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1 Executive Summary

In deliverable 4.3, we have introduced LORASC and enlarged CG (ECG), two new approaches
that aim at addressing the scalability issue of Krylov subspace solvers. LORASC is based on
a domain decomposition method and a low rank approximation of the Schur-complement
obtained by solving a generalized eigenvalue problem, while ECG is based on enlarging the
Krylov subspace by a maximum of t vectors per iteration.

In this deliverable we discuss the communication complexity of ECG and LORASC. We
also introduce a multilevel approach for LORASC that improves its scalability. We then evalu-
ate their performance on challenging test cases. Our experiments show that these algorithms
are scalable and outperform both the single-level of parallelism of LORASC and Block Jacobi
preconditioner. Both implementations are available in preAlps software.

2 Introduction

The Description of Action document states for Deliverable 4.2:
“Evaluation of the communication complexity and parallel performance of the prototypes

from D4.3.”
This deliverable is in the context of Task 4.2 (Iterative methods) and Task 4.3 (Precondi-

tioners). It discusses communication avoiding Krylov subspace methods for solving large
sparse linear systems of equations Ax = b, where A is a symmetric positive definite (SPD)
matrix. In particular, it considers the iterative method enlarged CG (ECG) and the robust
algebraic preconditioner LORASC discussed in Deliverable 4.3.

We first discuss two variants of ECG, based on two different recurrence formulas, Ortho-
min and Orthodir. We then discuss the parallel design of ECG, its communication complexity
while also dynamically reducing the number of search directions added at each iteration of
the Krylov method.

We then discuss a multilevel approach of the LORASC preconditioner. Although LORASC
preconditioner is efficient on a small number of processors, its scalability is affected by the
time required to solve a generalized eigenvalue problem which grows linearly with the num-
ber of processors. In this deliverable, we describe a multilevel approach that allows to reduce
significantly the solving time of the generalized eigenvalue problem.

We then evaluate their performance on challenging test cases. Our experiments show
that these algorithms are scalable and outperform both the single-level LORASC and CG pre-
conditioned by Block Jacobi as implemented in Petsc. Both implementations are available
in the preAlps library.

3 Enlarged Conjugate Gradient

In this section, we recall the derivation of the Enlarged Conjugate Gradient (ECG) method
presented in the Deliverable 4.2 - Analysis and algorithm design.

http://www.nlafet.eu/ 5/24
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Figure 1: Illustration of the ordering of A into 8 subdomains obtained with METIS [16] and
several admissible splittings of r0 into 3 vectors.

3.1 Enlarged Krylov subspaces

In [10], the authors define so-called enlarged Krylov subspaces. First, the matrix A is reor-
dered by partitioning its graph into N subdomains (using METIS [16] for example). Then,
the initial residual r0 is split into t vectors denoted Re

0
(i ), 1 ≤ i ≤ t . In the original paper

the authors use t = N . It is important to notice that the case t < N can be dealt in many
ways provided r0 = ∑t

i=1 Re
0

(i ) (Figure 1). This is of interest in practice because typically N

will correspond to the number of MPI processes. The parameter t is called the enlarging
factor. In practice for a given t the splitting of r0 does not have a high impact on the conver-
gence of the method. In the numerical experiments we construct the initial enlarged residual
Re

0 = [Re
0

(1), . . . ,Re
0

(t )] as the leftmost example in Figure 1.
Then, the enlarged Krylov subspace of order k denoted Kk,t (A,r0) is defined as the block

Krylov subspace of order k associated to A and the enlarged residual Re
0 . More precisely, and

following the notation introduced in [11],

Kk,t (A,r0) : =K ä
k (A,Re

0) (3.1)

= spanä{Re
0 , ARe

0 , . . . , Ak−1Re
0}. (3.2)

Using this definition and following [9] it is possible to derive two variants (Orthomin and
Orthodir) of enlarged Conjugate Gradient (ECG) algorithm (Figure 1). More precisely, the en-
larged approximate solution is a matrix of size n × t denoted Xk , and the sum of its column
gives the approximate solution of the original system. We denote Rk the enlarged approx-
imate residual, and similarly we obtain the approximate residual of the original system by
summing its columns. Pk is a matrix of size n × t called search directions, it corresponds to
the A-orthonormalization of Zk . We want to point out that αk is a matrix of size t × t , whe-
reas it usually denotes a scalar in the classical CG algorithm. Depending on the method for
constructing Zk+1, it is possible to derive two variants of ECG: Orthomin and Orthodir.

http://www.nlafet.eu/ 6/24
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Orthomin (Omin) corresponds to Block CG [21]:

βk = (APk )>Rk , (3.3)

Zk+1 = Rk −Pkβk . (3.4)

This method is very similar to the one originally proposed by Hestenes and Stiefel [12] be-
cause it constructs the new descent directions Zk+1 using Rk and Pk .

