
H2020–FETHPC–2014: GA 671633

D3.5
Software for highly unsymmetric

factorizations

April 2018

NLAFET D3.5: Highly unsymmetric factorizations

Document information

Scheduled delivery 2018-04-31
Actual delivery 2018-04-27
Version 2.0
Responsible partner STFC

Dissemination level

PU — Public

Revision history

Date Editor Status Ver. Changes
2018-01-24 Iain Duff Draft 0.1 Draft to try and fix con-

tents for deliverable
2018-04-06 Iain Duff and Stojce Nakov Draft 1.0 Draft for internal review
2018-04-26 Iain Duff and Stojce Nakov Draft 2.0 Draft for submission of de-

liverable

Author(s)

Iain Duff, STFC
Stojce Nakov, STFC

Internal reviewers

Alan Ayala, INRIA
Carl Christian Kjelgaard Mikkelsen, UMU
Sébastien Cayrols, STFC

Contributors

Tim Davis, Texas A & M University, USA

Copyright

This work is c©by the NLAFET Consortium, 2015–2018. Its duplication is allowed only
for personal, educational, or research uses.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/20

NLAFET D3.5: Highly unsymmetric factorizations

Table of Contents
1 Introduction 3

2 Highly unsymmetric matrices 4

3 Markowitz/threshold pivoting 4

4 Parallel implementation of Markowitz/threshold pivoting 5
4.1 Introduction . 5
4.2 Unsymmetric Luby-style pivot search algorithm 7
4.3 Schur complement update . 9

5 Using the ParSHUM library 10
5.1 Installing . 10
5.2 Using the test driver . 11
5.3 Using the ParSHUM interface . 12

6 Performance on applications 15
6.1 Comparison with the algorithm from Deliverable D3.4 16
6.2 Performance assessment . 17

7 Acknowledgments 19

List of Figures
1 A singly bordered block diagonal form. 4
2 Block of independent pivots. 6
3 Illustration of selection of independent pivots. 9
4 The execution times for D3.4 and D3.5 algorithms. 16
5 The impact of the threshold parameter on the backward error for ParSHUM. 17
6 The impact of the Markowitz threshold on the fill-in factor for ParSHUM. . 18
7 Multi-threaded results for our algorithm. 18

List of Tables
1 Statistics for the matrices that are used in this study. 16
2 The parameters for the codes and their optimal values. 19
3 Execution times and the fill-in factors for the solvers. 19

http://www.nlafet.eu/ 2/20

NLAFET D3.5: Highly unsymmetric factorizations

1 Introduction
The Description of Action document states for Deliverable D3.5:

“D3.5 Software for highly unsymmetric factorizations
Implementation of proposed methods from D3.4 on top of common task
framework. Includes extensive testing, documentation and benchmarking.”

This deliverable is in the context of Task 3.3 (Direct methods for highly unsymmetric
systems).

This deliverable discusses software for the factorization of highly unsymmetric matrices
and reports on work in Task 3.3 of Workpackage 3. We have developed a parallel
algorithm for the implementation of a Markowitz/threshold strategy. We define “highly
unsymmetric” matrices in Section 2 and mention other attempts to design algorithms and
software for this case. We repeat our discussion from Deliverable D3.4 of what we mean by
Markowitz/threshold in Section 3 before describing our parallel implementation in detail
in Section 4. We do this to make this deliverable more self-contained and to define terms
used in later sections. We compare our present code with that used for the Deliverable
D3.4 in Section 6.1 and show the improvements over this earlier code. We present results
from running our prototype code in Section 6.2 including some test comparisons with
state-of-the-art codes.

To fix our notation, we will assume that we are solving the system

Ax = b, (1)

where A is a sparse matrix of dimensions n×n. For the matrix A we only store coefficients
that can be nonzero and call these entries. It is possible that some entries might have
the numerical value zero either because of operations on them or because we are studying
a set of matrices where an entry is sometimes nonzero but sometimes zero. This might
happen, for example, if the matrix is the Jacobian of a nonlinear problem. An entry in row
i and column j is designated by aij. The right-hand side vector b and the solution vector
x are of length n. In this deliverable, we consider the vectors x and b as dense. In our
experiments for this deliverable, we only consider matrices with real entries although by
the end of the project we will provide a version of the code for matrices and vectors with
complex entries. The methods that we use for solving equation (1) are direct methods.
That is we form an LDU factorization of a permutation of the matrix A, where L is a
sparse lower triangular matrix, D is a diagonal matrix, and U is a sparse upper triangular
matrix. The permutation is chosen to maintain sparsity in the matrices L and U while
also producing a numerically stable factorization.

Our new algorithms and code are designed for execution on shared memory multi-core
nodes. To obtain an efficient implementation on such architectures is already a challenge
because of the low arithmetic intensity and the complexity of the underlying algorithms
and data management necessitating the design of our own memory allocation routines. If
such systems are to be solved on distributed memory machines, we would first perform a
block partitioning of the matrix to a form of the kind shown in Figure 1. The blocks on
the diagonal can be distributed while the elimination operations within each block would
be performed on a single node using the algorithms and code that we now describe.

http://www.nlafet.eu/ 3/20

NLAFET D3.5: Highly unsymmetric factorizations

Figure 1: A singly bordered block diagonal form.

