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1 Introduction
The Description of Action document states for Deliverable D3.2:

“D3.2 Algorithm design for symmetrically structured factorizations
Report on algorithm design and to address issues around use of DAGs for
sparse factorizations. Includes reporting on prototype code testing possible
solutions.”

This deliverable is in the context of Task–3.2 (Direct methods for (near-)symmetric
systems).

This deliverable discusses the design of algorithms for the factorization of
symmetrically structured matrices and is reporting on work in Task 3.2 of Workpackage
3.

In this work we are interested in solving the linear system of equations

Ax = b, (1)

where A is a large, sparse, symmetrically structured matrix. Many applications require the
solution of such linear systems of equations and in many cases direct methods are employed
because of their robustness, accuracy and usability as black-box solvers. Using these
methods, we aim to solve these problems as fast as possible by exploiting the computing
capabilities of modern architectures that are highly parallel while ensuring the accuracy
of the computed solution especially when tackling indefinite systems.

Modern HPC platforms typically consist of multiple compute nodes connected through
a high speed network where each node is generally composed of multicore processors
connected to a NUMA socket and accelerators such as Graphical Processing Units (GPU)
or Xeon Phi devices. With the advent of multicore processors, task-based algorithms
have been shown by Buttari’s et al. [10] to yield good speedups for dense linear algebra
factorization algorithms. The idea behind task-based algorithms is to decompose the
workload into fine granularity tasks that can be executed in parallel as soon as their
input data becomes available as a result of the execution of other tasks. These task inter-
dependencies can be organised in a graph called a Directed Acyclic Graph (DAG). This
approach has been exploited in the dense linear algebra software package PLASMA [3]
which targets multicore architectures but has also been successfully adapted for targeting
GPU-based heterogeneous systems in the Chameleon library [3]. This approach was used
for sparse linear algebra with the design of new DAG-based algorithms for implementing
sparse factorization. In the work by Hogg et al. [17] the authors used a DAG-based
supernodal method for implementing the Sparse Cholesky solver HSL_MA87. Similarly
Buttari implemented a DAG-based multifrontal QR method in the qr_mumps solver [9].

In order to face the complexity of modern architectures with an ever increasing
number of cores per chip, a deep memory hierarchy and heterogeneous processors, a
common approach consists in using a runtime system for executing DAGs in parallel.
The runtime system plays the role of a software layer between the application, where
the DAG is expressed using a high-level API, and the architecture. As it manages
the task dependencies, data coherency and memory transfers, the runtime system
removes the burden of handling low-level hardware details and increases portability and
maintainability of the software. In this deliverable we are mainly interested in the
two following runtime systems: StarPU [7] developed by the STORM team at INRIA
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Bordeaux Sud-Ouest and Parsec [8] from ICL, University of Tennessee, Knoxville. We
are also using the standard OpenMP with its tasking capabilities that were introduced in
Version 3.5.

In this deliverable we describe the design of two sparse direct solvers for computing
the solution of equation (1). First, we present in Section 6 the SpLLT package which is
a Cholesky solver for solving symmetric positive-definite systems. Then, we introduce in
Section 10 the SSIDS package which is a LDLT solver for solving symmetric indefinite
systems. In both cases we use a runtime system approach for implementing our parallel
codes and we show competitive performance in comparison with the state-of-the-art
solvers.

2 Sparse factorization for symmetrically structured
systems

In this deliverable we focus on solving symmetrically structured sparse linear systems
using direct methods. The solution is generally achieved in three main phases: the
analysis, the factorization and the solve phases. The factorization phase consists
in finding a decomposition of the original system into a product of matrices, called
factors, with a simpler structure. The analysis phase is responsible for computing the
dependencies between the coefficients in the factors and allocates the data structures
needed during the factorization phase. The solve phase retrieves the solution using the
decomposition produced by the factorization. The factorization phase is generally the
most computationally intensive phase. For this reason most of our effort consists in
speeding up the factorization by exploiting parallelism and improving kernel efficiency.
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(a) Sparsity pattern.
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(b) Elimination tree.

Figure 1: Sparsity pattern of an illustrative 6-by-6 matrix (a) and its corresponding
elimination tree (b). In (a) crosses represent nonzero entries in the original matrix whereas
bullets represent fill-in entries.
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2.1 Symmetric positive-definite systems
When the input system A is symmetric positive-definite, it can be decomposed using the
Cholesky algorithm into

PAP T = LLT , (2)

where the factor L is a lower triangular matrix. Then during the solve phase, the solution
x in the original system can be computed through the solution of the systems Ly =
Pb and LT Px = y by means of forward and backward substitution. Note that the
matrix L is normally denser than the matrix A because of nonzeros introduced in the
elimination process. These are called fill-in and can be greatly reduced by a good choice
for the permutation matrix P . Two main techniques for choosing a P to reduce fill-in
are Minimum Degree [20, 19, 4, 5] or Nested Dissection [15] or variants of these methods.
Note that in our software, the analysis is done by the ssids_analyse routine from the
SSIDS package available in the SPRAL library1.

In Figure 1(a) we show the sparsity pattern of a simple 6-by-6 symmetric matrix
with 16 nonzero entries and 4 fill-in entries. In Figure 1(b) the so-called elimination tree
associated with this matrix is shown. This tree, in which each node represents a column
in the factor, expresses the dependencies between the coefficients during the factorization.
The factorization is performed by traversing the assembly tree in a topological order i.e. a
node can be processed after its children have been processed, and at each node performing
two main operations: computing the column in the factor associated with the current node
and then updating the ancestor node using the computed factor. Note that the columns
that are located in independent branches can be processed in parallel. This is refereed
to as tree-level parallelism. In our example, it is easy to see from the elimination tree in
Figure 1(b) that columns 1, 3 and 4 can be treated in parallel at the beginning of the
factorization.

6
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1 2
4
5
6

4 5

3
5

3

Figure 2: Assembly tree corresponding to the elimination tree in Figure 1(b) where the
nodes pairs {1, 2} and {4, 5} have been amalgamated.

In order to increase the efficiency of operations by exploiting Level 3 BLAS routines we
amalgamate columns that have a similar nonzero pattern and nodes in the elimination tree
become dense matrices. This tree is called the assembly tree and the amalgamated columns

1https://github.com/ralna/spral
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are referred to as a supernode. We illustrate such tree in Figure 2 with the assembly tree
corresponding to our example matrix in Figure 1(a). Note that the supernodes have a
trapezoidal shape because we exploit the symmetry and only manipulate coefficients in
the lower triangular part of our matrix.

2.2 Symmetric indefinite systems
So far we have discussed the case of positive definite matrices, however when we are
dealing with indefinite systems, we seek the decomposition

PAP T = LDLT , (3)

where the permutation P is not only meant to preserve the sparsity of the system but is
also used for pivoting to maintain stability during the factorization process and therefore
allows us to compute the solution of equation (1) with good accuracy. Note that the
matrix D is block diagonal with blocks of size 1×1 and 2×2. This is due to the fact that
using only 1×1 pivots is not sufficient to guarantee the stability of the LDLT factorization
. In the indefinite case, the sparse factorization also uses the assembly tree except that
at each supernode a dense LDLT factorization is performed such as(

F11 F T
21

F21 F22

)
=
(

L11
L21 I

)(
D11

F21 − L21D11L
T
21

)(
L11 LT

21
I

)
, (4)

where L11 is lower triangular, L21 rectangular and D11 is block diagonal with 1×1 and 2×2
blocks. Note that the pivots may only be chosen from F11. Therefore, when computing
the factor L21 = F21(D11L

T
11)−1, it is necessary to verify the stability of the operation using

some predetermined stability criterion. If a candidate pivot is found to be unsuitable it
is moved to an ancestor supernode (the parent node in the multifrontal method) and is
eliminated later during the factorization. Such pivots are said to be delayed. Note that,
delaying pivots generally increases the floating-point operation and memory footprint of
the factorization. It is therefore crucial to limit the number of delayed pivots and this
can be done by using scaling techniques such as weighted matching scaling approach
implemented in MC64 [12, 13].