Orthodir (Odir) corresponds to the Block Lanczos algorithm but with the inner product
induced by A:

γk = (APk )>(APk ), (3.5)

ρk = (APk−1)>(APk ), (3.6)

Zk+1 = APk −Pkγk −Pk−1ρk . (3.7)

It is the block equivalent of the homonym method defined in [2]. Unlike the previous variant,
Zk+1 is constructed using Pk and Pk−1.

Both Orthodir and Orthomin produce Zk+1 that is A-orthogonal to Pi for i ≤ k. Then the
search directions Pk+1 are defined as

Pk+1 = Zk+1(Z>
k+1 AZk+1)−1/2. (3.8)

Unlike CG algorithm a breakdown would occur if Z>
k+1 AZk+1 is singular, i.e., Zk+1 is not full

rank. Although rare this situation can happen in practice and several variants have been
developed in order to handle this case [6, 9, 14, 21]. Overall, both Orthomin and Orthodir
generate Pk+1 such that

P>
k+1 APi = 0,∀ i ≤ k (3.9)

P>
k+1 APk+1 = I . (3.10)

Consequently, the ECG method can be summarized in Algorithm 1. Another difference
between ECG and the original block CG algorithm is that the search directions are A-orthonormalized
at each iteration: Pk is used as search directions instead of Zk . And it has be shown numeri-
cally that using this variant can increase the numerical stability of the method [6].

As explained in [9] it is possible to reduce the block size during the iterations of ECG. In
general, the key idea is to monitor the rank of Rk [11] but as Rk−1 is an n × t matrix with n
large, it is preferable to avoid computing the rank of Rk−1 directly. In [9], it is shown that the
rank of αk = P>

k Rk−1 can be computed instead. The resulting method is called D-Odir and is
explained in more details in the Deliverable 4.2 and in [9].

3.2 Parallel design

3.2.1 Data distribution

As it is usually the case in parallel implementations of Krylov methods, we assume that the
unknowns are distributed among the processors. We also assume that each processor owns
different unknowns. Thus all the variables whose size scales as the size of the linear system
(Xk , Rk , Pk , APk , Zk ) are distributed row wise among the processors according to the distri-
bution of the unknowns. And all variables whose size scales as the enlarging factor t (αk , βk ,

http://www.nlafet.eu/ 7/24
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1: P0 = 0
2: Z1 = Re

0
3: k = 1
4: for k = 1, . . . ,kmax do
5: Pk = Zk (Z>

k AZk )−1/2

6: αk = P>
k Rk−1

7: Xk = Xk−1 +Pkαk

8: Rk = Rk−1 − APkαk

9: if ||∑t
i=1 R(i )

k ||2 < ε then
10: stop
11: end if
12: construct Zk+1 using (3.3)-(3.4) (Orthomin) or (3.5)-(3.7) (Orthodir)
13: k = k +1
14: end for
15: xk =∑t

i=1 X (i )
k

Algorithm 1: ECG algorithm.

γk , ρk ) are replicated on all the processors. Locally they are stored contiguously and column
by column (Figure 2). There is no allocation or deallocation of memory during the iterations.
In particular, when using Dynamic Orthodir or Breakdown-Free Orthomin the memory is
not freed when the block size is reduced. The local memory consumption of preconditoned
Orthodir and Orthomin on P processors is summarized in Table 1. For completeness, we
also add the local memory consumption of the classical CG algorithm, described in [22] for
instance, where only 5 vectors and 2 scalars are needed.

3.2.2 Cost analysis of ECG

Our implementation of ECG is based on Reverse Communication Interface [13] which is the
standard procedure for Krylov solvers implementation. For one iteration of ECG, it requires
external routines to apply the sparse matrix product and the preconditioner to a set of vec-
tors. Indeed the implementation of these routines highly depends on the linear system to be
solved. This is why we do account for these operations in our cost analysis.

Given n, t such that t ¿ n, we denote V ,W tall and skinny matrices of size n × t whose
rows are distributed among the processors, and α is a matrix of size t × t replicated on the
P processors. Following [18], it is possible to decompose the iterations of ECG (and more
generally block CG) into the following kernels:

• V ←V +Wα (tsmm in [18]),

• α←V >W (tsmtsm in [18]),

• Cholesky factorization of α (potrf),

• triangular solve of α with several right-hand sides (trsm).

http://www.nlafet.eu/ 8/24
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[Pk; Pk−1]

[APk; APk−1]

Zk

Rk

Xk

αk

[γk; ρk]/βk

Figure 2: Local distribution of the data: Orthodir on the left and Orthomin on the left.

