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1 Executive Summary
In Deliverables 4.3 and 4.4 we have introduced we have introduced a preconditioned
Krylov subspace solver which aims to reduce communication when solving large sparse
linear systems of equations.

In this deliverable we discuss the preAlps library which integrates a highly parallel
and efficient implementation of enlarged CG Krylov subspace methods and the LORASC
preconditioner. We also explain how to eliminate some synchronization points in ECG’s
iterations in order to increase its scalability, and it has been implemented in preAlps.
We also present performance data for both methods.

2 Introduction
The Description of Action document states for Deliverable 4.5:

“Report on the integration of preconditioners and iterative methods from D4.3 into the
NLAFET library. Evaluation of the parallel efficiency of the new preconditioned iterative
solvers.”

This deliverable is the final deliverable related to the work performed in WP4, Task 4.2
(Iterative methods) and Task 4.3 (Preconditioners). Our work has focused on the design
of communication avoiding Krylov subspace methods for large sparse linear systems of
equations Ax = b, where A is a symmetric positive definite (SPD) matrix.

We have introduced and studied enlarged Conjugate Gradient (CG) methods [9], and
LORASC, a robust and algebraic preconditioner[7]. Both algorithms are described in
detail in previous deliverables as Deliverable 4.2 and Deliverable 4.4.

In this deliverable we recall and further describe the preAlps library, the external
libraries that need to be linked with preAlps, and a description of the main routines of
preAlps. Most of the routines were also described in detail in Deliverable 4.3, their input
parameters remain the same, but for completeness we also include them here. However
their performance was improved since that deliverable. In particular, we explain how
to eliminate some synchronization points in ECG’s iterations in order to increase its
scalability, and it has been implemented in preAlps.. Hence we also present new results
that show the parallel performance of preAlps.

3 Using the preAlps library

3.1 Overview
The preAlps library has been developed at INRIA as part of the NLAFET project. It is
available from https://github.com/NLAFET/preAlps. The current version of preAlps
library provides an efficient implementation of ECG and LORASC preconditioner. The
ECG method extends the Krylov subspaces used by classical methods in a manner which
dramatically reduces the need for communication during the solution of a linear system.
LORASC is based on a low rank approximation of the Schur complement. These algo-
rithms are well suited for parallelism and are described in detail in [9] and [7]. In our
experiments, by increasing the numbers of vectors added to the Krylov subspace by 12
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instead of 1 as in the traditional conjugate gradient (CG) approach, ECG is up to 3x
faster than the equivalent solver routine in PETSC, while LORASC is up to 7x faster
than Block Jacobi preconditioner.

3.2 Dependencies with external librairies
preAlps depends on few external librairies that need to be installed and linked with
preAlps in order to use it:

• BLAS and LAPACK [2]: BLAS is a standard library for performing basic vector and
matrix operations. LAPACK is a standard software for numerical linear algebra.
Although any library providing BLAS and LAPACK can be used, we recommend
MKL [19].

• METIS[13] and ParMETIS [14]: sequential and parallel graph partitioning tools.
METIS is required in order to use ECG, while ParMETIS is required in order to use
LORASC. We recommend to install ParMETIS as it already contains all METIS
routines. preAlps were tested with METIS 5.1.0 and ParMETIS 4.0.3. These
partitioning tools can be downloaded from http://glaros.dtc.umn.edu/gkhome/
metis/metis/overview and http://glaros.dtc.umn.edu/gkhome/metis/parmetis/
overview.

• PARPACK [16]: a parallel library used to solve eigenvalue problems. PARPACK
is required in order to use LORASC. A latest version can be downloaded from
http://www.caam.rice.edu/software/ARPACK/download.html . At the moment,
only PARPACK is supported in preAlps, but we plan to use other eigenvalue solvers.

• MUMPS [1]: a distributed parallel sparse direct solver. MUMPS is required in order
to use LORASC. preAlps were tested with MUMPS 5.1.2. It can be downloaded
from http://mumps.enseeiht.fr/

• PARDISO: a sequential and multithreaded sparse direct solver. This library is
optional if MKL is already provided. If MKL is not provided, PARDISO from
http://pardiso-project.org/ should be installed.

Table 1 shows the list of dependencies of the main components of preAlps with external
librairies. In order to use the ECG solver only, BLAS, METIS and MKL (with PARDISO)
are required. In order to use LORASC, BLAS, ParMETIS, PARPACK and MUMPS are
required. For the full installation of preAlps, BLAS, ParMETIS, PARPACK, MUMPS
and MKL (with PARDISO) are required.

3.3 Installation
The complete installation of preAlps could be summarized as follows:
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BLAS METIS ParMETIS PARPACK MUMPS PARDISO
ECG solver × × MKL
LORASC × × × × ANY

preconditioner
Full × × × × × MKL

installation

Table 1: Dependencies of preAlps with external librairies.