2 Highly unsymmetric matrices
We define a highly unsymmetric matrix as a matrix whose structure is not well
approximated by the structure of |A| + |A|T . Various authors have defined a measure
of the asymmetry of a matrix and here we use that defined in [5] which is the proportion
of off-diagonal entries for which there is a corresponding entry in the transpose, viz.

si(A) = numberi 6=j{aij ∗ aji 6= 0}
nz{A}

,

where si is called the symmetry index and nz{A} is the number of off-diagonal entries in
the matrix A. A symmetric matrix will thus have a symmetry index of 1.0. We define 0/0
to have the value 1.0 so that a diagonal matrix will be symmetric. A triangular matrix
will have symmetry index zero. Our experiments suggest that matrices with symmetry
indices of less than 0.9 can be considered highly unsymmetric and these are the main
target of our current work.

There are many applications that give rise to such matrices, for example, econometric
modelling, chemical engineering, and linear programming although the latter has
developed a large cohort of software where special techniques are used to update the
factors for sequences of very related matrices.

In contrast to the case of nearly symmetric matrices, there is very little software for
this class of matrices and almost no work on parallel algorithms. Available codes for this
case include MA48 and HSL_MA48 [4], UMFPACK [2], LUSOL [7], and KLU [3].

3 Markowitz/threshold pivoting
The sequential algorithms for Gaussian elimination choose one pivot at a time and update
the trailing matrix (called the active matrix) before choosing the next pivot. In our
discussions and notation in this section and the next one, we describe the situation at
the beginning when the active matrix is the original matrix but the pivot selection is
performed similarly for the successive active matrices.

We define by fill-in an entry that is zero in A but is nonzero in the corresponding
entry of the factors. We note that we want our algorithm to reduce the fill-in since more
fill-in has a direct adverse impact on storage and consequent extra cost in system solution.
Clearly, for each pivot in Gaussian elimination the maximum fill-in that can be caused
by using this pivot is the product of the number of other entries in the pivot row with
the number of other entries in the pivot column. Thus if there are cj entries in column j
and ri entries in row i, then we define the Markowitz count for a potential pivot in row i,

http://www.nlafet.eu/ 4/20

NLAFET D3.5: Highly unsymmetric factorizations

column j as
Markij = (ri − 1)× (cj − 1). (2)

We choose candidate entries with low or minimum Markowitz count to reduce the amount
of fill-in. Of course such a candidate would be unacceptable if its numerical value was zero
or very small relative to other entries. We therefore introduce a threshold of acceptability
for a pivot and only consider entries aij that satisfy

|aij| ≥ u ·max
k
|akj|, k = 1, . . . , n (3)

where u is a threshold parameter 0 < u ≤ 1.0. That is to say we only consider entries that
are at least u times as large as the largest entry in modulus of all entries in the column.
We call such entries eligible entries. If u were equal to 1.0 then we would be using partial
pivoting that is the most common algorithm for dense matrices.

To continue with the factorization we must first update the trailing matrix using the
outer product of the pivot row and column, updating the numerical entries and normally
introducing fill-in. This is clearly a right-looking algorithm. For selecting the next pivot
we then perform the Markowitz/threshold algorithm on this trailing or active matrix of
order one less than the previous one, and we continue in this way until all n pivots have
been chosen. The algorithm is simple but the data structures to implement it efficiently,
even in serial mode, are not. We consider the details of the data structures that we use
in the next section.

4 Parallel implementation of Markowitz/threshold
pivoting

4.1 Introduction
For our parallel implementation, we use essentially the same pivoting strategy, that is
a threshold Markowitz/threshold algorithm using the same terminology as the previous
section. As is common in the design of a parallel code, we will obtain much of our
parallelism using blocking. We find a block of pivots at each step rather than a single
pivot as described in the previous section.

In our implementation, we find a set of independent pivots that can be used in parallel.
We illustrate this in Figure 2 where the independent pivots have been permuted to the top
left-hand corner of the matrix. We then use these as a block pivot to update in parallel
the active matrix. We repeat these two steps on the updated Schur complement (that
is the updated active matrix) and continue doing this until either the Schur complement
becomes denser than a preset value or the number of pivots found is less than a preset
value. In fact, when we conducted the experiments that we describe in Section 6, we
found that the number of pivots chosen at each stage was not, as could be expected,
monotonically decreasing but the selection of a low number of pivots might be followed
by a much larger number of independent pivots. We thus monitor the number at each
stage and do not switch unless the last few steps (the actual number is a parameter) have
yielded only a very few pivots (another parameter). We then switch to using a dense
factorization routine on the remaining Schur complement. In our present implementation
on multi-core machines we use GETRF from PLASMA[1].

http://www.nlafet.eu/ 5/20

NLAFET D3.5: Highly unsymmetric factorizations

0

X
X

X
X

X
X

X

0

Figure 2: Block of independent pivots.

In sequential codes like MA48 [4], we select the eligible pivot which has the minimum
Markowitz count, as defined in equation (2). Because we want to get large blocks of
independent pivots, we relax this by accepting eligible pivots within a factor of the
minimum, that is an entry (i, j) can be chosen as a pivot if its Markowitz count satisfies
the condition

Markij ≤ αMark ×BestMark (4)

where the Markowitz factor αMark is greater than or equal to one and BestMark is the
lowest Markowitz count among all eligible entries.