Following ECG algorithm (Figure 1), each iteration of Orthodir and Orthomin consists of
3 tsmm (lines 7, 8, and 12), 4 tsmtsm (lines 5, 6, 9, and 12), 1 potrf (line 5) and 2 trsm (line 5).
Indeed, the line 5 of the algorithm (Figure 1) can be decomposed as,

1 AZk ← A∗Zk

2

3 C ← tsmtsm(Zk , AZk )
4 C ← potrf(C )
5 Pk ← trsm(Zk ,C )
6 APk ← trsm(AZk ,C )

sparse matrix times set of vectors

form Z>
k AZk

Cholesky factorization

update Pk and APk

Doing so allows us to avoid calling the sparse matrix set of vectors product for computing
APk at the price of an extra trsm. Hence the difference between the two algorithms is the
construction of Zk+1 (line 12 of algorithm 1). The tsmtsm and tsmm for constructing Zk+1 in
Orthodir (equations (3.5)-(3.7)) are twice as much costly as for Orthomin (equations (3.3)-
(3.4)).

As matrices of size t × t are replicated among the processors, we notice that tsmm, Cho-
lesky factorization of α and triangular solve of α are local operations without any commu-
nication. Hence we use the corresponding LAPACK routines: gemm, potrf (dense Cholesky
factorization) and trsm (dense triangular solve with several right-hand sides). However V
and W are distributed and tsmtsm is not a local operation. The LAPACK routine gemm is
called to compute the local product V >

i Wi followed by a call to MPI_Allreduce.
Thus, the only kernel operation that requires a communication is tsmtsm and 4 calls to

MPI_Allreduce are done per iteration. It is usually assumed that during a call to MPI_Allreduce
the number of messages sent and received on the network is equal to log2(P ) – although the
exact number depends on the MPI implementation [23]. Moreover it is a blocking operation:
when completed all the processors are synchronized. This is why in practice, as in the classi-
cal CG, the communication cost is dominated by 2 calls to MPI_Allreduce: the one after the

http://www.nlafet.eu/ 9/24

http://www.nlafet.eu/


NLAFET D4.4: Performance evaluation

# flops # messages # words memory

Omin 16 nt 2

P +4 nt
P + 1

3 t 3 4log2(P ) (4) 4t 2 5 nt
P +2t 2

Odir 20 nt 2

P +5 nt
P + 1

3 t 3 4log2(P ) (4) 5t 2 7 nt
P +3t 2

CG 10 n
P 2log2(P ) (2) 2 5 n

P

Table 1: Complexity and memory consumption per processor and per iteration of Orthodir,
Orthomin and CG where t is the enlarging factor, n is the number of rows of A and P is the
number of processors. In parenthesis is indicated the number of calls to MPI_Allreduce.

sparse matrix set of vectors product (line 5) and the one after the preconditioner (line 12),
because they occur after operations with a potential load imbalance between processors.

In summary, the detailed costs of one iteration of Orthodir and Orthomin in terms of
flops, words, and messages are indicated in Table 1. For the sake of comparison, we re-
call the complexity of the CG algorithm described in [22]. We also report the number of
MPI_Allreduce in parenthesis, in addition to the order of magnitude of the number of mes-
sages. In summary, one iteration of ECG is approximately t 2 times more costly in terms of
flops than one iteration of CG. While the number of messages is of the same order, the num-
ber of words is also t 2 times larger. Indeed there is a trade-off between these extra costs and
the reduction of the number of iterations due to the enlargement of the search spaces.

4 LORASC

4.1 LORASC 1-level

In this section, we recall LORASC as presented in Deliverable 4.3, we analyze its complexity,
and we discuss the generalized eigenvalue problem that needs to be soved for constructing
LORASC.

Definition 4.1 (LORASC preconditioner). Let A be an n×n symmetric positive definite matrix
with a bordered block diagonal structure,

A =


A11 AT

Γ1
. . .

...
AN N AT

ΓN
AΓ1 · · · AΓN AΓΓ

 . (4.1)

Let S = AΓΓ−∑N
j=1 AΓ j A−1

j j AT
Γ j . Given a tolerance τ, a lower bound ε = 1

τ for the generalized
eigenvalue problem Su = λAΓΓu, let λ1,λ2, ...,λi be the generalized eigenvalues less than ε,
i.e. for all k ∈ {1, ..., i } then λk < ε, and let v1, v2, ..., vi be the corresponding AΓΓ-orthonormal
generalized eigenvectors.

The LORASC preconditioner of A is defined as

MLORASC := (L+ D̃)D̃−1(D̃ +LT ).

http://www.nlafet.eu/ 10/24

http://www.nlafet.eu/


NLAFET D4.4: Performance evaluation

where D̃ = Block−Diag(A11, A22, ..., AN N , S̃) and L is the block lower triangular part of matrix
A. The matrix S̃ is defined as

S̃−1 = A−1
ΓΓ+EΣE T , (4.2)

where E ,Σ are defined as

E = (v1 v2 ... vi ) , (4.3)

Σ = Diag(σ1,σ2, . . . ,σi ) , with σk = ε−λk

λk
, k ∈ {1,2, ..., i }. (4.4)

The parallel construction of LORASC using N processors is summarized in Algorithm 2.

Require: SPD matrix A, N processors, subset of NΓ processors, tolerance ε
1: Partition the graph of A into N disjoint domains using k-way partitioning with vertex

separators, and permute the matrix into a block arrow structure as

A =


A11 AT

Γ1
. . .