3.3.1 Install the dependencies

1. Make sure to have the following libraries or install them:

(a) MPI
(b) MKL
(c) METIS

(http://glaros.dtc.umn.edu/gkhome/metis/metis/overview)

2. If you want to enable LORASC preconditioner in preAlps, make sure to have the
following libraries or install them:

(a) ParMETIS
(http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview)

(b) MUMPS
(http://mumps.enseeiht.fr/)

(c) PARPACK
(http://www.caam.rice.edu/software/ARPACK/download.html)

3. If you want to compare ECG results with PETSc, make sure to have the following
library or install it:

(a) PETSc
(https://www.mcs.anl.gov/petsc/download/index.html)

3.3.2 Get and install preAlps

1. Get the latest version of preAlps.
$ git clone git@github.com:NLAFET/preAlps.git preAlps

2. At the top of the preAlps folder, edit the make.inc file in order to set the compiler
directives and flags.

3. Copy an example of make.lib.inc from the directory MAKES.
In order to use the ECG solver only, type:
$ cp MAKES/make.lib.inc-ecg make.lib.inc
For the full installation of preAlps, type:
$ cp MAKES/make.lib.inc make.lib.inc
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4. Edit the make.lib.inc file in order to set the path and compiler directives for the
libraries installed in 1, 2, and 3. Make sure the LD_FLAGS of these libraries are
correctly set.

5. Type make to compile preAlps and create the library lib/libpreAlps.a and the
example programs.
$ make

6. Now, the functions from the lib preAlps can be called by a program by includ-
ing their corresponding header file. The folder example provide few stand-alone
programs to test the library.

In addition, the example program test_ecgsolve.c allows the end user to call CG
and Block Jacobi from PETSC and compare its performance with ECG from preAlps.
PETSC [4] provides a suite of routines for scientific applications including solvers and
preconditioners.

3.4 Input data formats
Most routines in preAlps require matrices stored into a compressed sparse row format
(CSR). PreAlps provides an internal library refers to as CPaLAMeM to read such matrices as
CPLM_MatCSR_t object. The simplified CPLM_MatCSR_t structure is presented as follows:

• m, n : the size of the matrix.

• rowPtr: the beginning position of each rows as described in the CSR format.

• colInd: the column indexes of each non-zeros elements of the matrix.

• val: the corresponding values of each non-zeros elements of the matrix.

The following block of code presents an example for reading an external matrix.

1 /* Including headers */
2 #include <preAlps_cplm_matcsr.h>
3

4 int main(int argc, char **argv){
5

6 /* The matrix file to load */
7 char matrixFileName[]="cage4.mtx";
8

9 /* Create an empty CSR Matrix */
10 CPLM_Mat_CSR_t A = CPLM_MatCSRNULL();
11

12 /* Load the matrix file */
13 CPLM_LoadMatrixMarket(matrixFileName, &A);
14 ...
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4 Major routines
We refer the reader to Deliverable 4.2, Deliverable 4.3, and Deliverable 4.4 for a more
detailed description of the ECG method, and the LORASC preconditioner. We also refer
to the User Guide for examples of usage of both ECG and LORASC.

4.1 Enlarged Conjugate Gradient
Our implementation of ECG is based on Reverse Communication Interface [11] and writ-
ten in C and MPI. Following this scheme we provide 4 routines:

• preAlps_ECGInitialize(ECG_t* ecg, double* rhs, int* rci_request): initial-
ize the underlying structure,

• preAlps_ECGIterate(ECG_t* ecg, int* rci_request): used within a loop to
perform the iterations of the method,

• preAlps_ECGStoppingCriterion(ECG_t* ecg, int* stop): compute and check
the convergence of the method,

• preAlps_ECGFinalize(ECG_t* ecg, double* solution): retrieve the solution and
free the memory.

4.2 LORASC
LORASC preconditioner can be built separately and used in any sparse iterative solvers.
The implemented routines are described as follows:

• preAlps_LorascAlloc (preAlps_Lorasc_t **lorasc) : creates an object of the
type preAlps_Lorasc_t. The resulting object can be used by the end-user to replace
the default parameters such as the deflation_tolerance.

• preAlps_LorascBuild (preAlps_Lorasc_t *lorasc, CPLM_Mat_CSR_t *A,
CPLM_Mat_CSR_t *locAP, MPI_Comm comm) : constructs LORASC preconditioner
from an input matrix A and stores all the required internal workspace in the object
lorasc. First, it partitions and permutes the matrix A into a block arrow structure,
then distributes it to each processor. After this distribution, each processor stores
in the output matrix locAP its block from a 1-D block row distribution of the
permuted matrix A. Finally it constructs the preconditioner itself.

• preAlps_LorascApply (preAlps_Lorasc_t *lorasc, double *x, double *y) :
applies LORASC preconditioner on a vector x and return the result in the vector y.

• preAlps_LorascApplyMat (preAlps_Lorasc_t *lorasc,
CPLM_Mat_Dense_t *X, CPLM_Mat_Dense_t *Y) : applies LORASC preconditioner
on a dense matrix X, and returns the result in a dense matrix Y . This routine does
the same computation as preAlps_LorascApply routine with the difference that it
applies the preconditioner on a dense matrix.
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• preAlps_LorascDestroy (preAlps_Lorasc_t **lorasc) : frees the internal mem-
ory allocated by LORASC preconditioner and destroys lorasc object.

