
H2020–FETHPC–2014: GA 671633

D5.2

Software integration

April 2018

NLAFET D5.2: Software integration

DOCUMENT INFORMATION

Scheduled delivery 2018-04-30
Actual delivery 2018-04-27
Version 1.1
Responsible partner INRIA

DISSEMINATION LEVEL

CO — Confidential (until June 15; after that Public)

REVISION HISTORY

Date Editor Status Ver. Changes
2018-04-15 INRIA & UNIMAN members Draft 1.0 Initial version of

document produ-
ced

2018-04-25 INRIA, UNIMAN, RAL members Final Version 1.1 Second version of
document produ-
ced

AUTHOR(S)

Simplice Donfack, Laura Grigori, Jan Papez, Olivier Tissot, INRIA
Maksims Abalenkovs, Jack Dongarra, Mawussi Zounon, UNIMAN
Iain Duff, Stojce Nakov, RAL

INTERNAL REVIEWERS

Carl Christian Kjelgaard Mikkelsen, UMU
Sébastien Cayrols, RAL
Florent Lopez, RAL

COPYRIGHT

This work is ©by the NLAFET Consortium, 2015–2018. Its duplication is allowed only for
personal, educational, or research uses.

ACKNOWLEDGEMENTS

This project has received funding from the European Union’s Horizon 2020 research and in-
novation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

Table of Contents

1 Introduction 5

2 Introduction of Task-based Shared Memory Parallelism into 2DRMP 5
2.1 Description of 2DRMP . 5
2.2 Introduction of Tiled Asynchronous Routines . 7
2.3 Numerical Results . 7
2.4 Conclusion and Future Work . 7

3 Load flow in large scale power systems 8
3.1 Performance results . 8

4 Communication avoiding iterative methods and their efficiency for solving linear
elasticity problems and linear systems arising from Code Saturne (collaboration
with EDF) 11
4.1 Description of the parallel environment . 11
4.2 Test cases . 11
4.3 Impact of the enlarging factor . 13
4.4 Strong scaling study . 14
4.5 Impact of threads on performance . 15

5 Astrophysics : CMB data analysis 17

6 Conclusion 19

7 Acknowledgments 19

http://www.nlafet.eu/ 2/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

List of Figures

1 Propagation of global R-matrix through inner region 6
2 Performance of linear system solution based on LU-factorisation 7
3 Performance of eigenvalue decomposition for symmetric matrices 8
4 The execution time for the MA48, ParSHUM and UMFPACK solvers for the ma-

trices from Table 1. The execution time for the Jacobian_unbalancedLdf matrix
for MA48 is not presented since its value is too large (4.2 s). 10

5 The fill-in factor for the MA48, ParSHUM and UMFPACK solvers for the matri-
ces from Table 1. 10

6 Heterogeneity pattern for elasticity matrices . 12
7 Comparison Odir and D-Odir . 14
8 Strong scaling study . 17
9 Convergence of PCG and messenger-field methods in two test cases in Wiener

filter application. 18
10 Convergence of PCG and messenger-field with various cooling schemes in Wie-

ner filter (left) and map-making (right) application. 19

http://www.nlafet.eu/ 3/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

List of Tables

1 Statistics for the matrices that are used in this study. The size (n), number of
nonzero entries (nnz) and the symmetry index (si) is given for each matrix. . . 9

2 Test matrices. 13
3 Parameter study Ela_20 and BUNDLE . 13
4 Strong scaling results for BUNDLE. 15
5 Strong scaling results for Ela_30. 15
6 Comparison between Omin(1) and Odir(24) with 2048 MPI processes 16

http://www.nlafet.eu/ 4/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

1 Introduction

The Description of Action document states for Deliverable 4.2:
“Integration of the NLAFET library into the respective application environments.”
This deliverable is in the context of Workpackage 5, and describes our efforts on testing

and integrating the NLAFET library into several challenging real-world applications.

1. Task-based Shared Memory Parallelism into 2DRMP. Collaboration with Professor Stan
Scott. NLAFET contact Jack Dongarra, UNIMAN.

2. Load flow based calculations in large-scale power systems and PowerFactory code.
Collaboration with DIgSILENT GmbH, Germany. NLAFET Contact, Iain Duff, RAL.

3. Communication avoiding iterative methods and their efficiency for solving linear elas-
ticity problems and linear systems arising from Code Saturne (collaboration with EDF).
NLAFET contact Laura Grigori, Inria.

4. Data analysis in astrophysics and Midapack. Collaboration with University Paris 7,
France. NLAFET contact Laura Grigori, Inria.

We discuss them in detail in Sections 2 to 5 and we present our conclusions in Section 6.
The communication avoiding iterative methods tested in (3) and (4) above are currently

available within preAlps library (Inria) via the github of NLAFET. PreAlps was developed by
Inria in the context of Workpackage 4. The code has a reverse communication interface such
that it can be easily integrated into other scientific application and is scalable up to 16,000
cores.

In the Description of Action document, we have planned to collaborate with Thomas
Schulthess of ETH Zurich, Switzerland to test the dense solvers/eigensolvers developed in
Workpackage 2 in materials science and chemistry. However this collaboration was not pur-
sued due to a lack of time from ETH Zurich.

2 Introduction of Task-based Shared Memory Parallelism into
2DRMP

This report presents extension of the 2DRMP package to task-based shared memory paral-
lelism via PLASMA [2]. The most computationally intensive parts containing linear algebra
operations can be performed with PLASMA routines. The new routines introduced include:
LU-factorisation based linear systems solution dgetrs, eigenvalue decomposition dsyevd
and matrix–matrix multiplication dgemm. Preliminary performance results of kernel functi-
ons are presented.