...
AN N AT

ΓN
AΓ1 · · · AΓN AΓΓ

 . (4.5)

2: Distribute A on N processors such that processor j holds AΓ j and A j j , distribute AΓΓ on
NΓ processors by using a block row distribution

3: Processors j = 1, . . . , N compute locally the Cholesky factorization of A j j

4: A subset of NΓ processors compute the Cholesky factorization of AΓΓ in parallel
5: All processors solve the generalized eigenvalue problem Su = λAΓΓu and compute the

eigenvalues smaller than ε and associated eigenvectors using PARPACK, where S = AΓΓ−∑N
j=1 AΓ j A−1

j j AT
Γ j (the result is returned on processor 0, the shifted eigenvalues are stored

in Σ and the eigenvectors in E)
Ensure: M = (L+D̃)D̃−1(D̃+LT ) where D̃ = Block-Diag(A11, A22, ...AN N , S̃) and S̃−1 = A−1

ΓΓ+
EΣE T

Algorithm 2: Parallel construction of LORASC using N processors

4.2 Computational cost of constructing LORASC 1-level

We model the computational cost of the construction of LORASC in parallel on N processors
for SPD matrices resulting from the discretization of a PDE on regular three dimensional
grids. We consider here the case in which the graphs of these matrices are defined on an
n1/3 × n1/3 × n1/3 grid with n vertices, and each vertex is connected to its nearest 6 neig-
hbours. We recall first results for direct methods of factorization of matrices arising from
structured two dimensional (2D) and three dimensional (3D) grids [7, 20]. Within constant
factors, these results apply to a more general class of sparse matrices, whose graphs have
the property that their n-vertex subgraphs have separators with O(

p
n) vertices and O(n2/3)

vertices, respectively. A separator is a set of vertices whose removal disconnects the graph
into two disjoint subgraphs of almost the same size. Computing the Cholesky factorization
on N processors of an n ×n matrix arising from a 2D grid of dimension n1/2 ×n1/2 costs

http://www.nlafet.eu/ 11/24
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O(n3/2/N ) flops, and its Cholesky factor has O(n logn) nonzeros. For 3D grids of dimension
n1/3 ×n1/3 ×n1/3, the Cholesky factorization on N processors costs O(n2/N ) and the Chole-
sky factor has O(n4/3) nonzeros. In the case of 2D grids, if there is enough memory to store
the Cholesky factor, direct methods are often faster than iterative methods. Hence in this
paper we focus only on 3D grids and we consider matrices of size n ×n arising from grids of
dimension n1/3 ×n1/3 ×n1/3.

The construction of LORASC requires computing the direct factorization of the first N di-
agonal blocks. This can be done in parallel on N processors. We assume that each processor
has enough memory to complete this factorization. After this computation is performed, all
processors can compute the factorization of the last block AΓΓ and then the approximation
of S̃. The approximation of S̃ involves solving a generalized eigenvalue problem, which can
be performed by using a library as ARPACK [19] or PARPACK [19]. The cost of this computa-
tion depends on the number of eigenvalues that need to be deflated. Since this is problem
dependent, we do not model further this cost. We will see in the numerical experiments
in Section 5.2.2 that the number of deflated eigenvalues grows slowly when increasing the
number of partitions N . For the linear elasticity problem, the number of deflated eigenva-
lues varies between

p
N and N .

A matrix A can be permuted to a bordered block diagonal form as in equation (4.1) by
using k-way partitioning with vertex separators. In our experimental results in section 5.2.2
we use the nested dissection routine from METIS [16]. Nested dissection identifies a set
of vertices in the graph of A, that form a separator, which divides the graph into 2 disjoint
subgraphs. The dissection process continues recursively on each disjoint subgraph until N
disjoint subgraphs are obtained. The matrix A is reordered by numbering first the vertices
in the N disjoint subgraphs, which form the diagonal blocks A j j , j = 1, . . . , N , and then the
vertices in the separators, which form the block AΓΓ. These last vertices can be reordered
in any suitable way such that the number of fill-in elements in the Cholesky factor of AΓΓ is
reduced.

For the ease of the analysis we estimate the cost of LORASC by using a different orde-
ring that can be obtained when n1/3 < N . While we focus here on 3D structured grids, there
are algorithms that can be used for unstructured grids [15]. The 3D regular grid is parti-
tioned into N subgrids of dimension n1/3 ×n1/3 × (n1/3/N − 1). This partitioning is obtai-
ned by using N parallel planes, each plane having dimensions n1/3 ×n1/3. Each diagonal
block A j j , j = 1, . . . , N is of size (n/N −n2/3)× (n/N −n2/3). To compute its Cholesky facto-
rization, the graph corresponding to each diagonal block is reordered by using nested dis-
section. At the first level of nested dissection, the first separator is formed by two orthgonal
planes, each of dimension n1/3 × (n1/3/N −1). The sub-grid corresponding to the block A j j

of dimension n1/3×n1/3×(n1/3/N −1) is divided into 4 smaller sub-grids, each of dimension
n1/3/2×n1/3/2×(n1/3/N−1). It is known that during the Cholesky factorization of each block
A j j , the sub-matrix of dimension 2n2/3/N × 2n2/3/N , corresponding to the first separator,
becomes dense, and computing its factorization dominates the overall cost of the Cholesky
factorization of A j j . Hence the Cholesky factor of each diagonal block A j j has O(n4/3/N 2)
nonzeros and its computation costs O(n2/N 3) flops.