5 ECG’s new developments and experiments

5.1 Equivalence between Orthodir and Orthomin
In what follows, αk, βk, γk, and ρk are not necessarily real numbers, but typically denote
matrices that have dimensions substantially smaller than the original matrix A. The ECG
method has already been formally derived in Deliverables 4.2, 4.3 and 4.4. The general
method is stated as Algorithm 1. It contains two variants: Orthomin and Orthodir.
Orthomin variant corresponds to the choice

βk = (APk)>Rk, (5.1)
Zk+1 = Rk − Pkβk, (5.2)

whereas Orthodir corresponds to the choice

γk = (APk)>(APk), (5.3)
ρk = (APk−1)>(APk), (5.4)

Zk+1 = APk − Pkγk − Pk−1ρk. (5.5)

Algorithm 1 ECG algorithm.
Require: A, Re

0, kmax, ε
Ensure: ||Rk|| < ε or k = kmax

1: P0 = 0
2: Z1 = Re

0
3: for k = 1, . . . , kmax do
4: Pk = Zk(Z>k AZk)−1/2

5: αk = P>k Rk−1
6: Xk = Xk−1 + Pkαk

7: Rk = Rk−1 − APkαk

8: if ||∑t
i=1R

(i)
k ||2 < ε then

9: stop
10: end if
11: construct Zk+1 using (5.1)-(5.2) (Orthomin) or (5.3)-(5.5) (Orthodir)
12: end for
13: xk = ∑t

i=1X
(i)
k

In what follows, we assume exact arithmetic and we show that even if the methods
are equivalent the search directions constructed by Orthodir and Orthomin are different.
Indeed, by construction the approximate solutions computed by Orthodir and Orthomin
are equal. Hence, the approximate residuals are also equal. But this does not imply
that the search directions generated are equal even if they belong to the same space. We
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denote with a tilde the variables related to Orthomin and with a hat the variables related
to Orthodir, e.g., P̂k are the A-normalized search directions generated during Orthodir.
For the sake of brevity, we only consider the case where no breakdowns occur so that Ẑk,
P̂k and Z̃k, P̃k are all well-defined.

Since Orthomin and Orthodir rely on the same projection process [8] (they both search
an approximate solution in Kt,k, such that the corresponding residual is orthogonal to
Kt,k), we know that X̂k = X̃k. It follows that:

P̂kα̂k = P̃kα̃k, (5.6)
P̂kP̂

>
k = P̃kP̃

>
k . (5.7)

Hence, there exists δk ∈ Rt×t orthogonal and such that P̃k = P̂kδk. By definition we also
have,

Rk −Rk−1 = −AP̃kα̃k. (5.8)

A simple computation using the previous relationships gives,

−Ẑk+1δkα̃k = −AP̃kα̃k + P̃kγ̃kα̃k + P̃k−1ρ̃kα̃k, (5.9)
= Rk − P̃kβ̃k − Z̃k + P̃kP̃

>
k ARk−1, (5.10)

and,

P̃kP̃
>
k ARk−1 = Z̃k(Z̃>k AZ̃k)−1Z̃>k ARk−1, (5.11)

= Z̃k(Z̃>k AZ̃k)−1Z̃>k AZ̃k, (5.12)
= Z̃k. (5.13)

Thus,
Z̃k+1 = −Ẑk+1δkα̃k. (5.14)

This result is a generalization of a previous result presented by Manteuffel et al. [3]
(p. 1550) for the classical CG. In fact, the authors show that z̃k = Πk

i=0(−α̃k)ẑk but they
never consider explicitly the A-orthonormalized search directions. In particular, they
define zk+1 using zk (for Orthomin) and zk−1 (for Orthodir). This explains the slight
difference between our generalization and their result.

When k becomes large, α̃k = P̃>k Rk−1 and ||α̃k||2 is more likely to be low because Rk−1
is supposed to converge to 0 and P̃k is A-orthonormalized – the same reasoning applies
for α̂k. This result is very interesting because it shows that, since δk is an orthogonal
matrix, when k becomes large ||Z̃k+1||2 can be significantly smaller than ||Ẑk+1||2. Hence,
the conditioning of Z̃>k+1AZ̃k+1 could be much worse than that of Ẑ>k+1AẐk+1, possibly
leading to a breakdown when computing its Cholesky factorization (line 5 in Figure 1).
In practice, this phenomenon is indeed observed: there are cases where Orthomin breaks
down while Orthodir does not [8]. In conclusion, Orthodir is expected to be more reliable
than Orthomin. However, Orthodir requires twice as many flops and twice as much
memory as Orthomin in order to construct Zk+1.
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5.2 Dynamic reduction of the search directions
In what follows, we briefly present an approach for reducing the block size in the Orthodir
method during the iterations, proposed in [8]. The idea is to reduce the extra arithmetic
and memory costs of Orthodir while maintaining its good convergence behavior.