We described algorithms for doing a parallel right-looking factorization in Deliverable
D3.4. While we still follow the general framework of these earlier algorithms, we have
developed a completely new pivot selection algorithm based on Luby’s algorithm [6] for
obtaining a maximal independent set of nodes in undirected graphs. One of our main
contributions is to extend this algorithm to deal with directed graphs corresponding to
unsymmetric matrices. We show, in Section 6.1, that this new algorithm outperforms the
previous algorithm both in execution time and in parallel scalability.

As in the case of our Deliverable D3.4 algorithm, it is very important to first remove
singletons. A singleton is an entry aij having no other entries in either its row i or column
j. An entry aij is a row singleton if it is the only entry in its row and is a column singleton
if it is the only entry in its column. Clearly, choosing a singleton as pivot will incur no
fill-in.

There are two reasons for identifying and choosing singleton pivots before continuing
with the main pivot selection phase. If these pivots are not handled properly, they can
cause the unsymmetric-Luby search phase to find a very small pivot set. That is to say
an entry aij can be a column singleton, meaning that entries akj are all zero for k 6= i
but there can be many entries aik that are nonzero. This is fine as a pivot choice as there
would be no fill-in but the presence of the dense row will greatly reduce the number of
pivots that are independent and could be chosen at this stage. For example, if the row
of the column singleton were completely dense then it would not be possible to choose
any independent pivots after the choice of the column singleton. The other issue is that
a singleton would have zero Markowitz count. Thus the condition (4) would mean that
we can only choose singletons in this pass of the algorithm.

Singletons can occur both in the original input matrix and also in the active submatrix
as the factorization progresses. We thus precede the unsymmetric-Luby pivot search
algorithm (described in the next section) with a phase for selecting singletons. This phase
finds all the singleton pivots and eliminates them. No update of the Schur complement
is required for singleton pivots, except for the removal of entries. In this case, the
set of independent pivots may not form a diagonal submatrix, but they would still be
independent since singletons have no effect on the Schur complement. We improve the

http://www.nlafet.eu/ 6/20

NLAFET D3.5: Highly unsymmetric factorizations

performance by allowing singletons and Luby-selected pivots to be used in the same pass
in the update of the active matrix.

We discuss the implementation of our algorithm in the following two subsections
where effectively only Section 4.2 differs from our previous work although we have also
improved the other phases. We give details for the unsymmetric Luby-style pivot search in
Section 4.2 and a detailed description of how we update the active submatrix via a Schur
complement computation on both the column-form (pattern and values) and row-form
(just the pattern) in Section 4.3. The two steps in 4.2 and 4.3 repeat until the matrix
is factorized, or until the pivot sets become too small, or until the density of the active
submatrix becomes too high. If the matrix is not factorized we complete the factorization
using the dense factorization code GETRF from PLASMA [1].

We use the acronym ParSHUM for our code that stands for Parallel Solver for Highly
Unsymmetric Matrices. Details on the code are given in Section 5.

4.2 Unsymmetric Luby-style pivot search algorithm
Our new algorithm for finding a set of independent pivots uses an extension of Luby’s
algorithm [6] for finding a maximal independent set of nodes in an undirected graph. In
common with this earlier algorithm we assign a random number to the potential pivots and
use this to enable us to develop a parallel search algorithm as described in the following
text.

We define an eligible pivot as an entry aij that is both numerically acceptable (in the
sense of inequality (3)) and that has a Markowitz count that is no higher than a given
multiple of the minimum Markowitz count (see condition (4)).

Our unsymmetric-Luby pivot search algorithm finds a set of eligible pivots that are
structurally independent. Thus the pivots form a diagonal submatrix when they are
permuted to the diagonal. After this pivot search algorithm completes, a parallel Schur
complement update to the active matrix is performed (described in the next subsection),
and the algorithm is used again to find another set on the active matrix. The entire
process repeats until the matrix is factorized, or until too few pivots are selected or the
matrix reaches a prescribed density, at which point a dense matrix factorization algorithm
is used.

The pivot search algorithm can be divided into two phases: the initialisation phase
and the search phase. The initialisation phase is done just once for each successive active
matrix, while the search phase can be repeated until no further pivots are found.

Initialisation During this phase, a first pass by columns on the matrix is done in parallel
and the numerically ineligible entries are discarded. Discarded entries are kept in the
Schur complement but simply excluded as pivot candidates. This is done by partitioning
each column into two sets: entries that would be numerically acceptable as pivots, and
ineligible entries that are too small. At the same time, the minimumMarkowitz count over
all currently eligible entries is calculated. For working on subsequent Schur complements,
we only have to perform these operations on columns that have been changed by the
previous update, and we can identify these at the end of the search phase. Finally, a
random Luby score is assigned to each column containing eligible pivots.

Search phase The search phase is divided into the following six steps. The method
is fully parallel, with no synchronization required except for the barrier synchronizations

http://www.nlafet.eu/ 7/20

NLAFET D3.5: Highly unsymmetric factorizations

between each of the six steps. A critical section is needed for allocating memory space if
fill-in cannot be accommodated in the current available space. No atomic operations and
no other critical sections are used.

• Step 1: The columns are split into subsets and each thread searches the columns
within a subset. In each column with an eligible pivot, a single potential pivot is
found. The potential pivots are a superset of the final chosen pivots, but they may
form an incompatible set. By incompatible we mean that there are potential pivots
that are not independent. In fact they could even have the same row index. Steps
2 and 3 of this search phase prune this set to find a set of valid chosen pivots.