2.1 Description of 2DRMP

Developed in the 1970s, the R-matrix propagation method became a popular choice for sol-
ving close-coupling equations describing the electron and photon collisions with atoms,

http://www.nlafet.eu/ 5/21

http://www.nlafet.eu/

NLAFET D5.2: Software integrationN.S. Scott et al. / Computer Physics Communications 180 (2009) 2424–2449 2433

Fig. 4. Propagation of the R-matrix across the inner region.

In the case of a subregion bounded by the r1-axis at the beginning of a new strip we note that the input boundary I consists of only one
edge. When propagating across the first subregion in the second strip there is no common boundary X : in this case only Eq. (64a) need
be solved.

Having obtained ℜ on the boundary of the innermost subregion (labelled 0 in Fig. 4), ℜ is propagated across each subregion in the
order indicated, working systematically from the r1-axis at the bottom of each strip across all subregions to the diagonal, eventually
yielding the global R-matrix, ℜ, on the boundary of the R-matrix internal and external regions.9

Before matching to the solution in the external region we first project the basis functions which span the elementary edges of this final
boundary, onto the atomic electron basis used in the asymptotic region and transform the global R-matrix accordingly. This is described
in the following section.

2.4. Transformation of the global R-matrix on the boundary between the internal and external regions

In the outer region, r1 ! ra , electron exchange between the target electron and the scattered electron is ignored. Here the two-electron
wavefunction is given by,

ΨE(r1, r2) =
∑

n2l1l2

yn2l1l2(r1)

r1
Yl1l2 LML (r̂1, r̂2)

Pn2l2(r2)

r2
, r1 ! ra (66)

where, yn2l1l2 (r1) is the unknown radial function of the scattered electron in channel, n2l1l2, and, Pn2l2 , is the atomic electron basis. The
atomic basis is finite such that 0 " l2 " lbndmax and l2 + 1 " n2 " nbndmax.10

The boundary radius, ra , is chosen so that the physical, or true, hydrogenic target orbitals of interest are accurately contained within
this boundary. These orbitals are augmented with numerical pseudo-orbitals constructed to be solutions of,

(
d2

dr2
2

− l2(l2 + 1)

r2
2

+ 2Z
r2

+ k2
n2l2

)
Pn2l2(r2) = 0, (67)

subject to the R-matrix boundary conditions,

Pn2l2(0) = 0, (68a)

ra

Pn2l2(ra)
.
dPn2l2

dr

∣∣∣∣
r2=ra

= 0. (68b)

Provided the boundary is chosen large enough the physical orbitals and the pseudo-orbitals will be automatically orthogonal.
Using Eq. (66) the scattered electron’s radial wavefunction in channel, n2l1l2, can be written on the boundary, r1 = ra , as,

yn2l1l2(ra)

ra
=

∫
Pn2l2(r2)

r2
Y∗

l1l2 LML
(r̂1, r̂2)ΨE(r1, r2)d r̂1 dr2, r1 = ra. (69)

Following the propagation across the inner-region we have a contribution to ΨE on the boundary, r1 = ra , from each subregion i. Denoting
this contribution by, Ψ i

E , we have,

Ψ i
E(r1, r2) =

∑

n2l1l2

yi
n2l1l2

(ra)

ra
Yl1l2 LML (r̂1, r̂2)

ν i
n2l2

(r2)

r2
, ai−1 " r2 " ai . (70)

Thus at, r1 = ra , in subregion i, the contribution to the radial wavefunction in channel, n2l1l2, is given by,

yn2l1l2(ra)

ra
=

∫
Pn2l2(r2)

r2
Y∗

l1l2 LML
(r̂1, r̂2)Ψ

i
E(r1, r2)d r̂1 dr2, ai−1 " r2 " ai . (71)

9 The route through the inner-region is not unique. For example, it is possible to proceed horizontally across rows rather than vertically in columns as illustrated in Fig. 4.
However, the amount of computation required for each route is different. An informal proof that the route indicated in Fig. 4 is optimal is given in [33].
10 The physical states are known exactly and may be represented as analytic functions of the form, Pnl(r) = ∑

i=1,nt coef [i] ∗ rirad[i] ∗ e−alpha∗r , with 0 ! l !
min(lbndmax,nbound − 1) and l + 1 ! n ! nbound. See Section 4.2 for information on the choice of lbndmax, nbndmax and nbound.

Figure 1: Propagation of global R-matrix through inner region

ions and molecules. The 2DRMP presents a collection of R-matrix propagation programs ai-
med at simulation of electron scattering from Hydrogen-like atoms and ions at intermediate
energies [17]. The main idea behind the efficiency of 2DRMP is the subdivision of the inter-
nal propagation region into a number of subregions. Local R-matrices are propagated within
each subregion contributing to the global R-matrix propagation. Figure 1 describes the order
of the global R-matrix propagation via the subregions.

2DRMP code consists of seven subprograms:

bp constructs atomic basis functions and long-range potential coefficients

rint2 computes radial integrals

newrd constructs Hamiltonian matrices in each subregion

diag diagonalises the subregion Hamiltonian matrices

amps uses matrix eigenvalues to calculate surface amplitudes on subregion edges

prop propagates global R-matrix across subregions of inner region (See Figure 1 for details)

farm solves the final set of equations

In the initial state the 2DRMP package has been highly parallel. The majority of computa-
tionally intensive linear algebra operations have been performed in parallel with LAPACK or
ScaLAPACK routines [3, 5]. Two levels of distributed memory parallelism have been present
in the package: (i) MPI parallelisation according to subregions of the global R-matrix and
(ii) MPI parallelisation according to the scattering energies [1].