As explained in the survey [10] the key idea to reduce the block size is to monitor the
rank of Rk. Once Rk becomes rank deficient, it means that a part of the approximate
solution has already converged at iteration k. More precisely for i ≥ k − 1, there exists
a linear combination (independent of i) of columns of Xi that remains constant. As a
consequence, the space of search directions can be reduced with no ill effects. The idea is
to remove these search directions in the next iterations. As Rk−1 is an n× t matrix with
n large, it is preferable to avoid computing the rank of Rk−1 directly. In [8], it is shown
that the rank of αk = P>k Rk−1 can be computed instead.

The method presented in [8] can be divided into two parts. At each iteration a Singular
Value Decomposition (SVD) of αk is computed. If the numerical rank of αk is below a
given tolerance then the search directions are reduced accordingly and some of them are
kept in order to keep the A-orthogonality property. The resulting algorithm is given in
Algorithm 2. Although computing the SVD of αk at each iterations induces an extra
cost compared to Orthodir, this operation does not involve any communications and it is
negligible because αk is a small matrix of size t× t. Furthermore, as the search directions
Pk are reduced, the dominant operation of Krylov iterations in terms of flops; the matrix
product (APk), and the application of the preconditioner (M−1APk), are cheaper.

5.2.1 Curing breakdowns in Orthomin

As explained previously Orthomin version of ECG can break down. There exist several
methods to overcome this issue and in the following we recall the Breakdown-Free block
CG method defined in [12]. Starting from the original algorithm of O’Leary [17], the
authors propose to perform a rank-revealing QR decomposition of Zk+1 and then drop its
null part before A-orthonormalizing it. They show that in exact arithmetic this allows to
continue the algorithm with nearly no further modification. The resulting algorithm is
given in Algorithm 4.

From a practical point of view the size of Pk+1 can be reduced, but at each iteration
Zk+1 is of size n× t because the size of Rk remains constant. Hence the matrix product
APk is cheaper but the application of the preconditioner M−1Rk is not. Furthermore
computing a rank-revealing QR factorization of Zk+1 cannot be neglected because Zk+1
is of size n × t. In summary, as this method was not meant for efficiency, but rather for
improving the stability of Orthomin, it does not allow to save as many flops as in the
dynamic variant of Orthodir.

5.2.2 Cost of dynamic reduction of ECG

The implementation of the dynamic reduction of the search directions within Orthodir
follows Algorithm 2. In practice, we use LAPACK routine gesvd and only compute the
right singular vectors of αk denoted Uk. We check the singular values obtained. If there
are some smaller than ε√

t
, which is the criterion proposed in [8], we call geqrf on U in

order to perform the updates PUk, APUk and U>k αk in-place with ormqr. Since Pk and
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Algorithm 2 ECG dynamic Orthodir variant.
Require: A, Re

0, kmax, ε, εdef
Ensure: ||Rk|| < ε or k = kmax

1: P0 = 0
2: Z1 = Re

0
3: H = []
4: for k = 1, . . . , kmax do
5: Pk = Zk(Z>k AZk)−1/2

6: αk = P>k Rk−1
7: αk = UkΣkV

>
k

8: let sk be the number of singular values of αk bigger than εdef
9: if sk < sk−1 then

10: αk = U>k αk

11: Pk = PkUk

12: αk = αk(1 : sk, :)
13: H = [H,P (:, sk : sk−1)]
14: Pk = Pk(:, 1 : sk)
15: end if
16: Xk = Xk−1 + Pkαk

17: Rk = Rk−1 − APkαk

18: if ||∑t
i=1R

(i)
k ||2 < ε then

19: stop
20: end if
21: γk = (APk)>(APk)
22: ρk = (APk−1)>(APk)
23: δk = (AH)>(APk)
24: Zk+1 = APk − Pkγk − Pk−1ρk −Hδk

25: end for
26: xk = ∑t

i=1X
(i)
k
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APk are stored in a column major fashion the selection of the columns is done at no cost.
Similarly H is not explicitly defined. However the selection of the first rows of αk implies
an in-place memory rearrangement.

The implementation of Breakdown-Free Orthomin is similar to Orthomin except the
computation of a rank-revealing QR decomposition of Zk+1. As Zk+1 is distributed, it is
not reasonable to use a LAPACK kernel to compute it. Instead we use a modification
of Chol-QR algorithm [20] which is a cheaper but less stable alternative to TS-RRQR
[6, 5]. Its implementation is very easy using the LAPACK routine pstrf (Cholesky with
pivoting) for computing (R, π) at line 2. Following [12] we use the default tolerance of
pstrf for detecting exact rank deficiency of Zk+1.