• Step 2: Each thread examines each of its potential pivots and discards those that
are incompatible with other potential pivots. A thread may discard both its own
potential pivots and those of another thread. Let ai1,j1 be a potential pivot. The
thread that owns this pivot examines the column indices j of all nonzero entries in
row i1. If ai1,j is nonzero and column j contains a potential pivot (this is recognized
because column j will have a Luby score assigned to it, then we have two pivots that
are incompatible: one in column j (call it aij, but the row index i is not needed)
and one in column j1 (namely, the pivot ai1,j1 owned by this thread). Let lj be
the Luby score of column j. If lj > lj1 , then the potential pivot in column j takes
precedence over the one in column j1, and column j1 is flagged, by negating the
appropriate entry of the inverse permutation array. If lj < lj1 , then the potential
pivot in column j1 takes precedence over the one in column j, and j is flagged. The
potential pivot in a flagged column will not become a chosen pivot. The potential
pivot in column j may be owned by another thread. To avoid race conditions, even
if a potential pivot ai1,j1 is flagged during this step, it continues in this step to flag
other potential pivots.

• Step 3: All threads examine their own potential pivots. If the column j1 of a
potential pivot ai1,j1 has not been flagged in step 2 above, then it becomes a chosen
pivot. Each thread makes a local list of its chosen pivots. We assume that we have
p threads and that thread t (1 ≤ t ≤ p) has found kt chosen pivots.

• Step 4: We construct a global list of the rows and columns of the chosen pivots, by
first, in Step 4, computing the cumulative sum of k1, k2, . . . , kp. If p is large, this can
be done in parallel in O(log p) time. If p is small then a single thread can compute
the cumulative sum in O(p) time. This provides each thread with its positions in
the global list of pivots for step 5.

• Step 5: Each thread copies its set of chosen pivots into the global list of chosen
pivots. When permuted to the top left of the active submatrix, this set of chosen
pivots forms a diagonal matrix of independent pivots.

• Step 6: At the synchronization barrier between Steps 5 and 6, we can redistribute
work among the threads to give an equal amount of work to each thread. We
now compute the logical sum of all column indices in the pivotal rows. This will
determine what columns are active in the Schur update. We do this by using
an auxiliary array of length n. We scan the pivotal rows in parallel and flag the
position in this auxiliary vector of each column that we encounter. There is no
problem with multiple writing or race conditions. When this is completed (we need

http://www.nlafet.eu/ 8/20

NLAFET D3.5: Highly unsymmetric factorizations

a barrier synchronization), we scan the auxiliary vector to identify and use part of
our column permutation vector to store the columns that will be updated in the
Schur complement update. We perform the same operations on the pivot columns
to identify rows to update in the Schur complement.

The search phase can be repeated to augment the set of chosen pivots, until no more
independent pivots are found or until the number found is below a preset threshold.
However, in our initial experiments we have found that a single pass provides the best
overall performance.

We illustrate the selection of potential pivots and the reduction to a set of chosen
independent pivots in Figure 3. The potential pivots are shown as dotted squares in
Figure 3(a) and the subset of chosen pivots are shown similarly in Figure 3(b). These are
permuted to the top left-hand corner in Figure 3(c).

(a) (b) (c)

Figure 3: Illustration of selection of independent pivots.

4.3 Schur complement update
The active submatrix is held in two forms: both as a set of sparse column vectors, and
as set of sparse row vectors. The column-form holds the numerical values, while only the
pattern is held by rows. The unsymmetric-Luby search relies on both the column and
row-form. The Schur complement update is divided into two phases that are completely
independent of each other. In a future version they could be done at the same time, with
some threads updating the column-form while other threads update the row-form.

Updating the column-form All pivotal columns are removed from the column-form
of the active submatrix and placed in L, which is held by columns.

The update of each column in the list constructed in Step 6 of the Luby pivot search is
independent of any other columns, and no locks are required unless memory reallocation
is required. We discuss the operations needed in column j in this list. First, column j
is scanned and any pivotal rows (identified by an O(1) test on the inverse permutation
array) are removed and placed in the jth column of U , which is held by columns. Next,
the updates from each of the pivots corresponding to these rows in U are found and are
applied to column j. We make this update more efficient and avoid potential multiple
memory reallocations by using three temporary vectors of length n per thread (one with
values, one with row indices, and the other with pointers into these arrays) to accumulate
the updated column vector so that the resultant vector is only updated once with possible
memory reallocation because of fill-in, if the updates cause column j to exceed its current

http://www.nlafet.eu/ 9/20

NLAFET D3.5: Highly unsymmetric factorizations

allocated space. Allocating this extra memory is done inside a critical section. Every row
and column is given extra space at the beginning of the factorization to accommodate
some fill-in before needing to be reallocated.

Updating the row-form The Schur complement update of the row-form is similar.
Entries in pivotal columns in any given row i are placed at the front of the row. The
updates from these pivots are applied one at a time, but with their pattern only and no
numerical values are computed. Next, the pivotal columns are removed from row i. As
in the column-form update, if row i exceeds its space, new memory is allocated to hold
the row.

5 Using the ParSHUM library
We have developed a parallel library called ParSHUM that implements the algorithm
described in the previous section. The configuration and installation process for the library
is explained next, followed by a description of how to use the driver that is provided by
the library and the interface of the library.