In Figure 3 we use the assembly tree from Figure 2 to illustrate how pivots might
be delayed during the factorization process in order to preserve stability. In Figure 3(a)
we show the case where the entry a33 cannot be used as a pivots to eliminate column 3
because of the entry shown in red. It is therefore necessary to delayed this column as
there is no alternative for eliminating it. As a result the delayed pivot is sent to the parent
supernode and put at the end of the fully-summed variable contained at this supernode.
This procedure generate extra memory storage and floating-point operation because of
the two new coefficients that are represented in blue.

3 Task-based sparse Cholesky factorization
As mentioned in the previous section, it is possible to identify several levels of
parallelism in the assembly tree such as node-level and tree-level parallelism. In the
parallel implementation of sparse factorization algorithms, these are generally exploited
separately. In this case, a common approach consists in having several processes
for handling independent branches in the tree thus taking advantage of the tree-level
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Figure 3: Delayed pivot in the assembly tree (b) resulting from a failed pivot (a) when
trying to eliminate column 3. The failed entry is represented in red and the blue parts
correspond to the extra entries in the sparse structure due to the delayed pivot.

parallelism while using multithreaded BLAS kernels for processing supernodes in order
to exploit node-level parallelism. In our work we instead follow the DAG-based approach
taken by Hogg et al. [17] for the implementation of the solver HSL_MA87. As we explained
during the introduction, this approach offers a significant improvement over the use of the
traditional fork-join parallelism model in the dense case. By using the simple assembly
tree depicted in Figure 4(a) we illustrate how we use the task-based Cholesky factorization
in our assembly tree. In this tree, the supernodes are partitioned into square blocks of size
nb and we operate on these blocks to achieve the factorization. The tasks, corresponding
to the factorization of our simple assembly tree are illustrated in the DAG shown in
Figure 4(b). The tasks in this DAG execute the following kernels:

1. tasks denoted f correspond to the computation of the Cholesky factor of a diagonal
block,

2. tasks denoted s perform a triangular solve of a subdiagonal block using a factor
computed with a task f,

3. tasks denoted u perform an update of a block within a supernode corresponding to
the previous factorization of blocks, and

4. tasks denoted a represent the update between supernodes with respect to the
factorization blocks computed at a given node.

In our code, the DAG, such as that shown in Figure 4(b), replaces the elimination
tree for expressing the dependencies during the computation of the factors. Note that
when exploiting the node and tree level parallelism separately, it is not possible to start
factorizing a supernode before all of its descendant nodes have been processed. However,
when using the DAG, it is possible that some tasks in a given node become ready for
execution and can then be scheduled while its descendants are still being processed. Using
this DAG-based parallelism it is therefore possible to pipeline the processing of a given
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nb

(a) Simple assembly tree.

f

s s

u u
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s s

u u u

f s u f

a

a

a

a

a a

(b) Cholesky factorization DAG.

Figure 4: Simple assembly tree in which supernodes are partition into square block of
size nb (a) and the DAG associated to the Cholesky factorization of this tree (b).

node with the processing of its ancestors. This additional level of parallelism allowed by
the use of a DAG-based algorithm is referred to as inter-node parallelism.

The pseudo-code corresponding to the task-based Cholesky factorization is presented
in Figure 5. Note that this is the sequential algorithm that is used as a basis for the
implementation of our parallel code. In this code we have the following kernels:

• alloc(snode): partitions the supernode snode into blocks and allocates the data
structures.

• init(snode): initializes the blocks by copying the coefficients from the original
matrix into them.

• factorize(bc_kk): computes the Cholesky factor of the diagonal block bc_kk.

• solve(bc_kk, bc_ik): performs the triangular solve of an off-diagonal block bc_ik
with the block resulting from the factorization of the diagonal block bc_kk in its
column.

• update(bc_ik, bc_jk, bc_ij): performs the update operation of a block bc_ij
within a supernode using the blocks bc_ik and bc_jk from a previously processed
column.

• update_btw(snode, bc_ik, bc_jk, anode, bc_ij): performs the update
operation between the factors computed in the blocks bc_ik and bc_jk in the
supernode snode and the block bc_ij located in the ancestor supernode anode. In
the pseudo-code, p and q represent the number of subdiagonal blocks involved in
the update of the ancestor node anode in the k-th column of snode. Arrays rmap
and cmap give respectively the row mapping and column mapping between the
rows and columns in snode and in anode.

http://www.nlafet.eu/ 9/38
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1 forall nodes snode in post -order
2 ! Allocate data structures
3 call alloc(snode)
4 ! Initialize node structure
5 call init(snode)
6 end do
7

8 forall nodes snode in post -order
9

10 ! Factorize supernode with ’m’ rows and ’n’ columns
11 do k=1..n in snode
12 call factorize (blk(k,k))
13

14 do i=k+1..m in snode
15 call solve(blk(k,k), blk(i,k))
16 end do
17

18 do j=k+1..n in snode
19 do i=k+1..m in snode
20 call update (blk(j,k), blk(i,k), blk(i,j))
21 end do
22 end do
23

24 forall ancestors (snode) anode
25 do j=k+1..p in snode
26 do i=j..q in snode
27 call update_btw (blk(j,k), blk(i,k), a_blk(rmap(i),

cmap(j)))
28 end do
29 end do
30 end do
31

32 end do
33 end do

Figure 5: Pseudo-code for the sequential version of the task-based sparse Cholesky
factorization.

In this algorithm, we perform the update using a right-looking scheme. Although
left and right-looking schemes can lead to different performance in serial mode, neither
is considered better because their behaviour depends on the characteristics of the
architecture. In a parallel mode, this code is used to create the task-graph corresponding
to factorization and both left and right-looking schemes produce the same DAG. Although
these two schemes might influence the order in which tasks are submitted to the runtime
systems, in our approach these tasks are dynamically scheduled and prioritised depending
on their position in the DAG and so are therefore independent of the submission order.

http://www.nlafet.eu/ 10/38
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4 Programming models
In this deliverable we focus on two different programming models for implementing task
algorithms. In this section we first introduce the Sequential Task-Flow (STF) model
which is an intuitive model largely based on the sequential algorithm and therefore very
intuitive to use. Then we present a data-flow model called Parametrized Task Graph
(PTG) which is extremely scalable but is much less easy to use than the STF model. In
order to illustrate these two programming models, we will use the simple sequential code
presented in Figure 6(a). An extract of the DAG associated with this example is shown
in Figure 6(c).

1 for (i = 1; i < N; i++) {
2 // Read and write x[i] with kernel f
3 x[i] = f(x[i]);
4 // Read x[i] and y[i -1] and write
5 // in y[i] using kernel g
6 y[i] = g(x[i], y[i -1]);
7 }

(a) Simple example of a sequential code.

1 for (i = 1; i < N; i++) {
2 // Submit task executing kernel f
3 submit (f, x[i]:RW);
4 // Submit task executing kernel g
5 submit (g, x[i]:R, y[i -1]:R, y[i]:W);
6 }

(b) STF code.

i-1 g f

i g f

i+1 g f

(c) DAG extract.