Algorithm 3 Chol-RRQR
Require: P , ε
Ensure: Q1 orthogonal such that

Pπ =
(
Q1 Q2

)(R11 R12
0 R22

)

where π is a permutation and all the diagonal elements of R22 are larger than ε
1: µ = P>P

2: Compute (R, π) such that π>µπ = R>R with R =
(
R11 R12
0 R22

)
and all the diagonal

elements of R22 are larger than ε2

3: P1 = Pπ(:, 1 : size(R11))
4: Q1 = P1R

−1
11

Algorithm 4 BF-ECG algorithm.
Require: A, Re

0, kmax, εsolver, εmachine
Ensure: ||Rk|| < εsolver or k = kmax

1: P0 = 0
2: Z1 = Re

0
3: for k = 1, . . . , kmax do
4: Pk = Zk(Z>k AZk)−1/2

5: αk = P>k Rk−1
6: Xk = Xk−1 + Pkαk

7: Rk = Rk−1 − APkαk

8: if ||∑t
i=1R

(i)
k ||2 < ε then

9: stop
10: end if
11: βk = (APk)>Rk

12: Zk+1 = Rk − Pkβk

13: Zk+1 = Chol-RRQR(Zk+1, εmachine) (Algorithm 3)
14: end for
15: xk = ∑t

i=1X
(i)
k
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5.3 Impact of threads on the performance of ECG
One motivation for enlarging the Krylov subspaces is to increase the arithmetic intensity
of the resulting methods. This is particularly interesting to take advantage of the so-called
manycore architecture as Nvidia GPUs, Intel Xeon Phi, or Sunway SW26010 used in the
Sunway TaihuLight supercomputer. As the implementation relies on the MKL library
which is multi-threaded [19], it is straightforward to assess its efficiency on the Xeon Phi
processors.

In order to do so, we perform the following experiments on NERSC’s supercomputer
Cori. It consists in two partitions, one with Intel Haswell processors and another one
with the last generation of Intel Xeon Phi processors: Knights Landing (KNL). More
precisely, the second partition consists in 9,688 single-socket Intel Xeon Phi 7250 (KNL)
processors with 68 cores each. For a detailed description of the machine, we refer to the
online documentation1. We compile the code (and its dependencies) using the default
compilers and libraries installed on the machine: version 18.0.1, cray-mpich version
7.6.2, MKL version 2018.1.163 and METIS version 5.1.0. We consider Ela_30 test case
and we study the impact of threads on the strong scaling of Orthodir(24). We do not use
the dynamic reduction of the search directions in order to keep the cost of one iteration
constant during the solve to better understand the effect of threading. We both increase
the number of MPI processes from 64 to 2048 and the number of threads from 1 to 8 –
this means at most 2, 048 × 8 = 16, 384 threads, each one being bound to one physical
core.

The results obtained are summarized in Fig. 1a. First of all, we notice that there is a
trade-off between using threads or MPI processes because the number of MPI processes
dictates the preconditioner. Indeed, there are as many blocks in the block Jacobi precon-
ditioner as the number of MPI processes, thus increasing the number of MPI processes
deteriorates the quality of the preconditioner but also reduce its application cost. For
instance, using 512 MPI processes takes 123s, and using 64 MPI processes with 8 threads
each takes 179s: it is an increase of 50% compared to 512 MPI processes. Nevertheless,
we observe that using more than 2 threads, and up to 8, has always a significant effect
on the speed-up, even when the number of MPI processes is high. For instance, as shown
in Table 1b, increasing the number of threads from 1 to 8 with a fixed number of 2, 048
MPI processes leads to an decrease in runtime of nearly 3. Of course, we are not close
to full efficiency when using multiple threads, but we are still taking advantage of the
BLAS 3 routines. This is illustrated by the Table 1b where we compare the speed-up
obtained by using threads for Orthomin(1), which corresponds to the classical CG, and
Orthodir(24). We observe that using more than 2 threads is not effective at all with
Orthomin(1) whereas it always significantly increases the speed-up with Orthodir(24).

Finally, we are able to obtain an overall speed-up of 50 when using 16, 384 cores with
respect to 64 cores. Compared to an ideal speed-up of 256, it may seem that this result is
not very good (around 20% of efficiency), however it is well-known that Krylov methods
may face efficiency issues at very large scale2 — in practice, such difficulties are overcome
by using preconditioning strategies well adapted to the underlying problem. Furthermore,

1http://www.nersc.gov/users/computational-systems/cori/configuration/
2This is well illustrated by HCG benchmark: http://www.hpcg-benchmark.org/custom/index.

html?lid=155&slid=293
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(a) The bars represent the runtime (left) and the lines represent the corresponding speed-up with respect
to 64 MPI with 1 thread each (right).

Orthomin(1) Orthodir(24)
# omp time (s) speed-up time (s) speed-up

1 89 - 44 -
2 74 1.2 29 1.5
4 80 1.1 21 2.1
8 79 1.1 16 2.8

(b) Comparison between Orthomin(1) and Orthodir(24) with 2048
MPI processes. We indicate the speed-up when increasing the number
of threads for each method.