The last diagonal block AΓΓ corresponds to the N parallel planes, each of dimension
n1/3 ×n1/3. It is formed by N diagonal blocks, each diagonal block corresponds to one of
the N parallel planes and is of size n2/3×n2/3. Hence, computing the Cholesky factor of each

http://www.nlafet.eu/ 12/24
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diagonal block corresponds to a 2D problem and costs O(n) flops. The Cholesky factor of
each diagonal block has O(n2/3 logn) nonzeros. Since each processor computes the factori-
zation of one of the diagonal blocks, the overall cost of computing the Cholesky factorization
of AΓΓ in parallel on N processors costs O(n) flops.

Ignoring the generalized eigenvalue problem, LORASC has the following costs. The total
number of nonzeros in the Cholesky factors of A j j , j = 1, . . . , N , and of AΓΓ is O(n4/3/N )+
O(n2/3 logn ·N ). The number of nonzeros in AΓΓ grows linearly with the number of proces-
sors N . Or in other words, the number of nonzeros per processor remains constant when
increasing the number of processors. Computing the Cholesky factorization of the diagonal
blocks A j j , j = 1, . . . , N , and of AΓΓ in parallel on N processors costs O(n2/N 3)+O(n) flops.
The construction of LORASC, ignoring the generalized eigenvalue problem, costs a factor of
O(N 2) less flops than the computation of the Cholesky factorization of the entire matrix A.

4.3 Multilevel formulation

In this section, we present a multilevel version of LORASC using N processors. Without loss
of generality, we consider two levels of parallelism. First, we partition the input matrix into
N1 subdomains using k-way partitioning with vertex separators, then we assign N2 proces-
sors to each subdomain such as N1 ×N2 ≤ N . Since N1 ≤ N and the size of the interface bet-
ween N domains grows linearly with the number of domains N , it is straightforward that the
size of the interface between N1 domains is smaller than the size of the interface between
N domains. Indeed, N1 is chosen such as to keep the size of the interface relatively small
compared to the global number of processor N . This decomposition leads to N1 groups of
processors of size N2 each.

At the first level of the parallelism, N1 processors are used to partition the matrix as pre-
sented on the left of Figure 3. We denote by M1, the group formed by all the N1 prcoessors
participating in this operation. This initial partitioning creates the blocks Ai i , Ai g , Ag i and
AΓΓ. At the second level of parallelism, each block Ai i is assigned to N2 processors in order to
perform a new partitioning of these blocks as presented on the right of Figure 3. We denote
by W1i , the group formed by all the N2 processors assigned to each block Ai i . We consider
that the master of each group W1i is the processors from each group W1i which belong also
to the group M1;

After the initial partitioning, the factorisation of each subdomain can be performed at
the second level of parallelism by a parallel direct method or a new call of LORASC using N2

processors. This recursive formulation is also illustrated in Figure 3. The figure at the left
shows the initial partitioning of the matrix into 4 subdomains and permuted into a block ar-
row structure, then each subdomain Ai i is partitioned again into 2 subdomains as presented
at the right of the figure.

The parallel construction of LORASC multilevel is summarized in algorithm 3. In line 3
of the algorithm, the processors from the group M1 partition the graph of the input matrix
into N1 disjoint domains using k-way partitioning with vertex separators, and permute the
matrix into a block arrow structure as in equation 4.5. In line 5, the master processor from
each group Wi distributes the matrices Ai i , Ai g , Ag i and AΓΓ to group of processors using a
block row distribution. In line 8, the processors of each group Wi receive a block row part
of each matrices Ai i , Ai g , Ag i and AΓΓ from the master processor of the group. In line 11,
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Figure 3: Multilevel LORASC

a symbolic factorization of each subdomain is performed in order to predict the maximum
memory required if a direct method will be used. Such routine is available in parallel solvers
such as MUMPS [1]. We note that if the size of the subdomain is large, its direct factorization
might fail due to fill-in. This analysis step aims at determining if we can use a direct method.