Figure 6: Simple example of a sequential code (a) and an extract of its corresponding
DAG (c). In addition we propose an STF implementation of the sequential code (b).

4.1 The sequential task flow model
In the sequential task flow model the detection of dependencies between tasks relies on a
data analysis of input and output data in order to guarantee the sequential consistency
of operations during parallel execution. This analysis is often referred to as superscalar
analysis in deference to the dependency detection between instructions that are performed
in superscalar processors. In this context, the dependency graph is used to allow the
parallel execution of independent instructions and is referred to as instruction-level
parallelism. The STF model is the most commonly used paradigm for the parallelization
of DAG-based algorithms. For example, several dense linear algebra software packages
such as PLASMA [3] and FLAME [18] use this model in their implementation. One reason
for its popularity is its ease of use: the parallel code is very similar to the sequential one.
Essentially, for a given sequential algorithm, the function calls (i.e. the execution of tasks
in the case of a DAG-based algorithm) are replaced by the asynchronous submission of
the task to a runtime system for scheduling. Depending on the data access provided
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(read, write, or read/write), the runtime system automatically detects the dependencies
between the tasks. The sequential consistency is then ensured by the fact that the order
of submission of tasks corresponds to the sequential order.

As an example to illustrate the model, we show in Figure 6(b) the parallel code
corresponding to our sequential example in Figure 6(a). In the sequential code, the two
functions f and g manipulate arrays x and y. The STF code is obtained by submitting
the tasks that consist of a kernel function (f or g in this example) together with data
which are associated with a data access which can be R when the data is read, W when
the data is written, and RW when the data is read and modified.

While easy to use, this model has several drawbacks that may affect performance and
scalability. The tasks are issued and submitted to the runtime system sequentially. If the
time to execute a task is small compared to the time needed for building and submitting a
task, the parallel execution might be constrained by the time spent in the submission loop.
To avoid this a recursive model could be used where intermediate tasks submit other tasks,
enabling the parallelization of task submission. This could be implemented, for example,
by using callback functions to trigger the submission of tasks that are executed on task
completion. Another issue arising with the STF model comes from the fact that the whole
DAG is unrolled during the parallel execution and every task in the DAG is stored in order
to track task dependencies. In the case where the DAG is extremely large, handling and
storing the DAG might represent a large overhead in terms of computational cost and
memory. Although the recursive model allows us to mitigate the problem, it doesn’t
remove it, and it may be necessary to consider a different model such as the Parametrized
Task Graph (PTG) model.

4.2 The parametrized task graph model
The PTG model is a dataflow programming model for representing a DAG and was
introduced in [11]. In this model, the DAG is represented using a compact format,
independent of the problem size, where dependencies are explicitly encoded. We introduce
the PTG model by using the simple sequential code shown in Figure 6(a).

(a) Task executing kernel f. (b) Task executing kernel g.

Figure 7: PTG representation for task types task_f (a) and task_g (b) as shown in the
DAG presented in Figure 6(c).

The example in Figure 7(a) corresponds to a possible PTG representation for
describing a DAG using a diagram language. It illustrates the fact that the PTG
representation is independent of the size of the DAG (which depends on the parameter N
in our example) and therefore has a limited memory footprint. In comparison, when using
an STF model, the memory footprint for representing the DAG grows with the size of the
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DAG because every task instance has to be kept in memory at least until its completion.
Another interesting aspect of the PTG model comes from the fact that when the DAG
is traversed in parallel every process involved in the execution only needs to traverse the
portion of the DAG related to the tasks being executed in that process. Therefore, the
DAG is handled in a distributed fashion which constitutes an advantage over the STF
model where every process is required to unroll the whole DAG which could limit the
scalability of the application on large systems.

5 Runtime systems
In this deliverable we mainly experiment with three runtime systems: StarPU2 which
is developed at the STORM team at INRIA Bordeaux Sud-ouest, PaRSEC3 from the
ICL at University of Tennessee and the OpenMP standard which includes features for
implementing task-based algorithms since Version 3.0 of its API.

5.1 The StarPU and OpenMP runtime systems
The popularity of task-based algorithms persuaded the OpenMP board to introduce
the task construct in Version 3.0 of its API. Then, motivated by the popularity of
the STF model, the OpenMP committee decided to include the depend construct in
Version 4.0 allowing users to express dependencies between tasks in a similar way to the
STF model presented in Section 4.1. In this work we use an OpenMP implementation
of our Cholesky solver and show advantages in terms of performance, scalability and
productivity. However, because many features are still unavailable in the OpenMP
standard, we also developed a version based on the StarPU runtime system. As shown in
the next section, both implementations of our solver rely on a STF model, but the StarPU-
based implementation can benefit from a wider range of features that are available with
StarPU. For example, although we focus on shared-memory architectures in this paper,
the StarPU version can be extended to a distributed-memory version whereas OpenMP
can’t be used on such architectures. In addition, OpenMP, unlike StarPU, does not give
users any control over the scheduling of tasks. Every implementation of OpenMP provides
a default scheduler which does not take into account the application. This can be very
limiting especially when the application is executed in a heterogeneous context such as a
GPU-accelerated multicore architecture.

We present in Figure 8 an example of a parallel implementation for the sequential
code in Figure 6(a) using OpenMP. In this example we first create the parallel section
using the omp construct parallel and then we put the master thread in charge of the
task submission using the master construct. As previously explained, tasks are created
with the task construct and data access is given to the runtime system using the depend
construct. In the OpenMP standard, read-only data access is indicated by the parameter
in, write-only by the parameter out and read-write by the parameter inout. Finally the
task submission loop finishes with the taskwait clause indicating that the master thread
should wait for the completion of the tasks previously submitted.

Similarly to the OpenMP example given in Figure 8 and in order to introduce the
features provided by the StarPU API, we show in Figure 9 an example of a StarPU-based

2http://starpu.gforge.inria.fr/
3https://bitbucket.org/icldistcomp/parsec/
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1 # pragma omp parallel
2 {
3 # pragma omp master
4 {
5 for (i = 1; i < N; i++) {
6 # pragma omp task depend (inout:x[i:1])
7 x[i] = f(x[i:1]);
8 # pragma omp task depend (in:x[i], y[i -1:1]) depend (out:y[i:1])
9 y[i] = g(x[i:1], y[i -1:1]) ;

10 }
11 # pragma omp taskwait
12 }
13 }

Figure 8: Simple example of a parallel version of the sequential code in Figure 6(a) using
a STF model with OpenMP.

1 /* tasks submission */
2 for (i = 1; i < N; i++) {
3

4 starpu_task_insert (&f_cl ,
5 STARPU_RW, x_handle [i],
6 0);
7

8 starpu_task_insert (&g_cl ,
9 STARPU_R, x_handle [i],

10 STARPU_R, y_handle [i-1],
11 STARPU_W, y_handle [i],
12 0);
13 }
14

15 /* wait for all submitted tasks to be executed */
16 starpu_task_wait_for_all ();

Figure 9: Simple example of a parallel version of the sequential code in Figure 6(a) using
a STF model with StarPU.

implementation for the simple example presented in Figure 6(a). The task submission
is done through the starpu_task_insert function that takes as input a codelet and a
set of handles. A codelet corresponds to the description of a task and includes a list of
computational resources where the task can be executed as well as the corresponding
computational kernels. The data handles represent a piece of data that is accessed
in the task and can be read (STARPU_R), written (STARPU_W), or read and written
(STARPU_RW). In order to be used, a data handle must be registered to the runtime system
by providing information such as a pointer to the data, its size and type. This information
allows StarPU to automatically perform the data transfer between memory nodes during
execution. For example, when data needs to be accessed on a GPU device, the runtime
system automatically transfers it to the device memory node. As a result, StarPU is
capable of ensuring data consistency over multiple nodes. When all the tasks have been
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submitted to the runtime system, we wait for their completion by calling the routine
starpu_task_wait_for_all.