Figure 1: Strong scaling study for Ela_30 matrix on Cori (# omp stands for the number
of threads assigned to each MPI process).
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dynamic Orthodir(24) PETSc’s CG
# MPI # iter time (s) # iter time (s) speed-up
252 513 77.9 13,626 406.8 5.2
504 531 45.5 15,819 258.9 5.7
1,008 606 23.7 17,023 94.7 4.0
2,016 696 14.5 19,047 34.5 2.5

Table 2: Strong scaling study for Ela_30 presented in Deliverable 4.4. The speed-up is
the ratio between PETSc runtime and ECG runtime.

it is important to notice that the matrices tested are relatively small, but they allow us
to simulate extreme scale situation: with 16, 384 cores the average number of unknowns
per core is around 280. We have shown that enlarged Krylov subspace methods can both
increase the arithmetic intensity and reduce the total number of iterations dramatically.
As a result, the processors execute a higher flop rate and the need for interprocessor
communication is reduced. Thus it takes advantage of the current trend in hardware
architecture for reaching exascale.

5.4 Fusing global communications
If we break down the timings obtained during the strong scaling study showed in Deliv-
erable 4.4: Performance evaluation (Table 2), we observe that the major bottleneck of
ECG at large scale is the communication involved by the calls to MPI_Allreduce (Figure
2). In this section, we focus on Orthodir method and we explain how to reformulate the
algorithm in order fuse these calls within an iteration.

30.3%

24.3%

35.9%

7.4%

2.1%
operator
precond
comm
iteration
conv. test

Figure 2: Comparison of the time spent in various steps of one iteration of dynamic
Orthodir(24) for the Ela_30 matrix with 2016 MPI processes on Kebnekaise.
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5.4.1 Derivation of the algorithm

In what follows, µk, αk, βk, and ξk are not necessarily real numbers, but typically denote
matrices that have dimensions substantially smaller than the original matrix A. If we
decompose one iteration of Orthodir there are 4 synchronizations,

µk = Z>k AZk, (5.15)
αk = P>k Rk−1, (5.16)

βk =
(
APk APk−1

)>
M−1APk, (5.17)

ξk = R>k Rk. (5.18)

Furthermore, we have Pk = Zkµ
−1/2
k . Thus we can reformulate αk, and βk,

αk = µ
−>/2
k Z>k Rk−1, (5.19)

βk =
(
AZkµ

−1
k APk−1

)>
M−1AZkµ

−1/2
k . (5.20)

If we postpone the convergence test, i.e., we compute ξk−1 instead of ξk, we can compute
the following quantities at the same time,

µk = Z>k AZk, (5.21)
Z>k Rk−1, (5.22)(
AZk APk−1

)>
M−1AZk, (5.23)

R>k−1Rk−1, (5.24)

and then it is possible to update αk, βk, Pk, and APk using the Cholesky factorization of
µk.

The resulting Algorithm 5 is a fused version of the preconditioned Orthodir method.
The volume of communications remains constant but the different synchronizations per-
formed at each iterations are fused in order to have only one synchronization (MPIAllreduce
call) per iteration. Unlike Pipelined methods Algorithm 5 does not overlap this global
communication with computations.
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Algorithm 5 Iteration of preconditioned fused Orthodir
1: Q(:, 1 : t) = A ∗ P (:, 1 : t)
2: Z = M−1Q(:, 1 : t)
3: // Beginning of synchronization
4: µ = P (:, 1 : t)>Q(:, 1 : t)
5: α = P (:, 1 : t)>R
6: β = Q>Z
7: ξ = R>R
8: // End of synchronization
9: µ = chol(µ)

10: P (:, 1 : t) = P (:, 1 : t)µ−1

11: Q(:, 1 : t) = Q(:, 1 : t)µ−1

12: // Beginning of additional triangular solves
13: α = µ−>α
14: β = βµ−1

15: β(1 : t, :) = µ−>β(1 : t, :)
16: Z = Zµ−1

17: // End of additional triangular solves
18: X = X + P (:, 1 : t)α
19: R = R−Q(:, 1 : t)α
20: if ∑t

i=1 ξ(i, i) < ε then
21: stop
22: end if
23: Z = Z − Pβ
24: P (:, t+ 1 : 2t) = P (:, 1 : t)
25: P (:, 1 : t) = Z
26: Q(:, t+ 1 : 2t) = Q(:, 1 : t)

It is straightforward to derive a fused version of dynamic Orthodir algorithm where
the number of search directions is reduced dynamically during the iterations. Indeed, we
have,

Zk+1 = APk,1 −
(
Pk,1 Pk−1,1 H

)
βk,1, (5.25)

where

βk,1 =

 P>k,1AM
−1APk,1

P>k−1,1AM
¯1APk,1

H>AM−1APk,1

 .
Thus, βk,1 is obtained by updating locally βk,

βk,1 =

U
>
k,1

I
I

 βkUk,1, (5.26)

where Uk,1 denotes the left singular vectors of αk that are kept in its low-rank approxi-
mation (see Deliverable 4.2: Analysis and algorithm design).
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Remark 1. In our implementation, we construct Zk+1 using βk and then reduce its size
by multiplying it with Uk,1, i.e, Zk+1Uk,1. It is not as optimal as the previous discussion,
but it is simpler to implement and the extra flops are expected to be small with respect to
the overall iteration cost.