From line 13 to line 17 of algorithm 3, we determine which approach can be used to fac-
torize each subdomain. If there is enough memory, a parallel direct method can be used,
otherwise a new instance of LORASC should be used. This step constructs a parallel solver
Ai isol ver which will be used each time a computation with A−1

i i is required. We note that
with this approach each subdomain has its own optimal parameters independently of the
other subdomains. In line 18, the Schur complement matrix is factorized using a parallel
direct method. Finally, in line 19, we solve the eigenvalue problem. We note that solving the
eigenvalue problem is similar to Deliverable 4.3, with the only difference that some compu-
tations are performed in parallel. For example, when the product zi = Ag i · A−1

i i · Ag i · v is
required, first we use a parallel matrix-vector product routine to compute xi = Ag i · v using
all the processors in the group W1i , then we use a parallel solver (direct method or LORASC)
to compute yi = A−1

i i , and finally we use again parallel matrix-vector product routine to com-
pute zi = Ag i · yi .
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Require: Matrix Ai , current level of parallelism i , Ni processors at level i , myid is the num-
ber of the processor running this routine

1: if myid belongs to level i
2: /* Permute the matrix into a block arrow structure as in (4.5) */
3: BlockArrowCreate(comm_level[i], Ai , Ai i , Ai g , Ag i , AΓΓ )
4: /* Distribute blocks on Ni+1 processors by using a block row distribution */
5: MatricesBlockRowDistribute(comm_level[i+1], Ai i , Ai g , Ag i )
6: else if myid belongs to level i +1
7: /* Receive a block row of each matrices */
8: MatricesBlockRowReceive(root_level[i+1], Ai i , Ai g , Ag i )
9: endif

10: if myid belongs to level i +1
11: mem_required = symbolicFactorization(comm_level[i+1], Ai i )
12: endif
13: if mem_required < MAX_MEMORY
14: Ai isol ver = NumericFactorize(comm_level[i+1], Ai i )
15: else
16: Ai isol ver = LorascBuild(comm_level[i+1], Ai i , i +1)
17: endif
18: AΓΓsol ver = Factorize(comm_level[i+1], AΓΓ)
19: SolveEigenValues(comm_level, Ai i , Ai g , Ag i , AΓΓ, Ai isol ver , AΓΓsol ver )

Algorithm 3: LorascBuild: Parallel construction of LORASC multilevel using Ni processors.

5 Experiments

This section is dedicated to the numerical experiments we performed in order to assess the
parallel design of ECG and LORASC we presented in Sections 3 & 4

5.1 Enlarged Conjugate Gradient

In this section, we present the numerical results we obtained with the ECG implementation
detailed in Section 3.

5.1.1 Description of the parallel environment

In the experiments we use a block Jacobi preconditioner, associating at each block a MPI
process. Before calling ECG, each MPI process factorizes the diagonal block of A correspon-
ding to the local row panel that it owns. At each iteration of ECG, each MPI process performs
a backward and forward solve locally in order to apply the preconditioner. Hence the appli-
cation of the preconditioner does not need any communication. It is likely that there exists
better preconditoners than block Jacobi for our test cases, however we are interested in the
iterative method rather than in the preconditioner. In particular, we do not want to target
specific applications and aim at being as generic as possible. Although in theory it is pos-
sible to apply any preconditioner within this implementation, in practice it is essential that
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Name Size Nonzeros Problem

Flan_1565 1,564,794 117,406,044 Structural problem
Bump_2911 2,911,419 130,378,257 Reservoir simulation

Table 2: Test matrices.

applying this preconditioner to several vectors at the same time is not too costly, e.g, a subli-
near complexity with respect to the number of vectors.

The following experiments are performed on a machine located at Umeå University as
part of High Performance Computing Center North (HPC2N), called Kebnekaise. In our ex-
periments, we use the so-called compute nodes, which are formed by Intel Xeon E5-2690v4
(Broadwell) with 2x14 cores. For a detailed description of the machine, we refer to the online
documentation1.

We compile the code (and its dependencies) using Intel toolchain installed on the ma-
chine: mpiicc (based on icc version 18.0.1 20171018) and MKL [24] version 2018.1.163. We
use PETSc [3] in order to compare ECG implementation to PETSc PCG implementation. In
particular, PETSc is configured to use MKL-PARDISO as exact solver for sparse matrices in
the block Jacobi preconditioner. For partitioning the matrix we are using the METIS library
downloaded and installed by PETSc.

5.1.2 Test cases

As previously pointed out, ECG is an algebraic method that does not rely on any particular
assumption on the matrix, except that it is symmetric positive definite. As an illustration,
we test the implementation on two SPD matrices coming from the Sparse Matrix Collection
of Tim Davis [4]: Flan_1564 and Bump_2911. Numerical properties of the test matrices are
summarized in Table 2.

In all the experiments the tolerance is set as the default tolerance of PETSc, i.e., 10−5 and
the maximum number of iterations is set to 5000. The right-hand side is chosen uniformly
random and then normalized. The initial guess is set to 0. We do not use any kind of threa-
ding and use 28 MPI processes per node, i.e., each MPI rank is assigned a physical core.

