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1 Introduction
The Description of Action (DoA) document states for deliverable D2.6:

“D2.6: Prototype Software for Eigenvalue Problem Solvers
Prototypes for reduction to non-symmetric condensed forms (Hessenberg and
Hessenberg-triangular), for the symmetric eigenvalue problem and the non-
symmetric eigenvalue problems.”

This deliverable is in the context of Task 2.3 (Eigenvalue Problem Solvers) and is based on
the M18 deliverable D2.51 and further developments by the UMU and UNIMAN teams.

The long-term goal is to develop and implement a full suite of task-based algorithms (at
least where task-based algorithms prove to be superior) for the standard and generalized
eigenvalue problems. The provided functionality should make it possible to compute all
or a subset of the eigenvalues and associated subspaces or eigenvectors. The focus of the
UMU team is on medium- to large-scale dense non-symmetric eigenvalue problems, while
the UNIMAN team is working on symmetric counterparts.

In this deliverable, we report progress on the symmetric and non-symmetric eigenvalue
problems, including the reduction to Hessenberg and Hessenberg-triangular forms (a.k.a
reduction to condensed forms) and the further reduction to Schur forms that reveal the
eigenvalues along the block diagonal of the computed upper quasi-triangular matrices.
These methods are based on two-sided matrix transformations (i.e., multiplicative updates
applied from both the left and the right), which often lead to task graphs with complex
data dependencies and limited degrees of concurrency. Such computations can therefore
be challenging to run efficiently on today’s and future extreme-scale HPC systems.

1.1 The standard eigenvalue problem
Given a square matrix A of size n×n, the standard eigenvalue problem (SEP) consists of
finding eigenvalues λi ∈ C and associated eigenvectors 0 6= vi ∈ Cn such that

Avi = λivi.

The eigenvalues are the n (potentially complex) roots of the polynomial det(A− λI) = 0
of degree n. There is often a full set of n linearly independent eigenvectors, but if there
are multiple eigenvalues (i.e., if λi = λj for some i 6= j) then there might not be a full set
of independent eigenvectors.

Reduction to Hessenberg form. The dense matrix A is condensed to Hessenberg
form by computing a Hessenberg decomposition

A = Q1HQ
H
1 ,

where Q1 is unitary and H is upper Hessenberg. This is done in order to greatly accelerate
the subsequent computation of a Schur decomposition since when working on H of size
n×n, the amount of work in each iteration of the QR algorithm (see Section 3) is reduced
from O(n3) to O(n2) flops.

1Deliverable D2.5: Report on computation of eigenvectors and reordering of eigenvalues in Schur and
generalized Schur forms. Includes evaluation of the scalability and tunability of the prototype software
developed.
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Reduction to Schur form. Starting from the Hessenberg matrix H we compute a
Schur decomposition

H = Q2SQ
H
2 ,

whereQ2 is unitary and S is upper triangular. The eigenvalues ofA can now be determined
as they appear on the diagonal of S, i.e., λi = sii. For real matrices there is a similar
decomposition known as the real Schur decomposition

H = Q2SQ
T
2 ,

where Q2 is orthogonal and S is upper quasi-triangular with 1 × 1 and 2 × 2 blocks on
the diagonal. The 1 × 1 blocks correspond to the real eigenvalues and each 2 × 2 block
corresponds to a pair of complex conjugate eigenvalues.

Eigenvalue reordering and invariant subspaces. Given a subset consisting of m
of the eigenvalues, we can reorder the eigenvalues on the diagonal of the Schur form by
constructing a unitary matrix Q3 such that

S = Q3

[
Ŝ11 Ŝ12

0 Ŝ22

]
QH

3

and the eigenvalues of the m × m block Ŝ11 are the selected eigenvalues. The first m
columns of Q3 span the invariant subspace associated with the selected eigenvalues.

Computation of eigenvectors. Given a subset consisting of m of the eigenvalues λi

for i = 1, 2, . . . ,m and a Schur decomposition A = QSQH , we can compute for each λi

an eigenvector vi 6= 0 such that Avi = λivi by first computing an eigenvector wi of S and
then transform it back to the original basis by multiplication with Q.

1.2 The generalized eigenvalue problem
Given a square matrix pencil A−λB, where A,B ∈ Cn×n, the generalized eigenvalue prob-
lem (GEP) consists of finding generalized eigenvalues λi ∈ C and associated generalized
eigenvectors 0 6= vi ∈ Cn such that

Avi = λiBvi.

The eigenvalues are the n (potentially complex) roots of the polynomial det(A−λB) = 0
of degree n. There is often a full set of n linearly independent generalized eigenvectors,
but if there are multiple eigenvalues (i.e., if λi = λj for some i 6= j) then there might not
be a full set of independent eigenvectors.

At least in principle, a GEP can be transformed into a SEP provided that B is invert-
ible, since

Av = λBv ⇔ (B−1A)v = λv.

However, in finite precision arithmetic this practice is not recommended.
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Reduction to Hessenberg-triangular form. The dense matrix pair (A,B) is con-
densed to Hessenberg-triangular form by computing a Hessenberg-triangular decomposi-
tion

A = Q1HZ
H
1 , B = Q1Y Z

H
1 ,

where Q1, Z1 are unitary, H is upper Hessenberg, and Y is upper triangular. This is
done in order to greatly accelerate the subsequent computation of a generalized Schur
decomposition.

Reduction to generalized Schur form. Starting from the Hessenberg-triangular pen-
cil H − λY we compute a generalized Schur decomposition

H = Q2SZ
H
2 , Y = Q2TZ

H
2 ,

where Q2, Z2 are unitary and S, T are upper triangular. The eigenvalues of A − λB can
now be determined from the diagonal element pairs (sii, tii), i.e., λi = sii/tii (if tii 6= 0).
If sii 6= 0 and tii = 0, then λi = ∞ is an infinite eigenvalue of the matrix pair (S, T ).
(If both sii = 0 and tii = 0 for some i, then the pencil is singular and the eigenvalues
are undetermined; all complex numbers are eigenvalues). For real matrix pairs there is a
similar decomposition known as the real generalized Schur decomposition

H = Q2SQ
T
2 , Y = Q2TZ

T
2 ,

where Q2, Z2 are orthogonal, S is upper quasi-triangular with 1× 1 and 2× 2 blocks on
the diagonal, and T is upper triangular. The 1 × 1 blocks on the diagonal of S − λT
correspond to the real generalized eigenvalues and each 2× 2 block corresponds to a pair
of complex conjugate generalized eigenvalues.