5.1 Installing
Getting sources. ParSHUM is developed at STFC in the context of the NLAFET
project, and its source codes are available on GitHub. The source codes can be obtained
with the following git command:

$ g i t c l one https : // github . com/NLAFET/Highly−Unsymmetric . g i t

Configuration. This library relies on cmake for the building of the library. The
ParSHUM library depends on two external libraries: the PLASMA library for dense
factorization and the SPRAL library for the Rutherford-Boeing matrix reader. The
PLASMA library should be provided through the pkg-config tool, which helps to insert
the correct compiler options. The PKG_CONFIG_PATH environment variable should
be set to the directory where the libplasma.pc file is located. The root directory for the
SPRAL install should be provided by using the "-DSPRAL_DIR" option when calling
cmake. The verbosity of the library can be controlled with the ParSHUM_VERBOSITY
variable. By default this option is activated. It can be deactivated by passing the option
"-DParSHUM_VERBOSITY=0" to the cmake command. By deactivating this option,
during the preprocessing phase all outputs and functions that generate additional data
(timings, sizes etc) are suppressed. This should slightly increase the performance of the
library.

Installing. Once the library has been downloaded into a directory, issue the following
commands in that directory:

$ mkdir bu i ld && cd bu i ld
$ cmake −DSPRAL_DIR=<sp r a l i n s t a l l a t i o n d i r e c to ry>

To build the library use:
$ make

http://www.nlafet.eu/ 10/20

NLAFET D3.5: Highly unsymmetric factorizations

In order to install the library use the following command:
$ make i n s t a l l

By default, ParSHUM will be installed in /usr/local/bin, /usr/local/lib, etc. The
installation directory can be changed with the "--prefix" option of the cmake command.

5.2 Using the test driver
Once the library has been built a test driver called ParSHUM_test is created. This driver
takes a large set of parameters:

• --matrix (string)
specifies the path to the matrix file. Our driver is able to read Matrix Market
files (suffixed by "*.ml" or "*.mm"), classic IJV files (suffixed by "*.ijv" or "*.mtl")
and Harwell-Boeing matrices (suffixed by "*.hb" or "*.rb"). If a matrix file is not
specified, the driver generates a random matrix of size 1000.

• --RHS_file (string)
specifies the file for the RHS. It is able to use all data files as in the --matrix option.
If an RHS is not provided, a random vector is generated.

• --marko_threshold (real)
Markowitz threshold of acceptability for a pivot. This threshold should be larger
than one. The default value is 4.

• --threshold_value (real)
threshold value of acceptability for a pivot. This threshold should be between zero
and one. The default value is 10−4.

• --schur_density_tolerance (real)
maximum density allowed of the Schur complement. Once the Schur complement
reaches this density, we switch to dense factorization. This parameter should be
between zero and one. The default value is 0.2.

• --nb_previous_steps (integer)
number of previous steps for which we keep track of how many pivots have been
found. This parameter should be at least one. The default value is 5.

• --min_pivot_per_steps (integer)
minimum number of pivots in the last nb_previous_steps steps. If the number
of pivots is less than this value, the solver switches to a dense factorization. This
parameter should be at least nb_previous_steps. The default value is ten times
nb_previous_steps.

• --max_dense_schur (real)
the maximum allowed size for the dense factorization. If the Schur complement is
larger than this value, then the dense factorization is not performed and an error is
returned by the solver. The default value is 20,000.

• --nb_threads (integer)
the number of threads used. This parameter should be at least 1. The default value
is 1.

http://www.nlafet.eu/ 11/20

NLAFET D3.5: Highly unsymmetric factorizations

• --extra_space (real)
the factor of the memory initially allocated for the solver in comparison with the
size of the input matrix. The default value is 3.

• --trace
activates a creation of a trace of the execution of the algorithm in Pajé format. By
default this option is deactivated.

5.3 Using the ParSHUM interface
In this subsection we will explain how to use the interface of the ParSHUM library. The
source code for the test driver presented in Section 5.2 is given in Listing 1.

Listing 1: The source code for the test driver
1 int
2 main(int argc, char **argv)
3 {
4 ParSHUM_solver solver;
5 ParSHUM_vector X, B;
6 /* Create the solver */
7 solver = ParSHUM_solver_create();
8

9 /* Parse the arguments */
10 ParSHUM_solver_parse_args(solver, argc, argv);
11 /* Read the matrix */
12 ParSHUM_solver_read_matrix(solver);
13

14 /* Initialize the vectors */
15 X = ParSHUM_vector_create(solver->A->n);
16 B = ParSHUM_vector_create(solver->A->n);
17 ParSHUM_vector_read_file(solver, X);
18

19 /* copy the vector B in X */
20 ParSHUM_vector_copy(B, X);
21 /* Initialize the solver */
22 ParSHUM_solver_init(solver);
23

24 /* Perform the factorization */
25 ParSHUM_solver_factorize(solver);
26

27 /* Perform the solve operation */
28 ParSHUM_solver_solve(solver, B);
29

30 /* Compute the norms */
31 ParSHUM_solver_compute_norms(solver, X, B);
32

33 /* Finalize the solver */
34 ParSHUM_solver_finalize(solver);
35

36 /* Free all the data */
37 ParSHUM_vector_destroy(X);
38 ParSHUM_vector_destroy(B);
39 ParSHUM_solver_destroy(solver);
40

41 return 0;
42 }

http://www.nlafet.eu/ 12/20

NLAFET D3.5: Highly unsymmetric factorizations

First the solver structure is created by calling ParSHUM_solver_create in line 7. This will
only allocate the basic data for the solver. Then on line 10, the arguments are processed
and the solver’s parameters are set to the values provided. The matrix is then read from
the file followed by the initialisation of the two vectors B and X. Once everything is in
place, the function ParSHUM_solver_init is called which will allocate all the internal
data that is needed for the factorization. The factorization is performed by the function
ParSHUM_solver_factorize on line 25, followed by the solve operation on line 28 and
the computation of the norms on line 31. The ParSHUM_solver_finalize needs to be
called before the data is freed. This function finalises the PLASMA library, creating the
trace file if requested and prints the output of the solver. Finally, all the data that has
been used is freed (lines 37-39). Alternatively, is possible for the user to control the input
matrix and parameters for the solver directly in the code and we now explain how it can
be done.