5.4.2 Cost analysis

Given n, t such that t � n, we denote V,W tall and skinny matrices (tsm) of size n × t
whose rows are distributed among the processors, and α is a matrix of size t× t replicated
on the P processors. Following [15], it is possible to decompose the iterations of ECG
(and more generally block CG) into the following kernels:

• V ← V +Wα (tsmm in [15]),

• α← V >W (tsmtsm in [15]),

• Cholesky factorization of α (potrf),

• triangular solve of α with several right-hand sides (trsm).

Following Algorithm 5, each iteration of the fused Orthodir variant consists of 3 tsmm
(lines 18, 19, and 23), 1 tsmtsm (lines 4–7), 1 potrf (line 9) and 6 trsm (lines 10, 11, and
13–16). More precisely, the LAPACK routine gemm is called to compute the local products
lines 4–7, and the resulting (of dimension of the order t× t) matrices are put contiguously
in the memory so that the reduction is done using one call to MPI_Allreduce. The lines
13–16 consists of the additional updates which do not involve any communication. In
summary and using the previous discussion in Deliverable 4.4: Performance evaluation,
we have,

#flops(fused Orthodir) = 4× 2nt
2

P
+ 5× nt(2t+ 1)

P
+ 1

3t
3 + 6× nt2

P
, (5.27)

= 24nt
2

P
+ 5nt

P
+ 1

3t
3. (5.28)

As previously, matrices of size t × t are replicated among the processors, thus tsmm,
Cholesky factorization of α and triangular solve of α are local operations without any
communication. Thanks to the reformulation of the algorithm, the only communication
phase occurs at lines 4–7.

In summary, the detailed costs of one iteration of Orthodir, and fused Orthodir in
terms of flops, words, and messages are indicated in Table 3. For the sake of comparison,
we recall the complexity of the CG algorithm described in [18]. We also report the number
of MPI_Allreduce in parenthesis, in addition to the order of magnitude of the number
of messages. In summary, one iteration of fused Orthodir involves 20% more flops —
neglecting the applications of the matrix, and the preconditioner — but it reduces the
number of messages by factor 4, with respect to Orthodir. fused Orthodir also reduces
the number of messages by a factor 2 with respect to the usual CG method.

In Table 3, we also compare the memory requirements of the Orthodir method and
the Fused Orthodir method. The fused variant requires an extra 2t2 words of memory
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# flops # messages # words memory

Orthodir 20nt2

P
+ 5nt

P
+ 1

3t
3 4 log2(P ) (4) 5t2 7nt

P
+ 3t2

fused Orthodir 24nt2

P
+ 5nt

P
+ 1

3t
3 ln(P ) (1) 5t2 7nt

P
+ 5t2

CG 10 n
P

2 log2(P ) (2) 2 5 n
P

Table 3: Complexity of Orthodir, fused Orthodir and CG where t is the enlarging factor.

because it has to hold the results of the four reductions given in (5.21)–(5.24). However,
this memory overhead is not significant with respect to the overall memory consumption
of both methods (O(nt

P
)).

5.5 Numerical experiments
In order to evaluate the gain of this reformulation, we perform several experiments both
on Kebnekaise and Cori.

5.5.1 Kebnekaise

The following experiments are performed on Kebnekaise. We use the same parameters
and test cases as in Deliverable 4.4. In particular, the tolerance is set to 10−5, and we
use a block Jacobi preconditioner where each MPI process factorizes its corresponding
diagonal block of the matrix A, and then performs a forward and backward substitution
at each iteration. We do not remake the whole parameter study (see Deliverable 4.4) but
rather compare the performance of the fused algorithms against the non-fused ones, and
with PETSc’s CG, when the number of MPI processes is relatively high.

fused dynamic Orthodir dynamic Orthodir PETSc’s CG
Case # MPI comm total comm total total

Hook_1498 1,008 1.1 1.6 1.4 2.1 0.9
2,016 0.9 1.2 1.2 1.5 0.9
3,024 0.7 0.9 2.0 2.3 1.0

Flan_1565 1,008 1.9 3.8 2.6 4.1 4.9
2,016 1.3 2.2 2.6 3.6 2.6
3,024 1.4 1.9 2.2 2.9 1.6

Ela_30 1,008 11.1 21.7 12.2 23.7 94.7
2,016 6.9 13.0 8.2 14.5 34.5
3,024 8.0 11.9 7.7 11.6 19.5