Eigenvalue reordering and deflating subspaces. Given a subset consisting of m of
the generalized eigenvalues, we can reorder the generalized eigenvalues on the diagonal of
the generalized Schur form by constructing unitary matrices Q3 and Z3 such that

S − λT = Q3

[
Ŝ11 − λT̂11 Ŝ12 − λT̂12

0 Ŝ22 − λT̂22

]
ZH

3

and the eigenvalues of the m × m block pencil Ŝ11 − λT̂11 are the selected generalized
eigenvalues. The first m columns of Z3 spans the right deflating subspace associated with
the selected generalized eigenvalues.

Computation of generalized eigenvectors. Given a subset consisting of m of the
eigenvalues λi for i = 1, 2, . . . ,m and a generalized Schur decomposition A − λB =
Q(S − λT )ZH , we can compute for each λi a generalized eigenvector vi 6= 0 such that
Avi = λiBvi by first computing a generalized eigenvector wi of S−λiT and then transform
it back to the original basis by multiplication with Z.

1.3 StarPU runtime system
Two of the main software components presented in this deliverable report (task-based
Hessenberg reduction and task-based multishift QR algorithm) are built on top of the
StarPU runtime system [3]. The main difference between the previous algorithms and our
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(a) LAPACK layout (b) Tile general layout (c) Tile triangular layout

Figure 1: LAPACK layout versus tile layout.

task-based approach is that we have expressed our algorithms in the terms of the sequential
task-flow model (STF model). The STF model encapsulated the various computational
operations inside tasks that are created/inserted in a sequentially consistent order. A
runtime system can thus automatically deduce all task dependencies by analyzing the
data flow.

While LAPACK stores the matrix in a column-major order, we store the matrix in
tiles, which are small square blocks of the matrix stored in a contiguous memory region
as illustrated in Figure 1. These tiles can be loaded into the cache memory efficiently
and operated on with little risk of eviction. Hence, the use of the tile layout reduces
the number of cache misses and translation lookaside buffer (TLB) misses, reduces false
sharing, and increases the potential for prefetching. StarPU uses data handles to model
the data flow between tasks and each tile is registered with StarPU using a data handle.
This means that StarPU considers each tile to be an independent unit of data.

StarPU encapsulates various computational kernels inside codelets. Each codelet can
have multiple implementations and StarPU is capable of determining which implementa-
tion (and which computational resource) should be used in a given situation. This requires
that an algorithm specifies some extra information in terms of performance models that
provide an estimate for the task execution time. Certain task schedulers (e.g., pheft and
dmdasd) can make more informed scheduling decisions when this information is provided.
When an algorithm inserts a task, it specifies the associated codelet and a list of data
handles. The same list of data handles acts as an argument list for the codelet when the
task is later issued to a worker. StarPU uses this same argument list when it deduces
the task dependencies. For example, if two tasks are given a same data handle in their
argument lists (i.e., they operate on the same tile), then depending on the order in which
the tasks are inserted and various data access mode flags, an implicit data dependency
may be induced between the two tasks.

StarPU-MPI is an extension that integrates StarPU with the MPI message passing
system. An algorithm may define all MPI rank to MPI rank communications explicitly or
the algorithm may simply define how the data is distributed among the MPI ranks and
let StarPU handle all necessary communication. In the latter case, the algorithm must
provide an unique tag and a rank (i.e. owner) for each data handle. As explained in our
earlier technical report (see [19]), our current implementation uses the second approach.
We define the data distribution by splicing adjacent tiles into sections such that tiles that
belong to the same section have a common owner (rank). More specifically, a matrix of
size n× n is divided into sections of size s× s which are then further divided into tiles of
size t × t. Each section resides on some MPI rank. We tried to reduce the overhead by
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process panel

update trail right update

process panel

update trail

parallel scheduling
context

regular scheduling
context

right update

Figure 2: Top left: Sketch of how the matrix A is partitioned in one of the iterations.
The panel is shown in red, the trailing matrix is shown in yellow, and the part that is
only updated from the right is shown in green. Bottom left: Sketch of the partitioning
in the subsequent iteration. Right: Illustration of how the three primary tasks (process
the panel, update the trailing matrix, and apply the right updates) from two adjacent
iterations are dependent and to which scheduling context each one is inserted.

making each MPI rank register only those tiles that it actually needs. However, some tiles
are needed by multiple MPI ranks. This is why we implemented a separate subsystem
that will automatically register a “placeholder” data handle when an MPI rank that does
not own a tile requests a data handle to it. When this happens, the subsystem also
communicates the correct tag and rank to StarPU.

2 Reduction to condensed forms
Hessenberg algorithms are initially used for transforming A to Hessenberg form H and
transforming (A,B) to Hessenberg-triangular form (H,Y ) before we apply the QR and
QZ algorithms, respectively. They are also used for small to medium reductions in the
aggressive early deflation (AED) processes for SEP and GEP. In particular, a task-based
Hessenberg algorithm will be a necessary component in the task-based multishift QR
algorithm which is discussed in Section 3.

2.1 Standard algorithm
Recall that the standard algorithm for reducing a matrix to upper Hessenberg form [20]
proceeds in iterations, each one reducing b consecutive columns of A ∈ Rn×n as illustrated
in Figure 2. Each iteration is divided into three separate steps:

1. Process the panel. Reduce the current panel (red in Figure 2) by constructing and
applying b Householder reflectors. Aggregate the reflectors into a compact WY
representation I −V TV T , where T ∈ Rb×b and V ∈ Rn×b has a very special pattern
of zero entries. Compute and return the product Y = AV T and update only the
panel. The performance of the panel processing is severely limited by the need to
perform a large matrix-vector multiplication per column involving the unreduced
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part of the matrix (a.k.a trailing matrix). In total, approximately 20% of the flops
(regardless of the size of the matrix) are attributable to these n− 2 memory-bound
level-2 BLAS operations.

2. Update the trailing matrix. Update the trailing matrix (yellow in Figure 2) from
both sides by the (conceptual) update formula

A← (I − V TV T )T (A− Y V T ).

Since the panel itself was updated already during the panel processing, the panel is
excluded from this update.

3. Update the top part from the right. The top part (green in Figure 2) is subject only
to updates from the right and the (conceptual) update formula is

A← A− Y V T .