http://www.nlafet.eu/ 6/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

0

50

100

150

200

250

300

350

400

450

0 5000 10000 15000 20000 25000 30000

G
F

L
O

P
/s

Matrix order, m

DGETRS, Intel Xeon, Ivy Bridge, E5-2697 v2 @ 2.70GHz
nthreads=24, nb=160, ib=40

MKL LAPACK 17.0.035
PLASMA 2.8
PLASMA 2.8 (tuned)

Figure 2: Performance of linear system solution based on LU-factorisation

2.2 Introduction of Tiled Asynchronous Routines

Alternative way to calculate computationally expensive parts of the code has been introdu-
ced with PLASMA. Tiled asynchronous PLASMA routines were incorporated into 2DRMP subpro-
grams. The routine diagonalise_matrix in the diag part is now based on dsyevd_tile_async,
performing eigenvalue decomposition on symmetric matrices. The propagation stage prop
applies two PLASMA routines dgetrs_tile_async for linear system solutions based on LU-
factorisation in the system_solver routine and dgemm_tile_async for matrix–matrix pro-
ducts.

2.3 Numerical Results

We compiled PLASMA using ICC 17.0.035 and linked to MKL 17.0.035 for its single-thread
BLAS functions. For the sake of comparison, we also report the performance of MKL’s cor-
responding routines. Figures 2 and 3 present performance results of dgetrs and dsyevd
kernel routines run on the 24 core Ivy Bridge node (part of the Wonder, Phase 2 system at
the STFC Daresbury Laboratory). PLASMA 2.8 is tested against the Intel MKL 17.0.035. Tuned
PLASMA used variable tile sizes nb, that resulted in the highest performance for given matrix
orders. The third curve, denoted “PLASMA”, illustrates performance of untuned PLASMA with
constant tile and inner block sizes nb and ib. Tuned PLASMA outperforms Intel MKL for matrix
orders between 6000 and 17000.

Similar performance signature is obtained for the matrix diagonalisation kernel. In this
case tuned PLASMA outperforms the MKL for a larger range of matrix orders: m ∈ [6000,20000].
Even the untuned PLASMA persistently outperformed MKL for m > 6000. It was not particu-
larly beneficial to tune PLASMA in this case, since the performance difference between the
tuned and untuned versions was only minor.

2.4 Conclusion and Future Work

Preliminary experiments show that the use of tiled asynchronous routines for computatio-
nally expensive linear algebra operations in a suite of 2DRMP software is beneficial for certain
matrix orders with m > 6000.

http://www.nlafet.eu/ 7/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

0

20

40

60

80

100

120

140

160

180

200

0 5000 10000 15000 20000 25000 30000

G
F

L
O

P
/s

Matrix order, m

DSYEVD, Intel Xeon, Ivy Bridge, E5-2697 v2 @ 2.70GHz
nthreads=24, nb=160, ib=40

MKL LAPACK 17.0.035
PLASMA 2.8
PLASMA 2.8 (tuned)

Figure 3: Performance of eigenvalue decomposition for symmetric matrices

Future work on this research front includes: (i) utilisation of the new PLASMA routines in
2DRMP, (ii) potential application of matrix addition routines and (iii) thorough correctness
testing and performance comparison against the original LAPACK-based version of 2DRMP.

3 Load flow in large scale power systems

The main NLAFET contact is Iain Duff and the main applications contact is Bernd Klöss of
DIgSILENT GmbH, Germany.

In this section we present performance results on test cases provided by the Power Sys-
tems application of DigSILENT GmbH (see Deliverable 5.1) using the ParSHUM library. The
ParSHUM library is a parallel multithreaded library for factorization of highly unsymmetric
matrices. For a given sparse matrix A, our solver decomposes the matrix into the form

PAQ = LU ,

where P and Q are row and column permutation matrices, respectively and L and U are
sparse lower and upper triangular matrices respectively. For further information about this
library, please refer to Deliverables 3.4 and 3.5.

3.1 Performance results

The tests presented in this section were performed on a system called Kebnekaise, which is
located in the High Performance Computing Center North (HPC2N) at Umeå University1.
Each compute node contains 28 Intel Xeon E5-2690v4 cores organised into 2 NUMA islands
with 14 cores in each. The nodes are connected with a FDR Infiniband Network. Each CPU
core has 32 KB L1 data cache, 32 KB L1 instruction cache and 256 KB L2 cache. Moreover, for
every NUMA island there is 35 MB of shared L3 cache. The total amount of RAM per compute
node is 128 GB. In our experiment, we are using only just one NUMA node, so all the tests
presented below are executed on fourteen cores.

1See https://www.hpc2n.umu.se/resources/hardware/kebnekaise.

http://www.nlafet.eu/ 8/21

https://www.hpc2n.umu.se/resources/hardware/kebnekaise
http://www.nlafet.eu/

NLAFET D5.2: Software integration

We define the symmetry index si by the expression

si (A) = numberi 6= j {ai j ∗a j i 6= 0}

nnz{A}
,

where nnz{A} is the number of off-diagonal entries in the matrix A. A symmetric matrix will
thus have a symmetry index of 1.0. We define 0/0 to have the value 1.0 so that a diagonal
matrix will be symmetric. A triangular matrix will have symmetry index zero. Our experi-
ments suggest that matrices with symmetry indices of less than 0.9 can be considered highly
unsymmetric. Additionally, we define the fill-in factor as the number of entries in the L and
U factors divided by the number of entries in A :

nnz{L}+nnz{U }

nnz{A}
.

The main characteristics for the matrices used in this study are presented in Table 1.