In order to change the input matrix and parameters, we use the ParSHUM_solver
structure, a short version of which is presented in Listing 2. The only fields that should
be modified by the user are the input matrix A (see Listing 3) and the exe_parms field
shown in Listing 4. We will now show how this could be done.

Listing 2: The ParSHUM_solver structure
1 typedef struct _ParSHUM_solver {
2 ParSHUM_matrix A; /* The input matrix */
3

4 /* The factors */
5 ParSHUM_L_matrix L;
6 ParSHUM_matrix D;
7 ParSHUM_U_matrix U;
8

9 /* The Schur complement */
10 ParSHUM_schur_matrix S;
11

12 ParSHUM_exe_parms exe_parms;
13 ParSHUM_verbose verbose;
14
15 } * ParSHUM_solver;

In the example in Listing 1, the input matrix was loaded on line 12 by calling the
function ParSHUM_solver_read_matrix. The other option is to set it as the input matrix
in the ParSHUM_solver structure. The structure of the ParSHUM_matrix type is given
in Listing 3 and an example of how to assign a CSR matrix as the input matrix is shown
in that listing.

In Listing 1 where the code for the driver is presented, the solver is parametrized
by calling the function ParSHUM_solver_parse_args in line 10. The other option is to
modify directly the exe_parms field of the solver structure. The exe_parms field is of
type ParSHUM_exe_parms and an example of how to use this structure to change the
threshold value and Markowitz threshold is given in Listing 4. All the other parameters
can be changed in the same way.

http://www.nlafet.eu/ 13/20

NLAFET D3.5: Highly unsymmetric factorizations

Listing 3: An example of a user-provided matrix
1 typedef enum _ParSHUM_matrix_type
2 {
3 ParSHUM_CSC_matrix,
4 ParSHUM_CSR_matrix,
5 ParSHUM_Diag_matrix,
6 ParSHUM_Rutherford_matrix
7 } ParSHUM_matrix_type;
8

9 typedef struct _ParSHUM_matrix {
10 ParSHUM_matrix_type type;
11 int n;
12

13 long allocated;
14 long nz;
15

16 int *row;
17 long *col_ptr;
18 double *val;
19

20 int *col;
21 long *row_ptr;
22

23 /* This is used by the SPRAL matrix driver since it is a Fortran code (see
http://www.test-numerical.rl.ac.uk/spral/doc/sphinx/C/rutherford_boeing.html) */

24 void *handle;
25 } * ParSHUM_matrix;
26

27
28 /* An example for assigning a CSR matrix as an input matrix.
29 The following code should replace the line 12 in the previous example. */
30

31 ParSHUM_matrix matrix = calloc(1, sizeof(struct _ParSHUM_matrix);
32 matrix->type = ParSHUM_CSR_matrix;
33 matrix->n = n;
34 matrix->allocated = nz;
35 matrix->nz = nz;
36 /* If the input matrix is a CSC matrix, the field type should be assigned with

ParSHUM_CSC_matrix and instead of assigning arrays to the col and row_ptr
fields, the row and col_ptr fields should be assigned. */

37 matrix->col = col;
38 matrix->row_ptr = row_ptr;
39 solver->A = matrix;
40

Once the matrix and the parameters are set, the solver should be initialised by calling
the ParSHUM_solver_init. From this point the ParSHUM_solver structure should not
be accessed or modified directly by the user.

http://www.nlafet.eu/ 14/20

NLAFET D3.5: Highly unsymmetric factorizations

Listing 4: An example of parametrizing the solver
1 typedef struct ParSHUM_exe_parms {
2 double value_tol;
3 double marko_tol;
4 double extra_space;
5 double density_tolerance;
6

7 char *matrix_file;
8 char *RHS_file;
9

10 int min_pivot_per_steps;
11 int nb_threads;
12 int nb_previous_pivots;
13 int max_dense_schur;
14 int trace;
15 } *ParSHUM_exe_parms;
16

17
18 /* A code example for changing the parameters of the solver */
19 /* The following code should replace the call the ParSHUM_solver_parse_args (line

10). */
20 solver->exe_parms->value_threshold = 0.001;
21 solver->exe_parms->marko_threshold = 16;
22

6 Performance on applications
In this section we present results obtained from the ParSHUM library. All the tests
performed in this section were performed on a system called Kebnekaise, which is located
in the High Performance Computing Center North (HPC2N) at Umeå University1. Each
compute node contains 28 Intel Xeon E5-2690v4 cores organized into 2 NUMA islands
with 14 cores in each. The nodes are connected with a FDR Infiniband Network. Each
CPU core has 32 KB L1 data cache, 32 KB L1 instruction cache and 256 KB L2 cache.
Moreover, for every NUMA island there is 35 MB of shared L3 cache. The total amount
of RAM per compute node is 128 GB. In our experiments, we use only one NUMA node,
so all the tests presented below are executed on fourteen cores.