The right part of Figure 2 shows that the third step never feeds back into the first two
and is therefore not as critical (in terms of scheduling) as the other two.

2.2 Task-based Hessenberg reduction
In principle at least, the matrix can be partitioned into tiles and transformed into a task-
based algorithm operating on the level of individual tiles. However, since approximately
20% of the flops are performed during panel processing as n − 2 matrix-vector multipli-
cations, the performance hinges on the rate at which these (memory-bound) flops can be
executed. There is little to be gained, except additional parallel overhead, in executing a
matrix-vector multiplication as a set of dynamically scheduled tasks as opposed to a sim-
pler parallelization scheme that has less task scheduling overhead. In addition, although
some level-2 and level-3 BLAS operations from different steps (and even different panels)
can be overlapped, the large matrix-vector multiplications still end up forming significant
bottlenecks for the performance of the implementation.

Based on this insight, we have made use of the scheduling context and the parallel task
scheduler features in StarPU. Scheduling contexts are used to control the distribution of
computational resources. Each scheduling context manages a set of (CPU and/or GPU)
workers and a task that is inserted to a given scheduling context gets scheduled to one
of the workers managed by the context. Regular schedulers assume that all CPU codelet
implementations are sequential, i.e., they do not express any inner-task (thread-level)
parallelism. A parallel task scheduler, on the other hand, joins several CPU workers
to so-called combined workers and each task is scheduled to one of the underlying CPU
workers or one of the combined workers. The runtime system guarantees that a CPU
core is not simultaneously allocated for multiple tasks. This means that a task, that is
inserted to a scheduling context with a parallel task scheduler, can express inner-task
parallelism (within the bounds specified by the runtime system) without causing CPU
core oversubscription or other thread affinity problems.

We view each panel processing step as one (massive) task for which we provide both
an OpenMP-based parallel CPU implementation and a cuBLAS-based parallel GPU im-
plementation for the StarPU system to choose from at runtime. The OpenMP implemen-
tation first copies the trailing matrix to physically local memory in order to maximize the
memory bandwidth of the b matrix-vector multiplications in the panel processing step.
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The GPU implementation performs the matrix-vector multiplications ”in-place“, i.e., the
implementation does not copy the trailing matrix to physically local memory. For this,
a custom CUDA kernel is required but the performance of this custom CUDA kernel is
comparable to cuBLAS (cublasDgemv). Similarly, we provide an OpenMP-based parallel
implementation of Step 2 along with a cuBLAS-based parallel GPU implementation.

The critical tasks (i.e., the tasks from Steps 1 and 2) are inserted to a parallel scheduling
context (using a parallel task scheduler; peager or pheft) which consists of a GPU (if
one exists in the machine) along with a subset of the CPU cores distributed over the
NUMA islands. Step 3 is further decomposed into a set of sequential tasks and inserted
to a regular scheduling context (using a regular task scheduler; prio or dmdasd) which
consists of the remaining GPUs and CPU cores. The GPU implementation of the tasks
in Step 3 uses cuBLAS. The regular scheduling context inherits the workers from the
parallel scheduling context once all panel processing and trailing matrix update steps
have completed. All tasks have performance models implemented.

2.3 NUMA-aware Hessenberg reduction with auto-tuning
We implemented a NUMA-aware variant of the standard algorithm for small problems
which targets shared memory systems. The idea is to use this fine-grained parallelism
implementation in the AED to speed it up. Paper [12] presents the implementation
details of the algorithm and evaluates its tunability. In addition, an off-line auto-tuning
mechanism is proposed to tune the new implementation’s parameters.

We concluded from paper [12] that it is difficult to apply standard auto-tuning methods
to tune the parameters of the new implementation. So in paper [11] (a condensed version
of NLAFET Working Note 18 [13]) we proposed an auto-tuning framework which helps
tuning the parameters of the new implementation efficiently. The framework reveals
the underling sub-problems and allows applying standard tuning methods on them. We
will use the framework to investigate the best on-line auto-tuning method for the new
implementation.

2.4 Distributed Hessenberg-triangular reduction
Given a real matrix pencil A − λB of size n × n, the software available in repository
NLAFET/GEVP-PDHGEQZ on NLAFET’s GitHub page computes a Hessenberg-triangular de-
composition

A− λB = Q(S − λT )ZT ,

where Q,Z are orthogonal, S is upper Hessenberg, and T is upper triangular. The
software targets distributed memory and the parallel programming is done in pure MPI.
A novel wavefront scheduling strategy is introduced. The parallel algorithm is described
and evaluated against the state of the art in [6].

2.5 Reflection-based Hessenberg-triangular reduction
The algorithm and software introduced in Section 2.4 has limited scalability due to data
dependences that restrict the degree of concurrency, bound the arithmetic intensity, and
require frequent inter-process communication. We have therefore, together with exter-
nal collaborators, developed a novel algorithm for Hessenberg-triangular reduction that
circumvents some major bottlenecks in the original algorithm. The technical report [9]
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describes the new algorithm and evaluates it in a sequential setting against the state of
the art. The main conclusion is that even though the algorithm requires approximately
twice as much arithmetic as the state of the art, the sequential runtime is nevertheless
competitive. We are currently developing a task-based parallel formulation.

3 Reduction to Schur forms
A modern small-bulge multishift QR/QZ algorithm consists of two main components:
aggressive early deflation and pipelined bulge-chasing (also known as QR/QZ iterations).
Small-bulge multishift and AED are techniques meant to speed up the convergence relative
to the textbook implicit single- or double-shift QR/QZ algorithms. These techniques also
make the algorithms more suitable for efficient implementations on shared memory as well
as on distributed memory parallel computer systems since they improve the arithmetic
intensity [7, 8, 14, 15]. The following introductory discussion focuses on the multishift
real QR algorithm with AED for the standard eigenvalue problem, but all ingredients
and arguments have their counterparts for the generalized eigenvalue problem and the
multishift QZ algorithm with AED [4, 5, 16].

The real QR algorithm takes a Hessenberg matrix H as input and reduces it to real
Schur form H = QSQT , where S is upper quasi-triangular. If a sub-diagonal element
hj+1,j of H is zero, then H can be partitioned into a block upper triangular matrix as in

H =
[
H11 H12
0 H22

]
,

where H11 is j × j. The problem of reducing H thereby decouples into the two smaller
independent problems of reducing H11 and H22.