Matrix n nnz si
InnerLoop1 Balanced load flow 197K 745K 0.44
InnerLoop2 Balanced load flow 197K 806K 0.46
InnerLoop3 Balanced load flow 197K 806K 0.46
InnerLoop4 Balanced load flow 197K 806K 0.46
Jacobian_unbalancedLdf Unbalanced load flow 203K 2.41M 0.80
Newton_Iteration1 Balanced optimal power flow 427K 2.38M 0.14

Table 1: Statistics for the matrices that are used in this study. The size (n), number of nonzero
entries (nnz) and the symmetry index (si) is given for each matrix.

We compared the performance of our library with two state-of-the-art solvers for unsym-
metric matrices: MA48 [7] from the HSL library and UMFPACK [?] from the SuiteSparse li-
brary.

The execution time and the fill-in factor for the three solvers are presented in Figures 4
and 5 respectively. The ParSHUM solver outperforms the MA48 and UMFPACK solver for
all the test problems except the Jacobian_unbalancedLdf matrix, for which the UMFPACK
solver yields the lowest execution time. The main reason for this is that the ParSHUM solver
has a much larger fill-in factor for this matrix, 3.9 for UMFPACK and 12.4 for the ParSHUM
solver. Although the ParSHUM solver produces more fill-in for every matrix, it manages to
compensate with its parallel execution. We will continue to improve our solver to cope better
with these problems and further on this in Deliverable 5.3.

http://www.nlafet.eu/ 9/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

InnerLoop1

InnerLoop2

InnerLoop3

InnerLoop4

Jacobian_unbalance
dLdf

Newton_It
eratio

n1

ti
m

e
 (

s)

MA48
ParSHUM
UMFPACK

Figure 4: The execution time for the MA48, ParSHUM and UMFPACK solvers for the matrices
from Table 1. The execution time for the Jacobian_unbalancedLdf matrix for MA48 is not
presented since its value is too large (4.2 s).

 0

 2

 4

 6

 8

 10

 12

 14

InnerLoop1

InnerLoop2

InnerLoop3

InnerLoop4

Jacobian_unbalance
dLdf

Newton_It
eratio

n1

Fi
ll-

in
 f

a
ct

o
r

MA48
ParSHUM
UMFPACK

Figure 5: The fill-in factor for the MA48, ParSHUM and UMFPACK solvers for the matrices
from Table 1.

http://www.nlafet.eu/ 10/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

4 Communication avoiding iterative methods and their effi-
ciency for solving linear elasticity problems and linear sys-
tems arising from Code Saturne (collaboration with EDF)

In this section, we describe the numerical experiments we performed in order to assess
the parallel efficiency of the communication avoiding iterative methods developed in Work-
package 4 for two different applications: linear systems arising from solving linear elasticity
problems and linear systems arising from Code Saturne (collaboration with EDF). We fo-
cus on Enlarged Conjugate Gradient (ECG). We do not recall the definition of the method,
neither the details of the implementation, and refer the reader to Deliverable 4.2, 4.3 & 4.4
for more details on those aspects.

4.1 Description of the parallel environment

In the experiments we use a block Jacobi preconditioner, associating with each block a MPI
process. Before calling ECG, each MPI process factorizes the diagonal block of A correspon-
ding to the local row panel that it owns. At each iteration of ECG, each MPI process performs
a backward and forward solve locally in order to apply the preconditioner. Hence the appli-
cation of the preconditioner does not need any communication. It is likely that there exist
better preconditoners than block Jacobi for our test cases, however we are interested in the
iterative method rather than in the preconditioner. In particular, we do not want to target
specific applications and aim at being as generic as possible. Although in theory it is pos-
sible to apply any preconditioner within this implementation, in practice it is essential that
applying this preconditioner to several vectors at the same time is not too costly, e.g, a subli-
near complexity with respect to the number of vectors.

The following experiments are performed on a machine located at Umeå University as
part of High Performance Computing Center North (HPC2N), called Kebnekaise. In our ex-
periments, we use the so-called compute nodes, which are formed by Intel Xeon E5-2690v4
(Broadwell) with 2x14 cores. For a detailed description of the machine, we refer to the online
documentation2.

We compile the code (and its dependencies) using Intel toolchain installed on the ma-
chine: mpiicc (based on icc version 18.0.1 20171018) and MKL [20] version 2018.1.163. We
use PETSc [4] in order to compare ECG implementation to PETSc PCG implementation. In
particular, PETSc is configured to use MKL-PARDISO as exact solver for sparse matrices in
the block Jacobi preconditioner. For partitioning the matrix we are using the METIS library
downloaded and installed by PETSc.

4.2 Test cases

For our first test cases we also use the CFD solver Code_Saturne that solves the Navier-
Stokes equations for incompressible flows. This code is developed in-house by EDF and is
distributed under the GPL open source license (available at http://www.code-saturne.org).
Code_Saturne has been included in the Unified European Applications Benchmark Suite of

2https://www.hpc2n.umu.se/resources/hardware/kebnekaise

http://www.nlafet.eu/ 11/21

http://www.code-saturne.org
https://www.hpc2n.umu.se/resources/hardware/kebnekaise
http://www.nlafet.eu/

NLAFET D5.2: Software integration

Figure 6: Heterogeneity pattern of the Young’s modulus and Poisson’s ratio for elasticity ma-
trices.

the PRACE project (see http://www.praceri.eu/ueabs). It is used for a wide range of applica-
tions, many of which are related to nuclear engineering, but increasingly with applications
related to renewables. We focus on simulations such as the computation of fluid flow in tube
bundles, either cross-flow as in steam generators, or tangential as in Pressurized Water Re-
actor fuel assemblies, as these applications are numerically quite representative of a broader
range of applications, and large-scale meshes for benchmarking are available. We have colla-
borated with Yvan Fournier from EDF to test ECG on a matrix corresponding to the BUNDLE
test case.