Scheduler

t1

t2 CPU1

CPU2

GPU1

t4

Workers

Runtime core

t1

t2

t3

ReadySubmit

Figure 10: Illustration of the dynamic scheduling strategy of tasks in the runtime system.

Both OpenMP and StarPU implementations rely on a dynamic scheduler for
scheduling the ready tasks during execution. In this model, a task is put in the scheduler as
soon as it becomes ready for execution, which is when all of its dependencies are satisfied.
Workers try to retrieve a task from the scheduler when they become idle. This dynamic
scheduling strategy is illustrated in Figure 10 where the scheduler is placed between the
runtime core where the DAG is built. The workers can be CPUs and GPUs, the scheduler
is responsible for storing the ready tasks in scheduling queues and distributing them to
idle workers. Although OpenMP Version 4.0 doesn’t provide any features to control the
scheduling policy, Version 4.5 allows users to provide a priority along with a submitted task
so critical tasks are scheduled sooner. StarPU not only supports the use of task priorities
but also makes it possible to use different scheduling strategies and to implement a new
one if necessary.

5.2 The PaRSEC runtime system
The PaRSEC runtime system is one of the few libraries providing an interface for
implementing PTG-based parallel codes. This is done by using a dedicated high-level
language called Job Data Flow (JDF) for describing DAGs. The JDF code is translated
into a C-code at compile time by the parse_ptgpp source-to-source compiler distributed
with the PaRSEC library. The JDF codes contain a collection of task types, usually
one for each kernel, associated with a set of parameters. These parameters are associated
with a range of values and each value corresponds to a task instance. Tasks are associated
with one or more data, and the dataflow is explicitly encoded for each task type. Several
kernels can be attached to each task type depending on the resources available on the
architecture.

In the context of distributed memory systems, users must provide the data distribution
to the runtime system in addition to the JDF code which is used to map the task instances
to the compute nodes during the execution.
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1 N [type = int]
2

3 task_f (i) /* Task name */
4

5 i = 1..N-1 /* Execution space declaration for parameter i */
6

7 : x(i) /* Task must be executed on the node where x(i) is stored
*/

8

9 /* Task reads x(i) from memory ... */
10 RW X <- x(i)
11 /* ... and sends it to task_g (i) */
12 -> X task_g (i)
13 BODY
14

15 X = f(X) /* Code executed by the task */
16

17 END
18

19 task_g (i) /* Task name */
20

21 i = 1..N-1 /* Execution space declaration for parameter i */
22

23 : y(i) /* Task must be executed on the node where y(i) is stored
*/

24

25 /* Task reads x(i) from task_f (i)... */
26 R X <- X task_f (i)
27 /* ... y(i -1) from task_g (i -1) ... */
28 R Y1 <- (i > 1) ? Y2 task_g (i -1) : y(i -1)
29 /* ... and sends y(i) to task_g (i+1) */
30 W Y2 -> (i < N -1) ? Y2 task_g (i+1)
31

32 BODY
33

34 Y2 = g(X, Y1) /* Code executed by the task */
35

36 END

Figure 11: Simple example of a parallel version of the sequential code in Figure 6(a) using
a PTG model with PaRSEC.

In Figure 11, we illustrate the use of a PTG model using the JDF language with
PaRSEC by implementing a parallel version of the simple example shown in Figure 6(c).
In this JDF code we have the representation for the two types of task, task_f and
task_g, that each have with one parameter, i. This parameter is defined on the range
1..N-1 where N is defined at the beginning of the JDF code and initialised when the
DAG is instantiated. As illustrated by the diagram in Figure 7(a), the dataflow for
task_f contains two edges that are expressed in lines 10 and 12 of the JDF code using
the symbols <- for the input dataflow and -> for the output dataflow. Similarly, the three
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edges for the dataflow for task_g are expressed in lines 26, 28 and 30. Note that the
last two dataflows are conditional and depend on the value of i. The instance of task_g
associated with the parameter i=1 reads the data denoted by Y1 in memory because it is
the first task to touch this data. The following instances, however, will get this data from
the previously executed tasks. The kernel associated with each task is contained between
the BODY and END keywords. As we mentioned previously, multiple kernels, one for each
type of architecture for example, can be associated with these tasks. In our example we
only provide the implementation for CPUs. In a distributed-memory context, the node
selected to execute a given task depends on the memory location of the associated data.
In our example the data affinity is defined with the instructions on lines 7 and 23 and
depends on data x for task_f and data y for task_g. Note that during the execution,
data might not be up-to-date on a given node in which case PaRSEC handles the transfer
from one node to another before executing the task.

6 The SpLLT solver
In this section, we present the sparse Cholesky solver SpLLT that we developed for this
deliverable. In this solver, we implemented the DAG-based sparse Cholesky factorization
using the StarPU and PaRSEC runtime systems as well as the standard OpenMP leading
to three different versions of the code. On the one hand we have SpLLT-STF that is based
on a STF model and implemented with StarPU and OpenMP and on the other hand we
have SpLLT-PTG based on a PTG model and implemented with PaRSEC.

6.1 The STF implementation using OpenMP and StarPU
In this section we describe the implementation of our DAG-based Cholesky solver using
the STF parallel programming model presented in Section 4.1. We developed two different
versions of our code; the first using OpenMP, and the second using the StarPU runtime
system.

A pseudo-code for our solver is shown in Figure 12. Following the sequential algorithm
shown in Figure 5, it consists in a bottom-up traversal of the assembly tree where at each
node the tasks for the factorization and update operations are submitted to the runtime
system. The kernels used in the tasks are the same as those presented in Section 3. Note
that the task submission is done using a right-looking scheme meaning that every node in
the tree must be allocated and partitioned before the submission of the numerical tasks.
In addition, the alloc task is executed sequentially because we need to allocate the data
structures and partition the supernodes in order to submit the numerical tasks.

As explained in Section 4.1, when using the STF model to submit a task, we need
to provide the access mode along with the data so that the runtime system can ensure
the sequential consistency of the parallel algorithm. For this reason, in the submission of
factorize tasks, the diagonal block blk(k,k) is associated with a read-write access mode
indicating that the kernel will read and modify this block when computing the Cholesky
factor of the block. Similarly, because the solve operations need the diagonal block to
compute the subdiagonal blocks of the factors, we have to indicate that the diagonal block
is read when submitting the solve by associating it with a read-only access mode. With
this information, the runtime detects the dependencies between the factorize and solve
tasks and allows the parallel execution of the solve tasks within a block-column.
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1 forall nodes snode in post -order
2 ! allocate data structures
3 call alloc(snode)
4 ! initianlize node structure
5 call submit (init , snode:W)
6 end do
7

8 forall nodes snode in post -order
9

10 ! factorize node
11 do k=1..n in snode
12 call submit (factorize , snode:R, blk(k,k):RW)
13

14 do i=k+1..m in snode
15 call submit (solve , blk(k,k):R, blk(i,k):RW)
16 end do
17

18 do j=k+1..n in snode
19 do i=k+1..m in snode
20 call submit (update , blk(j,k):R, blk(i,k):R, blk(i,j):RW

)
21 end do
22 end do
23

24 forall ancestors (snode) anode
25 do j=k+1..p(anode) in snode
26 do i=k+1..q(anode) in snode
27 call submit (update_btw , anode:R, blk(j,k):R, blk(i,k)

:R,
28 a_blk(rmap(i), cmap(j)):RW)
29 end do
30 end do
31 end do
32

33 end do
34 end do

Figure 12: Pseudo-code for the sparse Cholesky factorization using an STF model
presented in Section 4.1.