A Hessenberg matrix is said to be unreduced if none of the sub-diagonal elements are
zero. An active region is a contiguous square submatrix on the diagonal of H that is
unreduced and of maximal size (which means that it cannot be increased and remain
unreduced). If H itself is unreduced, then it has one active region that covers the entire
matrix. When H is fully reduced, then (and only then) are there no active regions.
Converged eigenvalues are normally detected during AED, in which case the active region
will deflate (shrink) from the bottom. In some (rare) instances, a subdiagonal element
might be flushed to zero during bulge-chasing, thereby triggering a decoupling of the
problem. This is called a vigilant deflation. The goal of the QR algorithm is to perform
AEDs and bulge-chasing in the various active regions until either all eigenvalues have
been deflated or a failure to converge is detected.

An AED is performed inside a window, i.e., a square contiguous submatrix on the
diagonal, called the AED window. This window is small relative to the size of H and is
located at the bottom right corner of an active region. The AED process can be outlined
as follows. Initially, the window (dashed outline in the middle of Figure 3) is reduced to
Schur form (e.g., by a recursive application of the multishift QR algorithm). When the
corresponding out-of-window updates are applied2, a spike forms immediately to the left
of the window (middle of Figure 3). By systematic application of eigenvalue reordering
within the window, each eigenvalue computed for the window is tested to determine if
it is also an eigenvalue for H (and by extension for A). All converged eigenvalues, i.e.,
eigenvalues that are ready to deflate (highlighted in green in Figure 3) end up at the

2In practice, the matrix is not updated at this point.
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Figure 3: An illustration of a single iteration of the multishift QR algorithm with AED.
From left to right: original A in Hessenberg form H, AED window including the spike
(converged eigenvalues highlighted in green, failed eigenvalue candidates highlighted in
red), and pipelined QR iteration with two bulge-chasing windows. Note how the ac-
tive region (dashed outline) shrinks after the AED process managed to deflate a set of
eigenvalues.

bottom of the window. The corresponding elements of the spike will be so small that they
can safely be set to zero thus forming a fully reduced block in the lower right corner of
the window. The top part of the window and what remains of the spike is returned to
Hessenberg form by a Hessenberg reduction. Finally, the transformations applied during
the AED are applied to the out-of-window parts of H from left and right and to Q from
the right. There is one special case that bears to mention. If no eigenvalues are deflated,
then there is no need to perform any modifications to H at all and therefore all the
within-window computations mentioned above should be performed on a temporary copy
of the window in order to preserve the original data.

In most cases, an AED does not deflate an entire window. The undeflated eigenvalues
computed for the window can be used as shifts in a QR iteration. The main point of a
small-bulge multishift QR/QZ algorithm is to use multiple shifts per QR iteration, instead
of only two shifts as in the implicit double-shift algorithm. The shifts are introduced in
pairs in the upper left corner of an active region. Each shift pair forms a 3 × 3 bulge
on the subdiagonal. These bulges are chased along the subdiagonal in tightly coupled
chains as illustrated in the rightmost illustration of Figure 3. The resulting updates (to
effect a similarity transformation) are initially restricted to a bulge-chasing window and
the out-of-window updates are delayed and applied in accumulated form using matrix
multiplication.

3.1 Task-based multishift QR algorithm
The small-bulge multishift QR algorithm shares similarities with eigenvalue reordering
(part of deliverable D2.5, see also [18, 19]) but introduces some additional challenges.
Except for the potential failure when swapping adjacent eigenvalues, the eigenvalue re-
ordering problem can be completely expressed as a task graph before any tasks are actu-
ally executed. This is not doable for the QR algorithm due to inherently data-dependent
branch points. For example, it is impossible to predict how many eigenvalues an AED
will deflate. If only a few eigenvalues were deflated, then there are sufficiently many shifts
to motivate performing a QR iteration. On the other hand, if many eigenvalues were
deflated, then it is probably better to perform another round of AED rather than a QR
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iteration. The task graph must therefore be generated in stages with partial synchro-
nization between them in order to wait for the data that is necessary to determine the
direction of a particular branch.

In order to maximally exploit parallelism, our task-based implementation can make
progress on all active regions at the same time. The main thread, which inserts all the
tasks, cannot simply insert all the tasks for one active region before continuing with the
next. Since the main thread must periodically wait for certain tasks to complete, such
a strategy would not be able to overlap computations in several active regions to any
significant degree. We therefore adopt an event-driven architecture. The main thread
maintains a list of subproblems. Initially, there is one subproblem corresponding to the
problem of reducing the entire matrixH to Schur form. Over time, this list might grow and
shrink as new subproblems (active regions) appear (by vigilant deflation) and disappear
(by converging). Each subproblem is associated with an active region and is at any given
moment in one of a finite number of distinct states. In addition, each subproblem has a
vigilant deflation vector associated with it. The purpose of this vector will be explained
later.

The main thread does not perform any computations or communications. It simply
inserts tasks that are later scheduled to the workers and initializes detached communication
requests3. More specifically, the purpose of the main thread is to detect events (e.g., that
certain tasks have completed or that a vigilant deflation has been detected) and then
execute a corresponding state transition function. A state transition function (potentially)
changes the state of the subproblem and often triggers some additional actions (e.g.,
insertion of StarPU tasks or creation of new subproblems).

Algorithm 1 outlines the control flow of the main thread. First a subproblem for the
entire matrix is created and placed in an otherwise empty list of subproblems. The main
loop continues until the list is exhausted (or a failure is detected). In each iteration, the
list of subproblems is scanned and events for each subproblem are detected and handled.
Normally, either no event is detected or there is an event that simply triggers a state tran-
sition. However, there are three states that in addition also affects the list of subproblems
itself. The converged state triggers the removal of the subproblem. The failed state
triggers an early termination of the entire algorithm. The children state triggers the
insertion of newly created subproblems into the list. The newly created subproblems are
immediately ready for state transitions and the possible state transitions do not block
the main thread, therefore it makes sense to process them immediately (see line 16 of
Algorithm 1).

There are two variants of the event handler (the choice is up to the user): one that is
blocking and another that is non-blocking. The latter is preferred when vigilant deflations
are likely to occur. The blocking handler waits (blocks) on a subproblem until an event
occurs. The non-blocking handler checks (without blocking) if an event has occurred and
otherwise immediately returns (which will cause the main thread to move on to the next
subproblem).