The Ela matrices arise from the linear elasticity problem with Dirichlet and Neumann
boundary conditions defined as follows

div(σ(u))+ f = 0 onΩ (4.1)

u = 0 on ∂ΩD (4.2)

σ(u) ·n = 0 on ∂ΩN (4.3)

where Ω is a unit cube. The matrices Ela_N correspond to this equation discretized with
FreeFem++ [12] using a triangular mesh with 1600×N ×N points on the corresponding ver-
tices and P1 finite elements scheme. The Dirichlet boundary is denoted ∂ΩD , ∂ΩN is the
Neumann boundary, f is some body force, u is the unknown displacement field. σ(.) is the
Cauchy stress tensor given by Hooke’s law: it can be expressed in terms of Young’s Modulus
E and Poisson’s ratio ν. For a more detailed description of the problem see [9, 14, 18]. We
consider discontinuous E and ν, (E1,ν1) = (2×1011,0.25) and (E2,ν2) = (107,0.45) (Figure 6).
This test case is known to be difficult because the matrix is ill conditioned. In particular,
the classical one-level preconditioners are not expected to be very effective [6]. Numerical
properties of the test matrices are summarized in Table 2.

In all the experiments the tolerance is set as the default tolerance of PETSc, i.e., 10−5 and
the maximum number of iterations is set to 5000. The right-hand side is chosen uniformly
random, and then normalized. The initial guess is set to 0. We do not use any kind of thre-
ading and use 28 MPI processes per node. Unless otherwise stated, we use one OpenMP
thread per MPI process – we also perform numerical experiments to observe the effect of

http://www.nlafet.eu/ 12/21

http://www.praceri.eu/ueabs
http://www.nlafet.eu/

NLAFET D5.2: Software integration

Name Size Nonzeros Problem

BUNDLE 13,044,996 347,890,620 CFD

Ela_20 2,118,123 74,735,397 Linear elasticity
Ela_30 4,615,683 165,388,197 Linear elasticity

Table 2: Test matrices.

threading in the last section.

4.3 Impact of the enlarging factor

First we study the impact of the enlarging factor t on the methods. We fix the number of
processors to 112 and we vary the value of t for the 4 methods: Orthodir (Odir), Orthodir with
dynamic reduction of the search directions (D-Odir), Orthomin (Omin) and Breakdown-Free
Orthomin (BF-Omin). The results obtained are summarized in Table 3

t Odir D-Odir Omin BF-Omin

BUNDLE 1 20.3 20.4 20.0 20.2
2 23.1 23.0 23.9 23.1
4 28.7 28.8 28.8 28.8
8 36.8 36.4 36.7 36.4

Ela_20 1 ++ ++ ++ ++
4 97.6 ++ - ++
8 72.8 55.0 - ++

12 56.8 51.5 - ++
16 53.6 47.5 - ++
20 56.3 47.2 - ++
24 57.8 46.6 - ++
28 59.9 47.5 - ++

Table 3: Runtime results for BUNDLE and Ela_20 (P = 112). The ++ means that the maximum
number of iterations (5000) was reached and the - means that a breakdown occurred.

For BUNDLE matrix the reduction of the number of iteration is not balancing the incre-
ase in flops and the runtime is slightly increasing when t increases. In fact, the number of
iterations when t = 1 is already very low in this case (85) and increasing t does not allow to
reduce it significantly. For instance, when t = 8 the number of iterations is 69, a decrease of
only 20%. Using the dynamic reduction of the search directions is not very effective for this
matrix because it generally occurs when the method is about to converge.

For Ela_20 test case we remark that a breakdown occurs with Orthomin for all the va-
lues of t that we tested. This behavior of elasticity matrices had also been reported in [11].
Using BF-Omin effectively cures the breakdowns but does not allow the method to converge

http://www.nlafet.eu/ 13/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

0 100 200 300
Iteration

10
1

10
0

10
2

10
4

10
5

(-4)

Ela_20, # procs = 112, t = 24

odir-0
odir-1

4

8

12

16

20

24

Figure 7: Convergence of D-Odir (odir-1) compared to Odir (odir-0). The dash line represents
the number of search directions for D-Odir. In parenthesis the difference of iteration count
to reach convergence between D-Odir and Odir (+ means that D-Odir took more iterations
to converge).

within the prescribed maximum number of iterations. Similarly, D-Odir does not converge
when t = 4, but performs very well when t is larger. On the contrary, Odir is very stable and
converges for all the values of t tested. However, we also notice that using the dynamic Ort-
hodir variant (D-Odir) allows to reduce significantly the runtime when t is large: D-Odir is
around 20% faster than Odir. Overall, for this matrix, the best method is D-Odir with t = 24.

In order to better understand how the dynamic reduction of the search directions affects
the convergence we plot the normalized residual and the block size (dash line) as a function
of the iteration count for Ela_20 (Figure 7). We note that the Ela_20 test case is very favorable:
the block size is reduced even a bit before the convergence and the number of iterations is
lower than when the search reductions are not reduced. On other test cases, we notice that
the convergence is not really affected by the reduction of the search directions because the
number of iterations remains almost the same. However the block size is effectively reduced
as soon as the method starts to converge.

In conclusion, D-Odir is the best method over the different variants of ECG that we tes-
ted: it is a good compromise between the stability of Odir and the efficiency of the classical
CG. Nevertheless, there exist matrices such as BUNDLE for which the reduction of the num-
ber of iterations does not compensate the extra cost of ECG compared to the classical CG,
even when using the dynamic reduction of the search directions. These results support the
theoretical convergence study that has been done but not presented in this document. In-
deed ECG(t) is acting as if the t smallest eigenvalues of the matrix were deflated. Finally, we
notice that values of t between 4 to 24 are good default parameters. Indeed, such values al-
low to effectively reduce the number of iterations while maintaining an affordable cost per
iteration.