In order to ensure that the supernode is initialized before the factorization starts, we
use a symbolic handle called snode and pass it to the init tasks using a write access
mode. Then we also pass it to the factorize tasks in read access mode. Because all
the subsequent factorization tasks in a supernode depend on the first factorize task, we
thus guarantee that the numerical task cannot start before the supernode is initialized.
For the same reason, the update_btw task takes the anode handle as input with read
access mode because it modifies a block in an ancestor node and the task should not be
executed before the node is initialized. The specific nature of this symbolic handle is that
it represents a set of blocks instead of a single block.

One issue arises with the dependency detection of the update tasks that are applied to
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a given block. This task takes as input two blocks Lik and Ljk and performs the operation

Lij = Lij − LikLT
jk

on a third block Lij. These update operations are commutative in infinite precision
arithmetic. However, when two update tasks are performed on the same block, the
runtime system detects that these tasks modify the same data and will ensure that the
order of execution follows the order of submission. With StarPU it is possible to use the
STARPU_COMMUTE flag to avoid this unnecessary dependency that potentially limits the
parallelism. This flag indicates that operations performed by a kernel are commutative.
The OpenMP standard still does not provide such a functionality.

The STF code that is presented in Figure 12 is independent of the runtime system
used for the implementation. In practice only the implementation of the submit routines
are specific to the runtime system. This illustrates the fact that the expression of the
algorithm is strictly separated from the task scheduling and data management. An
example of the implementation of this submit routine in the StarPU version is given
in Figure 13(a), and its equivalent in the OpenMP version is given in Figure 13(b). In
this example we show the submission of the solve tasks. In the OpenMP version, blocks
are identified using data pointers and these pointers are associated with a data access
when submitting a task. It is thus necessary to allocate the blocks before being able to
submit the tasks that use these blocks. In the case of StarPU, blocks are associated with
a handle that is set up in the alloc routine. Tasks are then associated with this handle
instead of using a pointer as is done by OpenMP. There are several advantages associated
with the use of a handle. For example, StarPU is capable of detecting when data are
written for the first time and will perform the allocations using the information contained
in the handle. We don’t use this feature for the allocation of blocks, but we use it for the
management of scratch memory needed by the update_btw task. We do not include this
in the pseudo-code for the sake of clarity.

1 struct starpu_codelet cl_solve_block = {
2 . where = STARPU_CPU ,
3 . cpu_funcs = { spllt_solve_block , NULL},
4 };
5
6 starpu_task_insert (
7 & cl_solve_block ,
8 STARPU_R , blk_kk_handle ,
9 STARPU_R W, blk_ik_handle ,

10 STARPU_PRIORITY , prio ,
11 0);

(a) StarPU code.

1 !$omp task firstprivate (m, n)
2 !$omp & depend (in: bc_kk %c) &
3 !$omp & depend ( inout : bc_ik %c)
4
5 call spllt_solve_block (m, n, bc_kk %c, bc_ik %c)
6
7 !$omp end task

(b) OpenMP code.

Figure 13: Routines used to submit solve tasks with StarPU (a) and OpenMP (b).

Note that the efficiency of these submission routines may be critical to the performance
of the execution and, as shown in our tests, the submission of tasks in the DAG may be
sometimes a limiting factor for the performance. This happens when there is a large
number of tasks and the task granularity is small. In such cases, especially when the
number of resources increases, the unrolling of the DAG may be too slow to feed all
the resources and it therefore bounds the execution time. In that respect, the partition
parameter nb may influence the performance because a small value for this parameter
increases the number of tasks in the DAG and therefore the overhead associated with
task submission and task management.
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As mentioned in Section 5, although StarPU provides a complete API for designing
new scheduling policies, it also provides a number of common scheduling strategies. In
our experiment we choose the LWS (Locality Work Stealing) scheduler which takes into
account data locality and priority and provides good results on multicore architectures.
In the scheduler, tasks are prioritized according to a priority value provided by the user.
In our case, the priority depends on the position of the task in the DAG. For example, the
factorize tasks are given the highest priority because they lie on the critical path. With
OpenMP, although setting priorities is in the 4.5 standard, we did not use a compiler for
implementing this version in our experiment so that we cannot give priorities to the tasks.

6.2 Tree pruning strategy
In order to reduce the impact of the time spent in unrolling the DAG when using a STF
model to implement the factorization, we use a pruning of the assembly tree. This is
similar to the pruning strategy used in the qr_mumps solver [2] and consists in grouping
small nodes at the bottom of the tree into subtrees that are processed in serial. Our
algorithm, inspired by [14], is done by traversing the nodes with a top-bottom tree
traversal starting from the root node and balancing the workload across the subtrees
until we reach a desired load balance while preserving enough parallelism to feed all
the resources. The workload is represented by the amount of floating-point operations
required to process the subtree which is a rather accurate estimate of the computational
cost for processing a subtree. In Figure 14 we illustrate the pruning of a simple elimination
tree where the grey nodes belong to a subtree rooted at the dark-grey nodes lying on the
dashed red line. The advantage of such pruning is that it reduces the number of tasks to
be handled by the runtime system and thus the overhead associated with it. In addition,
the tasks that are removed from the DAG correspond to the smaller granularity tasks.
On the other hand, this algorithm decreases the amount of parallelism in the DAG which
might become too low on the smaller problems when the number of resources is large.

Figure 14: Illustration of the tree pruning strategy used by SpLLT.
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1 task_factor_block ( diag_idx )
2

3 diag_idx = 0..( ndiag -1) /* Index of diag block */
4

5 /* Global block index */
6 id_kk = %{ return get_diag_blk_idx ( diag_idx );%}
7 /* Index of current supernode */
8 snode = %{ return get_blk_node (id_kk);%}
9 /* Index of block in current block - column */

10 last_blk = %{ return get_last_blk (id_kk);%}
11 /* id of prev diag block */
12 prev_id_kk = %{ return get_diag_blk_idx (diag_idx -1) ;%}
13 /* Number of input contribution for current block */
14 dep_in_count = %{ return get_dep_in_count (id_kk);%}
15 /* Number of out contribution for current block */
16 dep_out_count = %{ return get_dep_out_count (id_kk);%}
17

18 : blk(id_kk)
19

20 RW bc_kk <- ( is_first (snode , id_kk) && dep_in_count ==0) ?
21 bc task_init_block (id_kk)
22 <- ( is_first (snode , id_kk) && dep_in_count > 0) ?
23 bc_ij task_update_btw (id_kk , dep_in_count )
24 <- (! is_first (snode , id_kk)) ?
25 bc_ij task_update_block (diag_idx -1, prev_id_kk +1,

prev_id_kk +1)
26 -> (id_kk == last_blk ) ?
27 blk(id_kk) : bc_kk task_solve_block (diag_idx , (

id_kk +1) .. last_blk )
28 -> ( dep_out_count > 0) ?
29 bc task_update_btw_aux (id_kk , 1.. dep_out_count )
30

31 ; FACTOR_PRIO /* Task priority */
32

33 BODY
34

35 factor_block (bc_kk); /* Cholesky factorization kernel */
36

37 END

Figure 15: Extract of the JDF code for the sparse Cholesky factorization in which the
task_factor_block task type is shown.