In Section 3.1.1 we describe the various StarPU task types of our implementation.
The various subproblem states are described in Section 3.1.2 and the events and state

3 A detached communication request is a special form of an asynchronous/non-blocking communica-
tion. It differs from a regular asynchronous MPI communication request in such a way that the actual
MPI API calls are detached from the thread that initialized the communication. Instead, the actual
communication (and the related wait/test phase) is initialized internally inside StarPU and the related
resources are automatically released once the communication has completed.

http://www.nlafet.eu/ 13/31

http://www.nlafet.eu/


NLAFET D2.6: Prototypes for Eigenvalue Problem Solvers

Algorithm 1: The control flow of the main thread.
1 Let L be an empty list of subproblems;
2 Create a subproblem S for the entire matrix H with the state set to bootstrap;
3 Insert S into L;
4 while L is not empty do
5 for each subproblem S in L do
6 s← State(S);
7 Run the event handler for state s on subproblem S;
8 t← State(S);
9 if t = converged then

10 Remove S from L;
11 else if t = failed then
12 Return failure;
13 else if t = children then
14 N ← Children(S);
15 Remove S from L and insert the (elements of the) list N in its place;
16 The next iteration begins from the first element of N ;

17 Return success;

transitions that can take place are described in Section 3.1.3.

3.1.1 Task types

There are five task types. Three types for operations on windows and two types for
out-of-window updates of H as well as updates of Q. The window-related task types are
described below.

Small QR tasks run a sequential multishift QR algorithm on a window that spans the
entire active region. If the QR algorithm converges, then the window will be fully
reduced (otherwise a failure is recorded). These tasks are implemented by a call to
the dlahqr LAPACK routine.

AED tasks perform aggressive early deflation on a window located at the bottom right
corner of the active region. An AED task potentially deflates eigenvalues (and
thereby shrink the active region). Only in the event of deflation does an AED task
give rise to out-of-window updates. At this stage of development, these tasks are
implemented by a call to the dlaqr3 LAPACK routine.

Bulge-chasing tasks introduce/chase/annihilate chains of bulges in a window. Subdi-
agonal elements that are flushed to zero are marked in the vigilant deflation vector.
These tasks are implemented by calling (a slightly modified version of) the dlaqr6
routine from ScaLAPACK 2.0.2.

The update-related task types are described below.

Right-hand side update tasks update H or Q from the right following some window
operation. These tasks are implemented by a call to the dgemm BLAS routine (for
CPUs) or the cublasDgemm cuBLAS routine (for GPUs).
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Figure 4: The subproblem states and all possible state transitions.

Left-hand side update tasks update H from the left following some window opera-
tion. These tasks are implemented by a call to the dgemm BLAS routine (for CPUs)
or the cublasDgemm cuBLAS routine (for GPUs).

Both of the update task types have performance models.

3.1.2 Subproblem states

A subproblem is, at any given moment, in one of the following states (see Figure 4):

The Bootstrap state indicates that the subdiagonal may contain zeros and must there-
fore be scanned in order to locate all active regions. This state is used only for the
first subproblem.

The New state indicates that the subproblem is ready for a new main iteration. That
is, the subproblem is at a branch point where a decision about what to do next
needs to be made based on the size of the active region.

The Small state indicates that the active region is being reduced by a small QR task.

The AED state indicates that the subproblem is at a branch point following an AED.
A decision about what to do next must be made based on the number of eigenvalues
deflated by the AED.

The Bulges state indicates that bulges are being chased in the active region. This state
may also be entered from the Bootstrap state even though there is technically no
bulge-chasing taking place at that point.

The Children state indicates that the subproblem has split into several smaller sub-
problems due to vigilant deflation(s).

The Converged state indicates that the subproblem has been solved (all eigenvalues
have converged).

The Failed state indicates that a small QR task failed to converge.
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3.1.3 Events and state transitions

The list below describes all possible state transitions (see Figure 4). Each transition is
defined by the event that triggers it, the state it transitions to, and the action that is
performed before the transition.

• Bootstrap → Bulges
Triggered immediately. The associated action is to scan the subdiagonal for zeros
and mark all zeros in the vigilant deflation vector.

• New → Small
Triggered if the dimension of the active region is below a certain threshold. The
associated action is to insert a small QR task covering the entire active region and
all associated left and right updates of H and right updates of Q.

• New → AED
Triggered if the dimension of the active region is above a certain threshold. The
associated action is to insert an AED task covering an AED window at the bottom
right corner of the active region.

• Small → Converged
Triggered if the small QR task reported success. There is no associated action.

• Small → Failed
Triggered if the small QR task reported failure. There is no associated action.

• AED → New
Triggered if the number of eigenvalues deflated by the AED is above a certain
threshold. The associated action is to insert the left and right update tasks for H
and the right update tasks for Q.

• AED → Bulges
Triggered if the number of eigenvalues deflated by the AED is below a certain thresh-
old. The first associated action (which is performed only if at least one eigenvalue
converged) is to insert the related left and right update tasks for H and the right
update tasks for Q. The second associated action is to insert bulge-chasing tasks
and the associated left and right update tasks for H and the right update tasks for
Q.

• Bulges → New
Triggered when all bulge-chasing tasks have completed and no vigilant deflations
are detected. There is no associated action.

• Bulges → Children
Triggered when vigilant deflation(s) are detected. A list of subproblems is created,
the last of which contains the remaining bulges (if any). All new subproblems are
in the New state, except for the last subproblem which will be in the Bulges state
if there are any unexecuted bulge-chasing tasks.

In most cases, a task is simply given a special status tracking data handle and the
task stores the outcome of the related computation to this data handle. The main thread
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Figure 5: Possible state transitions from the Bulges state. From top down: Subproblem in
the Bulges state (two concurrent bulge-chasing windows) and the vigilant deflation vector
segments (segments that are involved with last bulge-chasing window are highlighted in
red); subproblem and the vigilant deflation vector after the state transition (acquired
segments highlighted in green, others segments in highlighted in red); and a matching
state transition graph. From left to right: The vigilant deflation check vector was fully
acquired and the subproblem did not decouple; the vigilant deflation check vector was fully
acquired and the subproblem decoupled to three subproblems; and the vigilant deflation
check vector was only partially acquired (one bulge-chasing window is still active) and
the subproblem decoupled to three subproblems (one of which starts in the Bulges state).
The scanning process and the point where the process was interrupted are visualized with
dotted arrows.
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detects the related event by acquiring the data handle4. The status tracking data handles
and the vigilant deflation vector are communicated to the other MPI ranks using detached
communication requests. The state transition from the Bulges state is slightly more com-
plicated since the detected event(s) depends on the outcomes of multiple bulge-chasing
tasks. Furthermore, the bulge-chasing stage is a relatively expensive computational op-
eration and it may be sensible that the main thread detects only those events that have
already occurred (i.e., the event detecting process is interrupted).