4.4 Strong scaling study

Following the parameter study, we perform a strong scaling study on Ela_30.

http://www.nlafet.eu/ 14/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

For BUNDLE test case, we compare PETSc PCG and Omin with t = 4. We do not use the
dynamic reduction of the search directions as it is not very effective for this matrix, and we
use Omin because it is a bit cheaper that Odir and does not breakdown for this matrix. The
results are summarized in Table 4. We observe that both PETSc PCG and ECG are scaling
very well. Nevertheless, in this case enlarging the Krylov subspaces does not allow to reduce
significantly the number of iterations and ECG remains almost 2 times slower than PETSc
PCG.

Omin(4) CG

MPI # iter res time (s) # iter res time (s)

252 78 1.3E-4 12.1 89 1.3E-4 7.4
504 88 1.8E-4 5.9 98 1.9E-4 3.4

1,008 95 2.6E-4 2.9 105 2.7E-4 1.5

Table 4: Strong scaling results for BUNDLE.

For Ela_30 we compare PETSc PCG and D-Odir with t = 24, the best choice over the pa-
rameters we tested. The resulting runtimes are summarized in Table 5. Enlarging the Kry-
lov subspaces allows us to reduce drastically the number of iterations: D-Odir(24) performs
around 25 times less iterations than CG. As a consequence, D-Odir(24) is more than 5 times
faster than PETSc PCG at small scale and around 2.5 times faster at large scale. We believe
that this relatively poor scaling of D-Odir(24) compared to PETSc PCG at large scale is due to
the implementation that is not as optimized as PETSc which has been developed over many
years.

D-Odir(24) CG

MPI # iter res time (s) # iter res time (s)

252 513 1.3E-4 77.9 13,626 1.3E-4 406.9
504 531 1.9E-4 45.5 15,819 1.9E-4 258.9

1,008 606 2.6E-4 23.7 17,023 2.7E-4 94.7
2,016 696 2.6E-4 14.5 19,047 2.7E-4 34.5

Table 5: Strong scaling results for Ela_30.

4.5 Impact of threads on performance

One motivation for enlarging the Krylov subspaces is to increase the arithmetic intensity
of the resulting methods. The use of the so-called many-core architectures such as Nvidia
GPUS, Intel Xeon Phi, or Sunway SW26010 used in the Sunway TaihuLight supercomputer,
is particularly interesting in this context. As the implementation relies on the MKL library
which is multi-threaded [20], it is straightforward to assess its efficiency on the Xeon Phi
processors.

In order to do so, we perform the following experiments on NERSC’s supercomputer Cori.
It consists in two partitions, one with Intel Haswell processors and another one with the last

http://www.nlafet.eu/ 15/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

generation of Intel Xeon Phi processors: Knights Landing (KNL). More precisely, the second
partition consists in 9,688 single-socket Intel Xeon Phi 7250 (KNL) processors with 68 cores
each. For a detailed description of the machine, we refer to the online documentation3. We
compile the code (and its dependencies) using the default compilers and libraries installed
on the machine: icc version 18.0.1, cray-mpich version 7.6.2, MKL version 2018.1.163 and
METIS version 5.1.0.

We consider Ela_30 test case and we study the impact of threads on the strong scaling of
Odir(24). We do not use the dynamic reduction of the search directions in order to keep the
cost of one iteration constant during the solve to better understand the effect of threading.
More precisely, we increase the number of threads assigned to each MPI process from 1 to 8.
Then we vary the number of MPI processes from 64 to 2048. This means that we are using
at most 2,048×8 = 16,384 cores. In practice, we use so-called core specialization in order to
reserve 4 cores per node for handling system services that is why our total number of cores
is not a multiple of 68.

The results obtained are summarized in Figure 8. First of all, we notice that there is a
trade-off between using threads or MPI processes because the number of MPI processes dic-
tates the preconditioner. Indeed, there is as many blocks in the block Jacobi preconditioner
as the number of MPI processes, thus increasing the number of MPI processes deteriorates
the quality of the preconditioner but also reduces its application cost. For instance, using
512 MPI processes takes 123s, and using 64 MPI processes with 8 threads each takes 179s: it
is an increase of 50% compared to 512 MPI processes. Nevertheless, we observe that using
more than 2 threads, and up to 8, has always a significant effect on the speed-up, even when
the number of MPI processes is high. For instance, as shown in Table 6, increasing the num-
ber of threads from 1 to 8 with a fixed number of 2,048 MPI processes leads to an decrease in
runtime of nearly 3. Of course, we are not close to full efficiency when using multiple thre-
ads, but we are still taking advantage of the multithreaded BLAS 3 routines. This is illustrated
by the Table 6 where we compare the speed-up obtained by using threads for Omin(1), which
corresponds to the classical PCG, and Odir(24). We observe that using more than 2 threads is
not effective at all with Omin(1) whereas it always significantly increases the speed-up with
Odir(24).

Omin(1) Odir(24)

omp time (s) speed-up time (s) speed-up

1 89 - 44 -
2 74 1.2 29 1.5
4 80 1.1 21 2.1
8 79 1.1 16 2.8

Table 6: Comparison between Omin(1) and Odir(24) with 2048 MPI processes. We indicate
the speed-up when increasing the number of threads (# omp) for each method.