6.3 The PTG implementation using PaRSEC
In the study [1] the authors investigated the implementation of a sparse factorization
using a PTG model. This implementation was based on a two-level approach where the
processing of the assembly tree and the multifrontal matrix factorization are coded in two
different JDFs which split the exploitation of tree-level and node-level parallelism. Even
if this hierarchical approach facilitated the construction of the dataflow representation,
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it incorporated unnecessary synchronisation, prevented the exploitation of inter-node
parallelism and therefore drastically impacted the scalability of the code. For this reason,
in SpLLT, we choose to express the whole DAG in one JDF file that includes all the task
types and dependencies. This enables the exploitation of all the parallelism available in
the DAG but increases the complexity of the dataflow representation.

In Figure 15 we present an extract of this JDF code with the description of the
task_factor_block task type associated with the factor_block kernel. As shown in
Figure 4(b), the factorization DAG contains one task_factor_block task for every block
on the diagonal of our matrix. We thus associate this task type with the parameter
diag_idx, ranging from 0 to ndiag-1, where ndiag is the total number of diagonal
blocks. A task instance manipulates a single block, referred to as bc_kk, in a RW mode
as it computes its Cholesky factor. The instructions on lines 6-16 retrieve the information
on the current supernode and block being processed that is necessary to determine the
data flow associated with the task. This information is obtained from the structure of the
problem which is built during the analysis phase.

The instruction on line 18 indicates to the runtime system the location where the
task should be executed. In this example, the notation blk(id_kk) means that the
task should be executed on the compute node where the block is stored. This location
depends on the data distribution given to the runtime system by the user. Note that
in our implementation the data distribution is straightforward as we focus on multicore
machines for which the data is located on one compute node.

The input dataflow, expressed on lines 20-25, is split into three different cases: if the
processed block corresponds to the first block in the current supernode, then either the
supernode has received a contribution from a descendent supernode and thus the data
is received from an task_update_btw task or we read the data from the initialization
task of type task_init_block; if the current block is not the first in the supernode, then
the data necessary comes from an update_block task resulting from the factorization of
previous block-column. The output dataflow, expressed on lines 26-29, shows that the
data is sent to several tasks: the task_solve_block tasks that compute the factors on
the subdiagonal blocks and the task_update_btw_aux tasks that update the blocks in the
ancestor nodes. Note that, for every block, we need the number of contributions received
(dep_in_count) and sent (dep_out_count) to other blocks located in other supernodes.
This information is computed during the analysis phase by traversing the assembly tree
and is added to the data structure associated with each block.

Whenever a task is completed during the execution of the DAG, the data associated
with this task become available and the runtime system checks the output dataflow for
tasks which are ready for execution. The new ready tasks are then scheduled using the
task priority FACTOR_PRIO provided on line 31 and as well as data locality information.

7 Experimental results with the SpLLT solver
We tested our SpLLT solver on a multicore machine equipped with two Intel(R) Xeon(R)
E5-2695 v3 CPUs with fourteen cores each (twenty eight cores in total). Each core, clocked
at 2.3 GHz and equipped with AVX2, has a peak of 36.8 Gflop/s corresponding to a total
peak of 1.03 Tflop/s in real, double precision arithmetic. The code is compiled with
the GNU compiler (gcc and gfortran), the BLAS and LAPACK routines from by the
Intel MKL v11.3 library. We used version 1.3 of StarPU and used the latest development
version (version v1.1.0-2771-g7a4cb0d) of the PaRSEC runtime system.
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Figure 16: Performance results for SpLLT, using OpenMP, StarPU and PaRSEC,
compared against the HSL_MA87 solvers on 28 cores for the test matrices presented in
Table A.1.
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Figure 17: Effect of tree pruning on SpLLT performance using a STF model (OpenMP
and StarPU) for the test matrices presented in Table A.1.

In Figure 16 we show the performance of the SpLLT solver using the STF model (with
the StarPU and OpenMP runtime systems) and the PTG model (with the PaRSEC
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runtime system). In addition we present the performance results obtained with our
reference solver HSL_MA87. In our experiments, the OpenMP and PaRSEC versions match
the performance of HSL_MA87 whereas the StarPU version is generally slower. In Figure 17
we show the effect of the tree pruning strategy on the performance. We can see that,
although the tree pruning has generally a small effect on the performance, it significantly
improves the performance on the matrices #15, #19 and #24 for the OpenMP and
StarPU codes.

8 Availability of the SpLLT software
The SpLLT code including the latest development version is available on the
NLAFET GitHub project in the repository NLAFET/SpLLT that can be found at
https://github.com/NLAFET/SpLLT. The compilation is handled by CMake4 tools and
the Makefile for building SpLLT can be created using the cmake command as shown in
Figure 18. By default this command will build the sequential version of the code and the
-DRUNTIME option can be used to build the parallel version. This option selects one of the
supported runtime systems: -DRUNTIME=OMP for the OpenMP version, -DRUNTIME=StarPU
for the StarPU version and -DRUNTIME=Parsec for the PaRSEC version.

1 # Get latest development version from GitHub
2 git clone https :// github .com/ NLAFET /SpLLT
3 # Move to source directory
4 cd SpLLT
5 # Create build directory
6 mkdir build
7 cd build
8 # Create Makefile with cmake command . The -DRUNTIME option can be
9 # used to select a runtime system .

10 cmake <path -to -source > -DRUNTIME =< StarPU |OMP|Parsec >
11 # Build SpLLT software
12 make
13

Figure 18: Compilation of the SpLLT solver.

9 Pivoting strategies for LDLT factorization
In this section we focus on the indefinite case and, as we explained in the introduction,
we need to include pivoting to ensure the stability of the factorization, contrary to the
positive definite case. This pivoting adds complexity to the algorithms by introducing
synchronisations and increasing floating-point operations and memory footprint in the
factorization. We describe the A Posteriori Threshold Pivoting (APTP) strategy
developed in conjunction with this deliverable to improve the performance and scalability
of the LDLT factorization while ensuring stability.

4https://cmake.org/
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9.1 Threshold partial pivoting
Threshold Partial Pivoting (TPP) is the method of choice for selecting pivots for
performing the LDLT factorization of supernode as illustrated in Equation 3. It uses
a fixed stability criterion u (0 < u ≤ 1) and ensures that all entries in the factor L
are such that |lij| ≤ u−1. The factorization algorithm is backward stable and gives the
possibility to compute the solution with a good accuracy [6].

9.2 A posteriori threshold pivoting
In this section, we introduce a LDLT factorization algorithm relying a new the pivoting
strategy called A posteriori Threshold Pivoting (APTP) . It is based on a 2D partitioning
of matrices into square blocks (similarly to the Cholesky algorithm presented in Section 3)
thus increasing the parallelism compared to the state-of-the-art TPP strategy. This new
algorithm is based the following two techniques:

Fail-in-place approach which consists in keeping the failed columns in place and
handling them at the end of the factorization. In this case, these columns must
be updated during the factorization.

Speculative execution which consists in speculatively running a task assuming that
no numerical issues have occurred in other tasks that might affect the current one.
This requires doing a backup of entries and implementing a backtracking strategy
if numerical instability is detected.