Fortunately, all this can be accomplished relatively easily by acquiring the vigilant
deflation vector. The main thread acquires (or tries to acquire) the deflation check vector
in small segments. When configured to execute in the non-blocking mode, the main thread
interrupts the scanning procedure if a segment is not ready (i.e., some bulge-chasing tasks
that operate the matching section of the matrix have not yet completed and/or the related
detached communication request has not yet completed). This process in visualized in
Figure 5.

3.2 Distributed multishift QR and QZ algorithms
Distributed implementations of the QR [15] and QZ [5] algorithms based on MPI are
available on NLAFET’s GitHub page as repositories NLAFET/SEVP-PDHSEQR-Alg953 re-
spectively NLAFET/GEVP-PDHGEQZ. Their designs are similar. Multiple (typically√p where
p is the number of processors) chains of bulges are chased in lock-step in multiple adjacent
bulge-chasing windows in order to utilize all processes during the bulge-chasing phases.
The AEDs are performed recursively in parallel after potentially redistributing the AED
window to a subset of the process mesh to reduce the parallel overhead.

4 Symmetric eigenvalue problems
The symmetric eigenvalue problem is a special case of the standard eigenvalue problem
— described in Section 1.1, where the matrix is symmetric. A symmetric eigenproblem
involving dense matrices is commonly solved in three phases. During the first phase
called “reduction”, the symmetric matrix is reduced to a tridiagonal matrix using an
orthogonal transformation Q1 such that A = Q1TQ

H
1 , where T is a tridiagonal matrix.

Second, the eigenpairs (λ,E) of the tridiagonal matrix are computed; and finally the
back transformation phase consists of computing the eigenvectors of the original matrix
Z = Q1E. The main contribution of this work is to improve the reduction to tridiagonal
form and the back transformation phase.

4.1 Novel algorithm with two-stage tridiagonal reduction
Two-stage symmetric matrix reduction to tridiagonal form. State of the art al-
gorithms for reduction of a symmetric matrix to tridiagonal form rely heavily on memory-
bound operations which have severe performance penalties. To address these limitations,
we propose a two-stage approach where the matrix is first reduced to band form, then
further from the band form to tridiagonal form. The first stage is compute-intensive and
can be therefore performed efficiently using optimized level-3 BLAS kernels. It involves

4 The main thread must acquire a data handle before it can safely use its contents. By default,
acquiring is a blocking operation (i.e., the main thread waits until the related task has completed). The
main thread can also try to acquire a data handle in a non-blocking manner.
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construction of an orthogonal matrix Q1, such that A = Q1BQ
H
1 , and B is a symmet-

ric banded matrix. The second stage which consists in obtaining the tridiagonal form
B = Q2TQ

H
2 , is still memory bound since we implement a column-wise bulge chasing

approach. However we exploit cache friendly and data locality strategies to achieve an
efficient implementation.

Symmetric tridiagonal eigenvalue problem solver. In this work, we rely on the
LAPACK divide and conquer kernel xSTEDC for the computation of the eigenvalues and
eigenvectors of the tridiagonal matrix T . This decision is motivated by the efficiency of
the divide and conquer algorithm available in LAPACK, and hence a new algorithm was
not designed.

Application of the orthogonal matrices Q1 and Q2. When the eigenvector matrix
Z are required, the eigenvector matrix E resulting from the eigensolver needs to be up-
dated from the left by the Householder reflectors generated during the reduction phase
as following:

Z = Q1Q2E = (I − V1T1V
H

1 )(I − V2T2V
H

2 )E,

where (V1, T1) and (V2, T2) represent the Householder reflectors generated during the first
and second reduction stages, respectively.

4.2 OpenMP task-based realization
We have designed an OpenMP task-based version of a tile QR reduction algorithm (see
Section 1.3 and Figure 1) in [10] for the first stage, and an OpenMP task-based and
cache friendly variant of the bulge chasing algorithm initially introduced in [17] for the
reduction to tridiagonal form — second stage. The associated software is available on the
NLAFET’s GitHub page as repositories NLAFET/PLASMA/compute in real double precision
(dsyevd), real single precision (syevd), complex double precision (zheevd), and complex
single precision (cheevd).

5 Experimental results
Unless otherwise stated, all computational experiments were performed on a system called
Kebnekaise, which is located in the High Performance Computing Center North (HPC2N)
at Umeå University. Each regular compute node contains 28 Intel Xeon E5-2690v4 cores
organized into 2 NUMA islands with 14 cores in each. The GPU nodes contain either two
or four Kepler-based NVidia Tesla K80 GPUs with two GK210 GPU engines in each.

5.1 Task-based Hessenberg reduction
For these experiments, we compiled the test program using ICC 17.0.5.239 and linked it to
StarPU 1.2.3, Intel MPI Version 2017 Update 4, MKL 2017.4.239 (either single-threaded
or multi-threaded variant), CUDA toolkit 8.0.61 and MAGMA Bitbucket commit 7ba7d27
[1, 2].

Figure 6 shows the results of a conducted strong scalability experiment. For each
measurement, an optimal number of CPU cores was allocated for the parallel scheduling
context. This experiment did not involve any GPUs and at least one CPU core was
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Figure 6: Strong scalability of the StarPU-based Hessenberg reduction algorithm.

always allocated for the regular scheduling context. When one takes into account the fact
that the algorithm is inherently memory bound, the results show that the implementation
scales reasonably well with larger matrices. However, the implementation clearly failed
to scale equally well with smaller matrices.