5.1.3 Impact of the enlarging factor

First we study the impact of the enlarging factor t on the methods. We fix the number of pro-
cessors and we vary the value of t for the 4 methods: Orthodir (Odir), Orthodir with dynamic
reduction of the search directions (D-Odir) and Orthomin (Omin). The results obtained are
summarized in Table 3

For Flan_1565 the number of MPI processes is fixed to 56. We remark that the runtime
is decreasing until t = 12 and then it increases slightly. When t is relatively small the 4 met-
hods are comparable. However as t increases the effect of dynamic reduction becomes more
visible. With t = 28, D-Odir is almost 10% faster than Odir. Overall, for this matrix, the best
method is D-Odir with t = 12.

1https://www.hpc2n.umu.se/resources/hardware/kebnekaise
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t Odir D-Odir Omin

Flan_1565 1 56.9 62.8 56.7
4 36.3 36.4 35.5
8 30.0 29.6 29.0

12 30.2 29.1 29.8
16 31.3 29.3 30.2
20 33.1 30.7 32.0
24 37.9 33.7 36.2
28 39.2 34.9 37.6

t Odir D-Odir Omin

Bump_2911 1 54.4 53.3 53.4
4 76.9 72.4 75.4
8 93.6 85.4 91.5

12 123.1 104.1 122.1
16 151.2 123.6 147.1
20 179.7 143.3 174.0
24 198.3 158.3 195.5
28 223.6 171.8 219.0

Table 3: Runtime results (in seconds) for Flan_1565 (P = 56) and Bump_2911 (P = 112)..

For Bump_2911 we fix the number of MPI processes to 112. For this matrix the reduction
of the number of iteration is not balancing the increase in flops. However, we also notice
that using the dynamic Orthodir variant (D-Odir) allows to reduce significantly the runtime
when t is large: D-Odir is around 20% faster than Odir.

In conclusion, D-Odir is the best method over the different variants of ECG that we tes-
ted: it is a good compromise between the stability of Odir and the efficiency of the classical
CG. Nevertheless, there exists matrices such as Bump_2911 for which the reduction of the
number of iterations does not compensate the extra cost of ECG compared to the classical
CG, even when using the dynamic reduction of the search directions. These results support
the theoretical convergence study that has been done but that is not presented in this docu-
ment. ECG(t) is acting as if the t smallest eigenvalues of the matrix were deflated. Finally,
we notice that values of t between 8 to 24 are good default parameters. Indeed, such values
allow to effectively reduce the number of iterations while maintaining an affordable cost per
iteration.

5.1.4 Strong scaling study

Following the parameter study, we perform a strong scaling study on Flan_1565. As Bump_2911
does not seem particularly well suited for the method we do not perform the strong scaling
study on this matrix.

Hence, for Flan_1565 we compare PETSc PCG and D-Odir with t = 12, the best choice
over the parameters we tested. The resulting runtimes are plot in Figure 4. When the number
of MPI processes is relatively low ECG scales as well as PETSc, i.e., almost linearly. As the
number of iterations is significantly reduced with D-Odir(24), there is about 20% speed-up
compared to PETSc at such scales. Nevertheless, we notice that for 2,016 MPI processes
PETSc is significantly faster than ECG. This is likely because the number of iterations with
PETSc is reduced with respect to 1,008 MPI processes. This behavior is not expected because
it is known that block Jacobi preconditoners are not scalable (see [5] for instance). Indeed,
we observe that the number of iterations is effectively increasing both for ECG and CG when
the number of MPI processes increases.
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D-Odir(12) CG

# MPI # iter res # iter res

252 332 1.3E-4 1,709 1.3E-4
504 405 1.8E-4 2,430 1.9E-4

1,008 519 2.6E-4 3,179 2.6E-4
2,016 637 3.7E-4 2,687 3.7E-4

Table 4: Iteration count and residual for Flan_1565.
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Figure 4: Runtime comparison between ECG and PETSc PCG (in parenthesis the ratio bet-
ween PETSc runtime and ECG runtime) for Flan_1565.

5.2 LORASC

In this section, we present the results of LORASC for one and two levels of parallelism. We
denote by LORASC 1-level, our previous implementation of LORASC, and LORASC 2-level
the multilevel version of LORASC using 2 levels of parallelism.

5.2.1 Environment

In this section we discuss the performance of LORASC on a parallel machine formed by 28
compute nodes. This follows the description provided in [8]. Each node is equipped with
a 24 cores socket based on Intel Xeon E5-2670 (Sandy Bridge), each core has a frequency
of 2.6 GHz. We use ParMetis 4.0.3 [17] to partition the graph of the input matrix in paral-
lel. The symbolic and Cholesky factorizations of each domain are computed using MUMPS
5.0.2 [1]. The generalized eigenvalue problem is solved by using the parallel version of AR-
PACK, PARPACK 2.1 [19]. ECG solver with an enlarging factor of 1 is used to solve the system,
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which corresponds to the classical CG. Both LORASC and Block Jacobi preconditioners are
implemented in the reverse communication interface provided by ECG solver.