All the libraries used in these runs were compiled with GCC V6.4.0. PLASMA V3.0.0
is used for the dense factorization. PLASMA uses the Intel MKL 2017.3.196 Library for
the BLAS operations. The matrices lung2, twotone and hvdc2 are from the SparseSuite
set of test matrices and the other six are from the Power Systems application supplied
by Bernd Klöss of DigSILENT GmbH (see Deliverable 5.1). The main attributes of the
matrices used in this study are given in Table 1. For a given matrix A, ParSHUM factorizes
the matrix as:

PAQ = LU,

where P and Q are row and column permutation matrices respectively, and L and U
are lower and upper triangular matrices respectively. We define the fill-in factor as the
number of entries (nz) in the L and U factors divided by the number of entries in A viz:

nz{L}+ nz{U}
nz{A}

.

1See https://www.hpc2n.umu.se/resources/hardware/kebnekaise.

http://www.nlafet.eu/ 15/20

NLAFET D3.5: Highly unsymmetric factorizations

First, we present a comparison with the algorithm presented in Deliverable 3.4,
followed by a numerical stability and performance assessment of our solver, and then we
compare our code with two state-of-the-art solvers, MA48 V2.2.0 and UMFPACK V5.6.1.

Matrix n nz si

lung2 109K 492K 0.57
twotone 120K 1.22M 0.26
hvdc2 190K 1.35M 0.99
InnerLoop1 197K 745K 0.44
InnerLoop2 197K 806K 0.46
InnerLoop3 197K 806K 0.46
InnerLoop4 197K 806K 0.46
Jacobian_unbalancedLdf 203K 2.41M 0.80
Newton_Iteration1 427K 2.38M 0.14

Table 1: Statistics for the matrices that are used in this study.

6.1 Comparison with the algorithm from Deliverable D3.4
The algorithm that was presented in Deliverable D3.4 was based on creating multiple
independent sets and merging them using a tree based reduction. With this design, one
potential pivot could potentially be processed as many times as the height of the reduction
tree. On the other hand, with our current algorithm, each potential pivot will be treated
only once.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2 0 2 4 6 8 10 12 14 16

ti
m

e
 (

s
)

#threads

Pivot search
Schur update

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2 0 2 4 6 8 10 12 14 16

ti
m

e
 (

s
)

#threads

Pivot search
Schur update

(b)

Figure 4: The execution time for the InnerLoop1 matrix for the algorithm presented in
Deliverable D3.4 (left) and the current algorithm (right).

This effect is most noticeable for the InnerLoop1 matrix. The execution times for the
InnerLoop1 matrix for algorithm from Deliverable 3.4 and our current implementation are
presented in Figures 4a and 4b respectively. All the other matrices have similar behaviour.

http://www.nlafet.eu/ 16/20

NLAFET D3.5: Highly unsymmetric factorizations

6.2 Performance assessment
First we investigate the numerical stability of our algorithm by calculating the backward
error as:

‖b− Ax‖2
‖b‖2 + ‖A‖∞‖x‖2

.

In Figure 5 we present the impact on the backward error of the threshold parameter u in
equation (3) for selecting pivots. When a low threshold is used, pivots with smaller values
are accepted resulting in an increase of the backward error. This is more noticeable for
the twotone and hvdc2 matrices (see Figure 5). However, when the threshold is increased,
we obtain a backward error of 10−16 for all the matrices.

 1e-20

 1e-15

 1e-10

 1e-05

 1

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

b
a
c
k
w

a
rd

 e
rr

o
r

threshold value

lung2
twotone

hvdc2
InnerLoop1
InnerLoop2
InnerLoop3
InnerLoop4

Jacobian_unbalancedLdf
Newton_Iteration1

Figure 5: The impact of the threshold parameter, u, on the backward error for ParSHUM.

Another parameter in our algorithm is the Markowitz threshold. By relaxing this
parameter, we allow pivots with higher Markowitz count to be chosen as pivot. These
pivots could potentially increase the fill-in in the factors. We observe the effect of this
parameter on the fill-in for each matrix in Figure 6. When the Markowitz threshold is
increased, each matrix tends to have increased fill-in.

In order to get good performance for our algorithm, we need to find the best
combination of three main parameters: a good threshold parameter so that we get a
numerically correct solution; a small enough Markowitz tolerance so that the fill-in is
reasonable but a relatively large number of pivots are obtained at each stage; and the
Schur density for determining when to switch to the dense code. We have done extensive
testing and for each matrix we have calculated the best combination of parameters in
terms of execution time for all three solvers (the Markowitz threshold does not make
sense for the MA48 and UMFPACK solvers, and the density switch does not make sense
for the UMFPACK solver). These parameters are presented in Table 2. All the tests from
now on use these values for the parameters, and we ensure that all our results have a
backward error of at least 10−12.

In Figure 7, we present the execution time for two matrices, Jacobian_unbalancedLdf
and InnerLoop1 when the number of threads is increased. The algorithm is

http://www.nlafet.eu/ 17/20

NLAFET D3.5: Highly unsymmetric factorizations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20

ll
-i

n
 f

a
c
to

r

Markowitz threshold

lung2
twotone

hvdc2
InnerLoop1
InnerLoop2

InnerLoop3
InnerLoop4

Jacobian_unbalancedLdf
Newton_Iteration1

Figure 6: The impact of the Markowitz threshold on the fill-in factor for ParSHUM.