We also compared our StarPU algorithm against LAPACK (with multi-threaded BLAS;
dgehrd and dormhr) and a state of the art MPI implementation that can be found from
ScaLAPACK (pdgehrd and pdormhr). For each measurement, an optimal number of CPU
cores was allocated for the parallel scheduling context. This experiment did not involve
any GPUs and at least one CPU core was always allocated for the regular scheduling
context. The results of the experiment are shown in Figure 7. The StarPU algorithm
is more or less competitive with LAPACK and ScaLAPACK when the matrix is large.
However, LAPACK and ScaLAPACK implementations scale better with small matrices
(n = 5000 in particular) and thus outperform the StarPU implementation by a significant
margin.

The observed poor performance with the smaller matrices is due to the fact that the
CPU panel reduction codelet implementation is optimized for larger matrices. When
the matrix is large, it makes more sense to optimize the implementation to take a full
advantage of the available NUMA islands. This is exactly what CPU panel reduction
codelet implementation is designed to do. However, when the matrix is small, it makes
more sense to take a full advantage of the available CPU caches. The CPU panel reduction
codelet implementation is not designed to do this. The ScaLAPACK implementation,
on the other hand, can take advantage of both the available NUMA islands and the
CPU caches, as long as the block size is chosen optimally and the MPI processes are
evenly distributed among the available NUMA islands. The same applies to the LAPACK
implementation when it is combined with a high performance multi-threaded BLAS.

The StarPU algorithm failed to outperformMAGMA (magma_dgehrd and magma_dorghr)
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Figure 7: A runtime comparison between the StarPU-based Hessenberg reduction algo-
rithm, LAPACK (with multi-threaded BLAS) and ScaLAPACK.
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Figure 8: A runtime comparison between the StarPU-based Hessenberg reduction algo-
rithm and MAGMA.

on the Nvidia Tesla K80 GPUs. Nvidia’s CUDA profiler indicates that the problem is
likely related to the number of CUDA and cuBLAS API calls the implementation makes
(some of which came from the StarPU itself). We therefore performed the comparisons
on a desktop machine with a Nvidia GeForce GTX1060 GPU that did not suffer from the
API overhead to the same extent. The algorithm is inherently memory bound so the rel-
atively low double precision floating-point performance of the Nvidia GeForce GTX1060
GPU (compared to the Nvidia Tesla K80 GPU) is unlikely to affect the outcome. The
results are shown in Figure 8.

5.2 Task-based multishift QR algorithm
For StarPU and LAPACK experiments, we compiled the test program using ICC 17.0.5.239
and linked it to StarPU 1.2.3 and MKL 2017.4.239 (either single-threaded or multi-
threaded variant). For ScaLAPACK experiments, we compiled the test program us-
ing ICC 2017.1.132 and linked it to StarPU 1.2.3, OpenMP 2.0.1 and single-threaded
MKL 2017.1.132.

Figure 9 shows the results of a conducted strong scalability experiment. The imple-
mentation scales reasonably well with larger matrices but the scalability is not as good as
hoped for with smaller matrices. As we will explain later, the poor scalability is mainly
due to the fact that the AED is performed sequentially at this point in time.

The StarPU algorithm was compared against LAPACK (with multi-threaded BLAS;
dhseqr) and a state of the art MPI implementation that can be found from ScaLAPACK
(pdhseqr). The results of the experiment are shown in Figure 10. Even though the
StarPU implementation did not scale as well as hoped for with smaller matrix sizes, the
implementation still managed to outperform LAPACK and ScaLAPACK implementations
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Figure 9: Strong scalability of the StarPU-based multishift QR algorithm.

by a significant margin. The reason why the LAPACK implementation outperforms the
StarPU and ScaLAPACK implementations when using only one CPU core is probably that
the QR algorithm is very sensitive to how various parameter values are chosen (the size of
the AED window in particular). The LAPACK implementation has much more fine-tuned
parameters and we have not invested a lot of time to tuning our StarPU implementation
since some key components of the implementation are still incomplete. It should be noted
that ScaLAPACK implementation performs the AED process in parallel.

The fact that the sequential AED tasks form a performance bottleneck can be easily
confirmed by observing the FxT trace plot shown in Figure 11. The experiment was
performed on a desktop machine to keep the trace plot readable. A similar result can
be obtained using the more high-end resources that are available at Kebnekaise. At
first, the implementation manages to keep all worker occupied even when one worker is
executing an AED task. However, the workers begin to come idle near the end of the
experiment and this begins to happen even earlier stages when the number of workers
larger than used here. The trace plot also shows that the algorithm performs several
successive AED procedures. This indicates that the used AED window size is probably
in a sweet spot between even smaller AED window sizes, that would lead to even more
successive AED procedures, and larger AED window sizes, that would lead to less cache
reuse. Furthermore, performing several smaller successive AED procedures can expose
slightly more parallelism since the related off-diagonal updates are performed in parallel.
Numerical experiments (and earlier research on the topic) indicate that the algorithm
would converge with fewer QR iterations if the AED windows were larger (due to larger
number of used shifts). However, the actual run time would be longer since the AED
tasks are performed sequentially.

Figure 12 shows a similar FxT trace plot in a situation where a 5000× 5000 matrix is
distributed over two MPI ranks. The matrix is distributed in 896× 896 sections and each
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Figure 10: A runtime comparison between the StarPU-based multishift QR algorithm,
LAPACK (with multi-threaded BLAS) and ScaLAPACK.
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Figure 11: An example of a trace plot generated by the StarPU. The matrix dimension
is 5000 × 5000. From top down: total number of inserted tasks that are not yet issued
to the workers, number of tasks that are ready to be issued to the workers, total flop
rate, memory manager (state, allocated memory and input/output memory bandwidth),
statuses of the five CPU workers (active task and flop rate), and main thread status. The
red color corresponds to idle time, light green colour to the AED tasks, teal (bluish green)
colour to all update tasks and moss green (yellowish green) colour to the bulge-chasing
tasks. The horizontal axis shows the wall-time in milliseconds.
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Figure 12: An example of a trace plot generated by the StarPU when running in dis-
tributed memory mode.

section is divided into 224 × 224 tiles. Each MPI rank has a StarPU instance running
with two CPU workers (one CPU core allocated for the main thread and the StarPU-
MPI communication thread per MPI rank). Again, the experiment was performed on a
desktop machine to keep the trace plot readable. The reason why this figure is included
is to demonstrate that the StarPU-MPI component of the software indeed functions as
intended.