Table 4: Timings in seconds of the fused dynamic Orthodir variant with dynamic Orthodir
and PETSc’s CG. The enlarging factor t is set to 8 for Hook, 12 for Flan, and 24 for
Ela_30, and “comm” stands for the time spend in the global communication during the
iterations of ECG.
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Figure 3: Numerical comparison between dynamic Orthodir and the fused dynamic Or-
thodir variant on Flan_1565. In both cases, the horizontal axe represent the iteration
count, and the title correspond to the vertical axe (right: normlized residual, left: number
of search directions). The number of MPI processes is 1008 and the enlarging factor t is
set to 12. As expected, the two plots coincide perfectly.
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Figure 4: Numerical comparison between dynamic Orthodir and the fused dynamic Or-
thodir variant on Ela30. In both cases, the horizontal axe represent the iteration count,
and the title correspond to the vertical axe (right: normlized residual, left: number of
search directions). The number of MPI processes is 1008 and the enlarging factor t is set
to 24. As expected, the two plots coincide perfectly.
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In Table 4, we summarize the results obtained when we compare the fused dynamic
Orthodir method with dynamic Orthodir, and PETSc’s CG. More precisely, we compare
these 3 methods on Hook_1498, Flan_1565, and Ela_30 respectively using the same
parameters as in the strong scaling study, and t = 8 for Hook, 12 for Flan, and 24 for
Ela_30. Thus in any case the fused version is faster than the non–fused one. Indeed, it
does not suffer from numerical instabilities and the number of iterations remains exactly
the same (see Figures 3 and 4) but the time spent in the communication is reduced. For
example, with the largest number of MPI processes, the fused variant is more than two
times faster than the non–fused variant for the Hook test case, and around 1.5 times
faster than the non–fused variant for the Flan test case. Depending on the test case,
fusing the global communications even allows us to be slightly faster than PETSc’s CG
at large scale; this is the case for Hook, but not for Flan.
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In summary, fusing the global communications almost always leads to a decrease in the
runtime with respect to the non–fused variant. This decrease is significant at large scale
because the communication phase usually dominates the overall runtime. Furthermore,
the fused variant can also be slightly better than PETSc’s CG when the MPI processes
count is the highest (3024).

5.5.2 Cori

We now make the exact same experiments on Cori using KNL processors: both the
matrices and the parameters are the same as in section 5.5.1. In all the experiments we
use 2 threads per MPI processes, each one being bound to one physical core. It means
that the total number of processors used is # MPI ×2. Once again, we are interested in
comparing the performance of the fused algorithms against the non-fused ones, and with
PETSc’s CG, when the number of MPI processes is relatively high: starting to 2, 048,
and up to 16, 385 — meaning up to 32, 768 cores at the largest scale.

fused dynamic Orthodir dynamic Orthodir PETSc’s CG
Case # MPI comm total comm total total

Hook_1498 2,048 1.6 3.0 2.3 3.8 3.4
4,096 1.8 2.8 2.7 3.8 3.4
8,192 0.8 1.4 1.4 2.2 1.6

Flan_1565 2,048 2.0 5.5 3.0 6.4 5.5
4,096 1.6 3.7 2.6 4.9 3.7
8,192 1.4 2.9 2.4 4.1 3.2

Ela_30 2,048 18.2 32.4 24.6 39.0 151.7
4,096 6.5 14.3 8.3 16.2 53.7
8,190 5.1 11.2 7.0 13.5 34.6
16,384 4.0 8.0 6.3 10.1 31.7

Table 5: Timings in seconds of the fused dynamic Orthodir variant with dynamic Orthodir
and PETSc’s CG. The enlarging factor t is set to 8 for Hook, 12 for Flan, and 24 for
Ela_30, and “comm” stands for the time spend in the global communication during the
iterations of ECG.

We summarize the results we obtained in Table 5. As before, we compare the fused
dynamic Orthodir method with dynamic Orthodir and PETSc’s CG on Hook_1498,
Flan_1565, and Ela_30. For Cori is a much larger machine than Kebnekaise, we use
a larger number of MPI processes in these experiments. For the Hook test case, we ob-
serve that the fused variant is always faster than PETSc, unlike the non–fused. Indeed, the
communication time is drastically reduced: up to a factor almost 2 for the largest count
of MPI processes we considered. For the Flan matrix, the same behavior is observed. The
fused variant allows to obtain a speed–up for the largest count of MPI processes considered
with respect to PETSc’s CG. Thus it scales slightly better than PETSc’s CG. Eventually
for the Ela_30 test case, we observe a significant improvement of the scalability on the
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largest count of MPI processes. The fused dynamic Orthodir variant is indeed 33% faster
using 16, 384 MPI processes than when using 8, 192. On the other hand, PETSc’s CG is
around 8% times faster using 16, 384 MPI processes than when using 8, 192. As a conse-
quence, the fused dynamic Orthodir method is almost 4 times faster than PETSc’s CG
when using 16, 384 × 2 = 32, 768 physical processors. In summary, we observe that the
fused variant is always faster that the non–fused one. However, on this machine the fused
variant is at least as fast (for the Flan test case) as PETSc’s CG when the number of
MPI processes is relatively low (2, 048 and 4, 096), but slightly faster than PETSc when
using more than 8, 192 MPI processes. Thus the fused, dynamic Orthodir method scales
better than PETSc’s CG up to 16, 384 cores on this machine
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