5.2.2 LORASC 1-level

Figure 5 shows the performance of Block Jacobi and LORASC 1-level for an elasticity 3D pro-
blem of size N =145 563. The orange and blue dashed lines represent the global time to solve
the system using Block Jacobi and LORASC 1-level respectively. Each line corresponds to
the sum of the time to construct the preconditioner and solve the preconditioned system.
The blue bars represent the size of the Schur-complement after the initial partitioning of
the matrix. In accordance with the results from Deliverable 4.3, we observe that LORASC
1-level outperforms Block Jacobi up to 64 processors, but Block Jacobi becomes better from
128 processors. As presented in Deliverable 4.3, the main reason is that the size of the Schur-
complement increases linearly with the number of processors, hence solving the generalized
eigenvalue problem becomes the most expensive part on large number of processors. For ex-
ample, using 512 processors, the size of the Schur complement is 62000, which corresponds
to 40% of the initial problem size.

Figure 5: Performance of Block Jacobi, LORASC and the separator sizes.

The first approach used to address the scalability of LORASC is based on tuning the pa-
rameters of the generalized eigenvalue problem. The number of eigenvalues to compute is
fixed independently of the size of the Schur-complement, so the selected number is smaller
than the number of eigenvalues recommended by our analysis. The main advantage of this
choice is that we compute fewer eigenvalues and therefore the time to solve the generalized
eigenvalue problem is reduced. The disadvantage of this approach is that all eigenvalues lo-
wer than the tolerance εmight not be computed, which will lead to a slower convergence and
increase the solve time. Figure 6 shows the performance of Block Jacobi and LORASC for the
same matrix as in figure 5 when the number of eigenvalues to compute is fixed to nev = 150.
The yellow and orange bars represent the time to construct Block Jacobi preconditioner and
solve the preconditioned system respectively, while blue and red bars represent the same
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times but using LORASC 1-level. The time to construct Block Jacobi preconditioner is negli-
gible and it does not appear in the figure. For LORASC, we observe that fixing the number of
eigenvalues to 150 has a very small impact on the solving time while reducing considerably
the time to construct the preconditioner. However, the construction of the preconditioner
is still the most expensive part. This version of LORASC is much faster than Block Jacobi up
to 128 processors, while for 256 processors Block Jacobi and LORASC have almost the same
performance. Beyond 512 processors, the performance improvements of LORASC are not
significant.

Figure 6: Strong scaling performance of LORASC on elasticity 3D problem of size n =145 563
with 4 907 997 nonzeros.

5.2.3 LORASC 2-level

As presented in section 4.3, the goal of the multilevel approach is to reduce the size of the
Schur-complement at each level of the partitioning, while increasing the parallelism within
each domain.

When the number of domains at the first level is very small, the factorization of each
subdomain using a direct method requires more memory because of the fill-in, or when the
maximum amount of memory is limited, a new call of LORASC is required in order to facto-
rize the subdomain. In our experiments, we use 32 domains at the first level of parallelism,
which corresponds to the best trade-off between the required amount of memory and the
time to construct the preconditioner. By using 32 processors at the first level of parallelism,
the size of the Schur-complement corresponds exactly to the same as using 32 processors in
Figure 5, with the only difference that the number of processors within each block is incre-
ased. Hence, using 64 processors for LORASC 2-level corresponds to creating 32 domains at
the first level of parallelism and using 2 MPI processors within each subdomain. Using 128
processors corresponds to the same partitioning but using 4 processors within each block
and so on. The number of processors used by PARPACK corresponds to 32 processors, but
all the processors participate in the computation of the matrix-vector product in the reverse
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communication interface. By using a reduced number of processors in PARPACK we also re-
duce the number of communication involved in the dot-product of PARPACK iterative met-
hod.

Figure 7 shows the performance of Block Jacobi, LORASC 1-level and LORASC 2-level for
a large elasticity 3D problem of size N =19 613 997. We observe that for this problem size,
Block Jacobi is not scalable, LORASC 1-level is scalable up to 64 processors, while LORASC
2-level is scalable up to 1024 processors. Using an increasing number of processors within
each of the 32 subdomains helps to further decrease the total time of LORASC 2-level. As a
result, the time of LORASC 2-level does not increase with respect to LORASC 1-level.
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Figure 7: Strong scaling performance of LORASC 2-level on elasticity 3D problem.

Figure 8 shows the weak scaling performance of Block Jacobi, LORASC 1-level and LO-
RASC 2-level. The size of the problem on each processor is almost constant when the num-
ber of processors and the matrix size increase. The figure on the left shows the time for small
matrices, while the figure on the right shows the time for larger matrices. The number of
processors doubles with the increasing size of the problem. For example, the problem of
size N = 4719 is solved using 2 processors, N = 9438 is solved using 4 processors, N = 18513
is solved using 8 processors and so on. We observe that the time of Block Jacobi and LORASC
1-level increase considerably with the size of the problem, while the time of LORASC 2-level
is slightly impacted. This result shows that LORASC 2-level is suited for a larger problem
using a relatively higher number of processors.
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Figure 8: Weak scaling performance of LORASC on elasticity 3D problem.
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