Using these two principles it is possible to design a task-based LDLT algorithm with
better scalability than the TPP strategy. Speculative execution makes it possible to
process block columns in parallel using 2D partitioning. In addition, the fail-in-place
approach avoids communications because we do not permute rows and columns outside
their blocks. However, using speculative execution comes at the cost of storing backups
for the tasks that are speculatively executed. Also, the fail-in-place strategy has two main
drawbacks: first, we need a fallback strategy for handling the failed columns; secondly,
keeping the failed columns up to date introduces small granularity tasks in the DAG. As
a result, using speculative execution and a fail-in-place approach improves the scalability
of the LDLT factorization so long as the number of failed pivots remains relatively low.

The LDLT factorization with APTP strategy is shown as Algorithm 1. Tasks are
presented as subroutine calls that update (i.e. have an inout dependency on) arguments
before the semicolon, and have an input dependency on all blocks after it. The variable
nelimj is special as we do not express task dependencies involving it, but instead use
atomic updates. The kernels are as follows:

Factor(Ajj, nelimj) computes the LDLT factorization of a block on the diagonal as
follow:

1. Stores a backup of block Ajj;
2. Performs a pivoted factorization Ajj = PjLjjDjjL

T
jjPj, where Pj is a

permutation;
3. Initialises nelimj to the block size of Ajj.
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Algorithm 1 A posteriori threshold pivoting LDLT factorization.
1: for j = 1 to nblk do
2: Factor( Ajj, nelimj )
3: for i = 1 to j − 1 do
4: ApplyT( Aji, nelimj; Ajj )
5: end for
6: for i = j + 1 to mblk do
7: ApplyN( Aij, nelimj; Ajj )
8: end for
9: Adjust(nelimj; All blocks A:j and Aj: )

10: for k = 1 to j − 1 do
11: for i = k to j − 1 do
12: UpdateTT( Aik; Aji, Ajk, nelimj )
13: end for
14: for i = j to mblk do
15: UpdateNT( Aik; Aij, Ajk, nelimj )
16: end for
17: end for
18: for k = j to nblk do
19: for i = k to mblk do
20: UpdateNN( Aik; Aij, Akj, nelimj )
21: end for
22: end for
23: end for
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There are several options for performing the pivoted factorization of the block
Ajj including using complete pivoting or an implementation of TPP. In our
implementation, a two-level approach involving an outer block size nb (a parameter
available to the user) and an inner block size nbi (fixed at compile time). APTP is
performed in parallel using the outer block size, and recurses to perform APTP in
serial with the smaller inner block size. In the inner block APTP then uses complete
pivoting for full blocks and a simple implementation of TPP for partial blocks.

ApplyN(Aij, nelimj; Ajj) applies the LDLT factorization from the diagonal block Ajj

to a subdiagonal block Aij. This is done by:

1. Stores a backup of block Aij;
2. Performs the operation Lij = PjAij(LjjDjj)−T ;
3. Find the least column nelimij in Lij that contains a failed entry i.e. lpq > u−1

and performs the atomic reduction nelimj = min(nelimj, nelimij)

ApplyT(Aji, nelimj; Ajj) applies the LDLT factorization from the block Ajj to the
failed entries in the block Aji on its left. This is done by:

1. Store a backup of block Aji;
2. Performs the operation Lji = (LjjDjj)−1AjiP

T
j on the columns corresponding

to the failed pivots;
3. Find the least row nelimji in Lji that contains a failed entry i.e. lpq > u−1 and

performs the atomic reduction nelimj = min(nelimj, nelimji).

Note that if there are no failed entries in block Aji then this operation becomes a
no-op.

Adjust(nelimj; All blocks A:j and Aj:) ensures nelimj has been atomically reduced
in all the blocks of A:j and Aj:. Decrements nelimj down by one if we would
otherwise accept only the first column of a 2× 2 pivot.

UpdateNN(Aik; Aij, Akj, nelimj) performs the update operations on a block that is
on the right of the eliminated block column j.

1. If block Aik is in the same column as the eliminated column, i.e. k = j, then
restores the failed entries from the backup;

2. Performs the update operation Aik = Aik − LijDjjL
T
kj. If the task operates

on column j only the uneliminated entries (that have just been restored) are
updated, otherwise the whole block is updated.

UpdateNT(Aik; Aij, Ajk, nelimj) performs the update operations on a block that is
on the bottom left of the eliminated block column j.

1. If block Aik is in the same row as the eliminated column i.e. i = j, then restores
the failed entries from the backup;

2. Performs the update operation: Aik = Aik − LijDjjLjk on the uneliminated
entries.
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UpdateTT(Aik; Aji, Ajk, nelimj) performs the update operations on a block that is on
the top left of the eliminated block column j. The operation Aik = Aik−LT

jiDjjLjk

is performed on the uneliminated entries.

After completion of this algorithm, failed entries are permuted to the back of the
matrix. At this stage the entries can be refactorized (they have likely been updated
since they failed) using either APTP or TPP, or passed directly to the parent. Figure 19
visualises the data structure part-way through the factorization in which some pivots have
failed.

Figure 19: Part-way through the execution of Algorithm 1. Iterations j = 1, 2, 3 have
completed, and iteration j = 4 is about to begin. Blue entries have been eliminated.
Red entries have failed to be eliminated. Green entries indicate uneliminated entries
considered for elimination on iteration j = 4.

10 The SSIDS solver
The first version of SSIDS, released in 2014, was described in [16] and was meant to run
on a single GPU. In this section we describe the new release of SSIDS that adds a CPU
implementation to the solver. It implements a multifrontal LDLT factorization with the
APTP strategy introduced in Section 9.2. As we show in the experimental section, this
new code performs better than other state-of-the-art direct solvers and is more reliable in
terms of accuracy.

The CPU version of SSIDS has been implemented using Fortran and C++, and the
parallelization of the factorization is done with OpenMP. This implementation makes
use of the task construct and depend clause and follows a STF model as presented in
Section 4.1. In Figure 20, we show a pseudo-code corresponding to the factorization of
the assembly tree in SSIDS. In this pseudo-code, the main loop iterates over the nodes in
a post-ordering and each node factorization is contained in a task that depends on the
tasks for the node factorization of the children nodes. The factorization of the multifrontal
matrices at each node is handled via the three main routines:

assemble_pre()
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1 #pragma omp taskgroup
2 {
3 for (n = 0; n < nnodes ; n++) {
4

5 #pragma omp task
6 depend (in: children (n))
7 depend (inout: node(n))
8 {
9 // Allcate memory for both fully - summed columns and

10 // contribution block and assemble contribution
11 // into fully - summned columns
12 assemble_pre (n, children (n));
13 // Factorize fully - summed columns
14 factor (n);
15 // Assemble contribution into contribution block
16 assemble_post (n, children (n));
17 }
18 // Wait for the completion of tasks
19 }

Figure 20: Pseudo-code for the multifrontal sparse LDLT factorization implemented in
SSIDS.

1. Allocates memory for both the fully summed columns and the contribution
block. Note that we use two different memory allocators: we use a stack
allocator for the fully-summed columns as they are never moved whereas
the contribution blocks are allocated using a buddy system allocator. The
advantage of using a buddy system allocator is that it is faster at allocating
and deallocating memory but this is done at the expense of requiring more
space than some other methods;

2. Assembles contribution from children into the fully summed columns only.

factor() Factorizes the fully summed columns and calculates the contribution block. This
routines implements the LDLT factorization with APTP detailed in Section 9.2.

assemble_post() Assembles contribution from children into the contribution block.