 0

 1

 2

 3

 4

 5

 6

 7

 8

-2 0 2 4 6 8 10 12 14 16

ti
m

e
 (

s
)

#threads

Pivot search
Schur update

Dense factorization

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-2 0 2 4 6 8 10 12 14 16

ti
m

e
 (

s
)

#threads

Pivot search
Schur update

Dense factorization

(b)

Figure 7: Multi-threaded results for our algorithm. The Jacobian_unbalancedLdf matrix
is presented on the left and the InnerLoop1 matrix is presented on the right.

clearly a memory bandwidth bound algorithm. This effect is very evident for the
Jacobian_unbalancedLdf matrix. When the number of threads increase, the execution
time for all steps decreases for up to eight threads, at which point the bandwidth is
saturated. The execution time decreases from 7.2 secs in the sequential case, down to
1.7 secs when eight threads are used. But when fourteen threads are used, the execution
time is 1.2 secs. On the other hand, we do not get the same scalability for the InnerLoop1
matrix, mainly because of granularity issues.

In Table 3 the optimal execution times for MA48, UMFPACK and ParSHUM are
presented. We obtain the lowest execution times with ParSHUM for all the matrices
except the hvdc2 and the Jacobian_unbalancedLdf matrix for which the UMFPACK solver
yields the lowest execution time. The main reason for this is the fill-in factor. For instance,
for the Jacobian_unbalancedLdf matrix, the UMFPACK solver has a fill-in of 3.88 while a
fill-in of 12.4 is obtained with the ParSHUM solver.

http://www.nlafet.eu/ 18/20

NLAFET D3.5: Highly unsymmetric factorizations

ParSHUM MA48 UMFPACK
Matrix u αMark Φ u Φ u

lung2 10−6 2 0.1 1.0 0.4 10−4

twotone 10−2 4 0.15 10−2 0.8 10−5

hvdc2 10−2 3 0.09 10−1 0.4 10−5

InnerLoop1 10−4 9 0.1 10−3 0.8 10−7

InnerLoop2 10−4 8 0.04 10−3 0.6 10−3

InnerLoop3 10−4 9 0.02 10−4 0.8 10−7

InnerLoop4 10−4 9 0.04 10−4 0.2 10−3

Jacobian_unbalancedLdf 10−6 4 0.08 10−3 0.8 10−1

Newton_Iteration1 10−6 16 0.08 10−2 0.8 10−4

Table 2: The parameters and their optimal values for the results in Figure 7 and Table 3
are shown in columns 2-4 (ParSHUM), 5-6 (MA48) and 7 (UMFPACK). The parameters u
and αMark are defined in Sections 3 and 4.1 and Φ is the density at which the switch to
full code is made.

ParSHUM MA48 UMFPACK
Matrix time fill-in time fill-in time fill-in
lung2 0.05 1.10 0.37 2.55 0.10 1.44
twotone 0.38 9.70 4.00 18.8 0.49 5.45
hvdc2 0.47 6.92 0.42 1.82 0.38 2.06
InnerLoop1 0.15 3.00 0.22 1.99 0.30 2.48
InnerLoop2 0.17 3.60 0.23 1.94 0.29 2.40
InnerLoop3 0.18 5.64 0.23 1.91 0.29 2.37
InnerLoop4 0.16 3.72 0.23 1.91 0.29 2.40
Jacobian_unbalancedLdf 1.15 12.4 4.21 5.40 0.74 3.88
Newton_Iteration1 0.66 4.99 1.23 2.55 1.00 2.55

Table 3: The execution time and the fill-in factor for ParSHUM, MA48 and UMFPACK
solvers. The results correspond to the best execution for each algorithm with the
parameter values given in Table 2. The lowest execution time is shown in bold type.

7 Acknowledgments
This project is funded from the European Union’s Horizon 2020 research and innovation
programme under the NLAFET grant agreement No 671633. We thank the High
Performance Computing Center North (HPC2N) at Umeå University for providing
computational resources and valuable support.

http://www.nlafet.eu/ 19/20

NLAFET D3.5: Highly unsymmetric factorizations

References
[1] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, A class of parallel tiled

linear algebra algorithms for multicore architectures, Parallel Computing, 35 (2009),
pp. 38–53.

[2] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method for sparse
LU factorization, SIAM J. Matrix Analysis and Applications, 18 (1997), pp. 140–158.

[3] T. A. Davis and E. P. Natarajan, Algorithm 907: KLU, A direct sparse solver
for circuit simulation problems, ACM Trans. Math. Softw., 37 (2010), p. 17 pages.

[4] I. S. Duff and J. K. Reid, The design of MA48, a code for the direct solution of
sparse unsymmetric linear systems of equations, ACM Trans. Math. Softw., 22 (1996),
pp. 187–226.

[5] A. M. Erisman, R. G. Grimes, J. G. Lewis, W. G. Poole Jr., and H. D.
Simon, Evaluation of orderings for unsymmetric sparse matrices, SIAM Journal on
Scientific and Statistical Computing, 7 (1987), pp. 600–624.

[6] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM
J. Computing, 15 (1986), pp. 1036–1053.

[7] M. A. Saunders, LUSOL: Sparse LU for Ax = b, 2009.
http://stanford.edu/group/SOL/lusol/.

http://www.nlafet.eu/ 20/20