5.3 Symmetric eigenvalue problem solver
For these experiments, we compiled PLASMA using GCC 6.3 and linked to MKL 2018
for its single-thread BLAS functions and the multi-thread DSTEDC function required for
the eigendecomposition of the resulting tridiagonal matrix. For a performance baseline,
we used LAPACK 3.8.0 downloaded from Netlib, compiled using GCC 6.3, and linked to
MKL 2018 for its multi-threaded BLAS functions. For the sake of comparison, we also
report the performance of MKL’s DSYEVD routines.

Figure 13 shows the performance of PLASMA’s DSYEVD routine when only the eigen-
values are required; and compares it against the performance of the LAPACK reference
implementation linked with the vendor-provided BLAS and also against the performance
of the vendor-provided LAPACK. On Broadwell, compared to the reference LAPACK
implementation, PLASMA was able to more effectively utilize the 28 cores even with a
relatively small matrix, while LAPACK takes up to 10x time to solve the same prob-
lem. We see that MKL has competitive performance compared to PLASMA’s DSYEVD.
In fact Intel has optimized MKL and has implemented our 2-stage tridiagonal reduction
algorithm to obtain such a high performance.

Figure 14 shows the performance of PLASMA’s DSYEVD routine when both the eigen-
values and the eigenvectors are required. PLASMA’s DSYEVD shows in average 2x speedup
over LAPACK’s DSYEVD. However compared to the results in Figure 13 the gap between
LAPACK and PLASMA is considerably reduced. This can be explained by the fact that
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Figure 13: Performance of 2-stage DSYEVD when only eigenvalues are required.

Figure 14: Performance of 2-stage DSYEVD when both eigenvalues and eigenvectors are
required.
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Figure 15: Performance details of the 2-stage DSYEVD when both eigenvalues and eigen-
vectors are required.

the back transformation for the computation of the original matrix’s eigenvectors relies
mainly on matrix-matrix operations and LAPACK is compiled with MKL multi-thread
BLAS. MKL’s DSYEVD still shows a competitive performance but our implementation is
slight more efficient.

A detailed performance result for the PLASMA’s DSYEVD is depicted in Figure 15. One
can observe that the percentage of time spent for the band reduction is almost constant
while the percentage of time spent in the second stage, reduction to tridiagonal form
is decreasing with the problem size. On the other hand the back transformation phase
for the eigenvector computation is time consuming with increasing problem size. This
exhibits a potential room for improvement, and in future work we will investigate novel
approaches for a very efficient back transformation algorithm.

6 Conclusion and future work
We have developed a Hessenberg reduction implementation of the standard algorithm
on top of StarPU. The implementation targets shared memory systems with or without
GPUs. The StarPU algorithm is more or less competitive with LAPACK (with multi-
threaded BLAS) and ScaLAPACK when the matrix is large. The StarPU algorithm
also outperforms MAGMA on some platforms. We are still working on improving the
algorithm. In particular, the numerical results presented in Subsection 5.1 showed that
the implementation does not scale well with small matrices. An obvious solution to
this problem is to add a second CPU panel reduction codelet implementation that is
optimized for smaller matrix sizes. StarPU could then use the provided performance
models to choose the correct implementation for a given (trailing) matrix size. Also,
the GPU side of the implementation is still slower that MAGMA on some platforms
(Kepler-based Kebnekaise GPU nodes in particular). Nvidia’s CUDA profiler indicates
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Memory model
Component Shared Distributed GPU Generalized EVP
Hessenberg reduction StarPU — Full Ongoing
Schur reduction StarPU StarPU-MPI Updates Generalizable
Eigenvalue reordering StarPU StarPU-MPI Updates Supported
Eigenvectors StarPU MPI + OpenMP — Ongoing

Table 1: Overall status of the task-based software components for non-symmetric eigen-
value problems. The Full status indicates that all tasks have GPU/CUDA imple-
mentations. The Updates status indicates that the out-of-window update tasks have
GPU/CUDA implementations. The Generalizable status indicates that the conversion
from standard EVP to generalized EVP should be a straightforward process.

that the problem is likely related to the number of CUDA and cuBLAS API calls the
implementation makes. Some work has been invested to reducing the number of API
calls and reducing their impact.

We have developed a multishift QR implementation of the standard algorithm on top
of StarPU. The implementation targets shared memory and distributed memory systems
with or without GPUs. The implementation is still under continuous development but is
already very competitive with LAPACK (with multi-threaded BLAS) and ScaLAPACK.
The non-blocking event handler (see Subsection 3.1) is still an experimental feature. In
particular, the current non-blocking event handler implementation is not fully compatible
with StarPU-MPI and should therefore not be used in distributed memory machines. We
are currently working on solving this problem. In addition, we are currently working
on implementing the AED procedure in parallel. The first step to this direction is to
divide each monolithic AED task to two separate tasks (the second task returns the AED
window to Hessenberg form). This would mean that those bulge-chasing tasks that do
not overlap the AED window can be scheduled to worker earlier since the necessary shifts
are computed in the first task. In other respects, the basic components (QR, eigenvalue
reordering and Hessenberg reduction) are ready implemented in StarPU. We are currently
implementing a subsystem that would allow us to transparently repartition a section of a
matrix (i.e., divide the involved tiles to smaller tiles) thus improving the task granularity
in the parallelized AED process.

We have developed a novel algorithm with two-stage tridiagonal deduction for sym-
metric eigenvalue problems. The implementation targets shared memory machines. The
implementation was shown to be highly competitive against LAPACK linked with the
vendor-provided BLAS and performs approximately the same compared to MKL 18 (that
already implements our two-stage approach).

The overall status of the task-based software components for non-symmetric eigenvalue
problems is summarized in Table 1. The Hessenberg reduction component still suffers from
some performance issues and does not target distributed memory machines. The Schur
reduction component is still under continuous development. Task-based multishift QZ
algorithm is not yet implemented. However, all task parallelism specific multishift QR
software components should generalize with only minor modifications. Some required
software sub-components, such as a task-based eigenvalue reordering for real generalized
Schur forms, are already implemented. The Hessenberg-triangular reduction can be ini-
tially implemented as a sequential task. The eigenvalue reordering component is more
or less complete and was already covered in D2.5. The eigenvectors component was also
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covered in D2.5. However, more progress has been made since D2.5.
The Hessenberg reduction, Schur reduction and eigenvalue reordering components are

available on NLAFET’s GitHub page in repository NLAFET/eigenproblem. The repos-
itory contains a README.md file that provides a basic instruction how to use the test
program and the library.
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