Finally, we are able to obtain an overall speed-up of 50 when using 16,384 cores with
respect to 64 cores. Compared to an ideal speed-up of 256, it may seem that this result is

3http://www.nersc.gov/users/computational-systems/cori/configuration/

http://www.nlafet.eu/ 16/21

http://www.nersc.gov/users/computational-systems/cori/configuration/
http://www.nlafet.eu/

NLAFET D5.2: Software integration

64 128 256 512 1024 2048
MPI

 0

 1

10
15
25
50

100

250
Ti

m
e

(s
)

1 OpenMP
2 OpenMP

4 OpenMP
8 OpenMP

0
5
10

25

50

S
pe

ed
-u

p
(w

.r.
t.

64
 M

P
I/1

 O
pe

nM
P

)

Figure 8: Strong scaling study on Ela_30 test case. The bars represent the runtime (left) and
the lines represent the corresponding speed-up with respect to 64 MPI with 1 thread each
(right).

not very good (around 20% of efficiency), however it is well-known that Krylov methods are
not very efficient at very high scale4. Furthermore, it is important to notice that the matri-
ces tested are relatively small, but they allow us to simulate extreme scale situation: with
16,384 cores the average number of unknowns per core is around 280. We have shown that
in such cases, using enlarged Krylov subspaces allows to increase arithmetic intensity while
decreasing the communication by drastically decreasing the overall iterations. Thus it takes
advantage of the current trend in hardware architecture for reaching exascale.

5 Astrophysics : CMB data analysis

The main NLAFET contact is Laura Grigori and the principal application contacts are Radek
Stompor from APC/CNRS, France, and Carlo Baccigalupi of SISSA Italy.

Studies of the Cosmic Microwave Background (CMB) anisotropies have been driving the
progress in our understanding of the Universe for nearly quarter of the century. CMB data
analysis commonly involves solutions of large, structured linear systems of equations. Two
typical and important examples of such systems are map-making and Wiener Filter systems
of equations. These systems are solved either as a stand-alone task or as part of more in-
volved process, such as a power spectrum estimation, which commonly require multiple
solutions of such systems.

In both the examples mentioned above, the system matrices are in practice not avai-
lable and one can only perform their application to a vector. Because of this, the Krylov
methods (in particular, as the matrices are symmetric positive definite, preconditioned con-

4This is well illustrated by HPCG benchmark: http://www.hpcg-benchmark.org/custom/index.html?lid=
155&slid=293

http://www.nlafet.eu/ 17/21

http://www.hpcg-benchmark.org/custom/index.html?lid=155&slid=293
http://www.hpcg-benchmark.org/custom/index.html?lid=155&slid=293
http://www.nlafet.eu/

NLAFET D5.2: Software integration

jugate gradients) are the methods of choice. A standard preconditioner used in the field is a
simple block-diagonal preconditioner, which is easy to construct and apply. Recently (see,
e.g., [10,19]), this preconditioner was improved using the deflation of few vectors approxima-
ting the eigenvectors associated with the smallest eigenvalues of the system matrix, which
often harm the convergence of the PCG solver. The resulting, two-level preconditioner pro-
vides some speed-up (see also [16]), however, there is still a need for faster and well-scalable
solvers because of the anticipated sizes of the forthcoming datasets.

In our collaboration, we have for the moment installed the preAlps library at NERSC
supercomputing center, Lawrence Berkeley National Laboratory, and we currently interact
with Paris 7 researchers to interface our code with their map making code. The interfacing
phase will be finalized soon and we will perform numerical experiments in the following
weeks. In the meantime, we have also collaborated on studying a new linear systems solving
approach, first introduced in [8] for Wiener Filter application and in [13] for map-making.
This approach is based on so-called messenger-field algorithm with cooling and it became
quickly popular in the field. However, as we have shown in [15], the messenger field corre-
sponds to fixed-point iterations of an appropriately preconditioned initial system. We then
argue that a conjugate gradient solver applied to the same preconditioned system will in
general ensure at least a comparable and typically better performance in terms of the num-
ber of iterations to convergence and time-to-solution. This is illustrated in Figure 9, where
we compare the convergence of PCG and messenger-field in two test cases in Wiener filter
application.

0 20 40 60 80 100 120 140 160
iteration

10 11

10 9

10 7

10 5

10 3

10 1

re
l.

S-
no

rm
 o

f r
es

id
ua

l

PCG
MF

0 50 100 150 200 250 300
iteration

10 6

10 5

10 4

10 3

10 2

10 1

100

re
l.

S-
no

rm
 o

f r
es

id
ua

l

PCG
MF

Figure 9: Convergence of PCG and messenger-field methods in two test cases in Wiener filter
application.

The relative comparison of the performance of the messenger-field method with cooling
and that of the PCG solver is still unclear and the freedom in defining the cooling scheme ma-
kes the mathematical analysis of this method and in particular its potential advantages over
others difficult. However, we have observed in our numerical experiments (see Figure 10)
that PCG was superior. We regard this important for setting the direction in which our future
work should proceed. The results motivate us to look for better preconditioning techniques
as the most promising way to address the problem of solving large systems in the CMB data
analysis.

http://www.nlafet.eu/ 18/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

0 50 100 150 200 250 300
iteration

10 6

10 5

10 4

10 3

10 2

10 1

100

re
l.

S-
no

rm
 o

f r
es

id
ua

l

PCG
MF cool EW13
MF cool Retal17
MF cool HN17

0 5 10 15 20 25 30 35 40
iteration

10 8

10 6

10 4

10 2

100

re
l.

no
rm

 o
f r

es
id

ua
l

PCG
MF
MF cool
PCG cool

Figure 10: Convergence of PCG and messenger-field with various cooling schemes in Wiener
filter (left) and map-making (right) application.

6 Conclusion

In this deliverable we have summarized our efforts on testing and integrating our software
in several challenging applications.

