 1]. Ideally, the curve should be a vertical line at a core utilization of 100%. This
means that the performance is optimal no matter how the parameters are set. When the
curve is close to vertical it signals that the performance is not very sensitive to the choice
of parameters. On the other hand, the performance is sensitive if the curve jumps hori-
zontally near the top of the graph. This implies that it is possible to achieve (relatively)
high performance but it is very unlikely to randomly stumble upon the right parameter
values. The empirical performance distribution is shown in Figure 2b. The results from
the strong and weak scaling experiments are shown in Figures 3a and 3b, respectively.
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Figure 3: Scalability of plasma dpotrf.
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5 Results for the Symmetric Indefinite Factorization
For symmetric but indefinite matrices A ∈ Rn×n, Aasen’s method and its derivatives com-
pute symmetric factorizations of the form PAP T = LTLT , where L is lower triangular,
T is banded, and P is a permutation matrix. The flop count is F (n) = n3/3 +O(n2), i.e.,
the same as for Cholesky.

The plasma version of dsytrf has two tunable parameters: the tile size nb and the
inner blocking size ib. The panel factorization (of nb columns) is performed as a sequence
of smaller panel factorizations of ib columns. The inner blocking size could range from 1
to nb, but in practice one wold consider a range 8–64.
Remark 1. The dsytrf and dgetrf functions also have an important parameter called
mtpf that controls the number of threads to use in parallel panel factorizations. Unfortu-
nately, there is an open bug in the GNU OpenMP library that can trigger deadlocks when
parallel panel factorizations are enabled. The other alternative at our disposal is to use
the Intel compiler (and associated OpenMP library) but that compiler does not yet support
OpenMP task priorities and the code does not compile. Since this parameter can have a
large impact on performance, the results presented in this report are overly pessimistic.
In other words, higher performance than what is reported here can be expected by setting
mtpf to a value > 1.
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Figure 4: Tunability of plasma dsytrf for n = 20000.

The results of the tile size sweep are reported in Figure 4a, and the results of the inner
blocking size sweep are reported in Figure 4b. The empirical performance distribution is
shown in Figure 4c. The results from the strong and weak scaling experiments are shown
in Figures 5a and 5b, respectively.
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Figure 5: Scalability of plasma dsytrf.

6 Results for the LU Factorization
A square and invertible matrix A ∈ Rn×n admits an LU factorization with partial pivoting
of the form PA = LU , where L is lower triangular, U is upper triangular, and P is
a permutation matrix. The factorization can be stably computed by elementary row
operations with a flop count of F (n) = 2n3/3 +O(n2), i.e., twice that of the symmetric
factorizations.

The plasma version of dgetrf has two tunable parameters: the tile size nb and the
inner blocking size ib. Like dsytrf, each panel factorization is performed as a sequence
of smaller panel factorizations of width ib.
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Figure 6: Tunability of plasma dgetrf for n = 20000.
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The results of the tile size sweep are reported in Figure 6a, and the results of the inner
blocking size sweep are reported in Figure 6b. The empirical performance distribution
is shown in Figure 6c. The results from the strong and weak scalability experiments are
shown in Figures 7a and 7b, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

C
o
re

 u
ti

liz
a
ti

o
n

Core count

dgetrf, n = 10000
dgetrf, n = 20000
dgetrf, n = 30000

(a) Strong scalability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

C
o
re

 u
ti

liz
a
ti

o
n

Core count

dgetrf, nmax = 10000
dgetrf, nmax = 20000
dgetrf, nmax = 30000

(b) Weak scalability.

Figure 7: Scalability of plasma dgetrf.

7 Results for the QR Factorization
A general matrix A ∈ Rn×n admits a QR factorization A = QR where R ∈ Rn×n is
upper triangular and Q ∈ Rn×n is orthogonal. A QR factorization can be computed using
Householder reflectors with flop count F (n) = 4n3/3 +O(n2).

The plasma version of dgeqrf has two tunable parameters: the tile size nb and the
inner blocking size ib.

The results of the tile size sweep are reported in Figure 8a, and the results of the inner
blocking size sweep are reported in Figure 8b. The empirical performance distribution
is shown in Figure 8c. The results from the strong and weak scalability experiments are
shown in Figures 9a and 9b, respectively.

8 Conclusions
According to Figures 2a, 4a, 6a, and 8a it is important to not set the tile size parameter too
small. For Cholesky and symmetric indefinite factorizations, the performance is insensitive
to the tile size for a large range of values. In contrast, for both LU and QR there is a
rather small range of appropriate values and the tile size can easily be set too large.

The inner blocking size parameter ib has, according to Figures 4b and 6b, a very small
impact on the performance of both symmetric indefinite and LU. In contrast, the impact
of the same parameter on the QR factorization is more substantial (see Figure 8b).

When it is likely that a parameter setting chosen at random results in a performance
(or, equivalently, a core utilization) that is close to the best performance the implemen-
tation is capable of, then it is not particularly difficult to find a good parameter setting.
We may therefore claim that such implementations are “easy to tune”. Conversely, an
implementation that is “difficult to tune” makes it unlikely that a randomly selected set-
ting will be good. The empirical performance distributions in Figures 2b, 4c, 6c, and 8c
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Figure 8: Tunability of plasma dgeqrf for n = 20000.
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Figure 9: Scalability of plasma dgeqrf.
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suggest that the easiest function to tune is dpotrf followed closely by dsytrf before a
definite gap in difficulty to dgetrf and dgeqrf (which are comparable in difficulty).

The scalability experiments reported in Figures 3, 5, 7, and 9 show that all functions
except dsytrf scale well and saturate the machine for matrices of dimension n & 20000.
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