In the context of communication avoiding iterative methods developed in Workpackage
4 (Inria), our results focused mainly on the elasticity 2D and 3D problems which are widely
used in structural analysis. The structure is formed by several layers of materials whose re-
sistance is measured when applying an external force or under a load. The matrix associated
with this problem is symmetric positive definite, but getting the solution is very challenging
for traditional iterative methods. Our experiments show that our research approaches solve
efficiently the elasticity 2D and 3D problem. ECG consists in increasing the Krylov subspace
in order to reduce the global number of iterations of the solver, while LORASC preconditi-
oner consists in approximating the inverse of the Schur-complement to build a robust and
scalable preconditioner which decrease considerably the number of iterations of an itera-
tive solver. ECG can be used whenever classic CG is required and can be combined with
other preconditioner such as Block Jacobi, and LORASC preconditioner can be used with
any other iterative solver such as PETSC. This makes both approaches easy to integrate into
existing scientific application. We have also found that ECG does not outperform existing
approaches for the matrices provided to us by EDF. In that case we found that classic itera-
tive methods converge already fast. We are currently working on interfacing ECG with the
astrophysics application, and experiments will be performed in the following weeks.

7 Acknowledgments

This project is funded from the European Union’s Horizon 2020 research and innovation pro-
gramme under the NLAFET grant agreement No 671633. We thank the High Performance
Computing Center North (HPC2N) at Umeå University for providing computational resour-
ces and valuable support.

http://www.nlafet.eu/ 19/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

References

[1] A Message-Passing Interface standard (MPI). Accessed on Apr 8, 2018.

[2] Parallel Linear Algebra Software for Multicore Architectures (PLASMA). Accessed on
Apr 8, 2018.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ guide, volume 9. SIAM,
1999.

[4] Satish Balay, Shrirang Abhyankar, M Adams, Peter Brune, Kris Buschelman, L Dalcin,
W Gropp, Barry Smith, D Karpeyev, Dinesh Kaushik, et al. Petsc users manual revision
3.7. Technical report, Argonne National Lab.(ANL), Argonne, IL (United States), 2016.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, et al. ScaLAPACK users’ guide, volume 4. SIAM,
1997.

[6] V. Dolean, P. Jolivet, and F. Nataf. An introduction to domain decomposition methods.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015. Algo-
rithms, theory, and parallel implementation.

[7] I. S. Duff and J. K. Reid. The design of MA48, a code for the direct solution of sparse
unsymmetric linear systems of equations. ACM Trans. Math. Software, 22(2):187–226,
1996.

[8] F. Elsner and B. D. Wandelt. Efficient wiener filtering without preconditioning. A&A,
549:A111, 2013.

[9] L. Grigori, F. Nataf, and S. Youssef. Robust algebraic schur complement based on low
rank correction. Technical report, ALPINES-INRIA, Paris-Rocquencourt, 6 2014.

[10] L. Grigori, R. Stompor, and M. Szydlarski. A parallel two-level preconditioner for cosmic
microwave background map-making. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC ’12, pages 91:1–
91:10, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[11] L. Grigori and O. Tissot. Reducing the communication and computational costs of en-
larged Krylov subspaces conjugate gradient. NLAFET Working Note WN 13. Also as
Research Report RR-9023, Feb 2017.

[12] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251–265, 2012.

[13] K. M. Huffenberger and S. K. Næss. Cosmic Microwave Background Mapmaking with a
Messenger Field. ApJ, 852:92, January 2018.

[14] F. Nataf, F. Hecht, P. Jolivet, and C. Prud’Homme. Scalable domain decomposition pre-
conditioners for heterogeneous elliptic problems. SC13, (Denver, Colorado, United Sta-
tes), 2013.

http://www.nlafet.eu/ 20/21

http://www.nlafet.eu/

NLAFET D5.2: Software integration

[15] J. Papež, L. Grigori, and R. Stompor. Solving linear equations with messenger-field and
conjugate gradients techniques - an application to CMB data analysis. NLAFET Working
Note WN 19, Mar. 2018.

[16] G. Puglisi, D. Poletti, G. Fabbian, C. Baccigalupi, L. Heltai, and R. Stompor. Iterative
map-making with two-level preconditioning for polarized Cosmic Microwave Back-
ground data sets. ArXiv e-prints, January 2018.

[17] N Stanley Scott, M Penny Scott, Phil G Burke, Timothy Stitt, Virginia Faro-Maza, Chris-
tophe Denis, and A Maniopoulou. 2DRMP: A suite of two-dimensional R-matrix propa-
gation codes. Computer Physics Communications, 180(12):2424–2449, 2009.

[18] N. Spillane. An adaptive multipreconditioned conjugate gradient algorithm. 38:A1896–
A1918, 01 2016.

[19] M. Szydlarski, L. Grigori, and R. Stompor. Accelerating the cosmic microwave back-
ground map-making procedure through preconditioning. A&A, 572:A39, December
2014.

[20] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang. Intel math kernel li-
brary. In High-Performance Computing on the Intel® Xeon Phi, pages 167–188. Springer,
2014.

http://www.nlafet.eu/ 21/21

http://www.nlafet.eu/

	Introduction
	Introduction of Task-based Shared Memory Parallelism into 2DRMP
	Description of 2DRMP
	Introduction of Tiled Asynchronous Routines
	Numerical Results
	Conclusion and Future Work

	Load flow in large scale power systems
	Performance results

	Communication avoiding iterative methods and their efficiency for solving linear elasticity problems and linear systems arising from Code Saturne (collaboration with EDF)
	Description of the parallel environment
	Test cases
	Impact of the enlarging factor
	Strong scaling study
	Impact of threads on performance

	Astrophysics : CMB data analysis
	Conclusion
	Acknowledgments