Note that, in this case a node factorization might start only when all of its children nodes
have been factorized. As a consequence there is no inter-level parallelism unlike the case
of the Cholesky factorization. This limits the parallelism in the assembly tree.

11 Experimental results with the SSIDS solver
We present experimental results with the SSIDS solver on a the same multicore machine
described in Section 7. It is equipped with two Intel(R) Xeon(R) E5-2695 v3 CPUs with
fourteen cores each (twenty eight cores in total). Each core, clocked at 2.3 GHz and
equipped with AVX2, has a peak of 36.8 Gflop/s corresponding to a total peak of 1.03
Tflop/s in real, double precision arithmetic. The code is compiled with the GNU compiler
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(gcc and gfortran) version 6.1.05, the BLAS and LAPACK routines are provided by the
Intel MKL v11.3 library. The SSIDS solver is included in the SPRAL library and we used
the version with the git tag PAPER_20160922.

Factor (s) ndelays bwerr
# SSIDS MA97 PARDISO SSIDS MA97 PARDISO SSIDS MA97 PARDISO
1 0.08 0.06 0.05 997 1125 - 9.20e-15 1.29e-14 4.67e-15
2 0.07 0.08 0.03 401 381 - 3.41e-15 7.60e-15 8.13e-16
3 0.09 0.12 0.05 2312 2640 - 1.10e-14 3.91e-15 4.45e-14
4 0.10 0.10 0.08 3464 3434 - 6.53e-15 6.24e-14 1.92e-15
5 0.12 0.11 0.12 5031 4910 - 2.27e-14 4.66e-14 3.80e-15
6 0.16 0.16 0.17 0 0 - 3.16e-14 4.17e-14 3.93e-14
7 0.11 0.15 0.12 0 0 - 1.41e-15 1.62e-15 3.88e-03
8 0.08 0.12 0.08 1531 1353 - 8.09e-15 1.06e-14 5.22e-16
9 0.10 0.12 0.07 1685 1523 - 5.95e-15 1.40e-14 5.36e-16

10 0.24 0.63 0.24 78 196 - 1.49e-14 1.30e-14 4.71e-17
11 0.19 0.26 0.26 13 89 - 3.63e-15 1.55e-15 1.31e-16
12 0.15 0.23 0.29 1 0 - 4.74e-14 1.35e-13 4.59e-14
13 0.21 0.31 0.25 27 389 - 1.40e-13 3.66e-13 3.38e-15
14 0.29 1.52 0.33 26 69 - 2.04e-11 3.11e-11 1.07e-06
15 0.31 0.40 0.16 1235 1199 - 2.41e-15 8.36e-16 1.53e-13
16 0.34 0.40 0.17 1599 1633 - 1.66e-15 2.03e-13 5.12e-15
17 0.18 0.25 0.24 30 345 - 4.65e-16 1.69e-16 1.95e-16
18 0.19 0.27 0.22 7 103 - 5.49e-16 1.81e-15 1.71e-16
19 0.42 0.60 0.27 2818 2831 - 3.91e-15 1.27e-13 3.07e-14
20 0.72 1.17 0.35 4405 4295 - 4.36e-15 2.36e-13 1.24e-14
21 0.59 2.52 0.59 60 102 - 1.41e-12 1.91e-12 5.19e-12
22 1.04 5.21 1.04 79 190 - 6.01e-10 5.69e-10 8.16e-10
23 1.67 8.18 1.50 164 554 - 7.33e-09 4.37e-09 1.40e-07

Table 1: Timing, number of delayed pivots (ndelay) and backward errors (bwerr) obtained
with SSIDS when running matrices from the hard indefinite test set on a Haswell compute
node.

For testing SSIDS, we used two test sets of matrices. The first set, shown in Table A.2,
and referred to as Easy Indefinite is a set of matrices that require few delayed pivots.
No scaling is performed on these problems. The second test set, shown in Table A.3
and referred to as Hard Indefinite contains matrices that require significant scaling and
pivoting. Matrices are scaled and ordered using a matching-based ordering and scaling.

In our experiments we compared SSIDS with several sparse direct solvers for symmetric
indefinite systems:

HSL_MA86 is a solver from the HSL library. It implements a task-based supernodal method
and uses a block-column partitioning of supernodes. We used version 2.4.0.

HSL_MA97 is a solver from the HSL library. It is based on a multifrontal method and uses
a recursive parallel factorization at the node level. We used version 2.4.0.

5The flags “-g -O2 -march=native” were used for the compilation.
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Figure 21: Timing results obtained with SSIDS when running the easy indefinite test set
on a Haswell compute node.
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Figure 22: Timing results obtained with SSIDS when running the hard indefinite test set
on a Haswell compute node.

PARDISO is a solver included in the MKL library. It implements a supernodal method
and uses a Bunch-Kaufman and a static pivoting scheme.

The performance results that we obtained on the multicore machine are presented in
Figure 21 for the easy indefinite set and in Figure 22 and Table 1 for the hard indefinite
set. We observe from these experiments that SSIDS systematically performs better than
the other solvers in the case of easy indefinite matrices. In the case of hard indefinite
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problems, SSIDS performs better than HSL_MA97 expect in rare cases. In comparison with
PARDISO, SSIDS performs worse for roughly half of the problems (10 of them) from our the
hard indefinite set, whereas in the other half (13 problems) it performs better. However,
as we see in Table 1 SSIDS always gives small backward errors compared to PARDISO
which, for some of the test problems gives very inaccurate results even though iterative
refinement is used.

12 Availability of the SSIDS software
The SSIDS code including the latest development version is available as part
of the SPRAL library that can be found on the GitHub repository at
https://github.com/ralna/spral. The compilation process is handled by GNU
Autotools packages6 and an example of the instructions for compiling SSIDS is sown
in Figure 23.

1 # Get latest development version from github and run dev scripts
2 git clone --depth =1 https :// github .com/ralna/spral.git
3 cd spral
4 ./ autogen .sh
5

6 # Build and install library
7 BUILDDIR =build; mkdir $BUILDDIR ; cd $BUILDDIR
8 ../ configure --with -metis=’-L/path/to/metis -lmetis ’
9 make

10 sudo make install # Optional
11

12 # Link against library
13 cd /path/to/your/code
14 gfortran -o myprog myobj.o -lspral -lmetis -lblas

Figure 23: Compilation of the SSIDS solver.

13 Conclusions and future work
This deliverable introduces two sparse direct solvers for solving linear systems: a Cholesky
solver SpLLT for positive-definite systems and an LDLT solver SSIDS for solving indefinite
systems. In our approach, we exploit task-based algorithms for performing matrix
factorization that we implement using a runtime system. In the experimental sections we
show that our approach offers good performance compared to the state-of-the-art solvers
and, in the case of indefinite systems, we show that using the new APTP strategy, we
don’t need to sacrifice performance for reaching good accuracy of the computed solution.
Using a runtime system for implementing a sparse direct solver yields several advantages.
It facilitates the implementation of parallel algorithms because we are using a high-level
API, and it also improves the maintainability and portability of the codes.

In the context of SpLLT our current work consists in porting the StarPU version of the
code to GPU-based heterogeneous architectures. The StarPU runtime system provides

6https://www.lrde.epita.fr/~adl/autotools.html

http://www.nlafet.eu/ 32/38



NLAFET D3.2: Near-symmetric factorizations

many features for targeting such systems including the possibility of associating GPU
kernels to the tasks and of implementing new scheduling strategies which is crucial for
achieving performance on such platforms.

Although SSIDS is very competitive with the state-of-the-art LDLT solvers, it suffers
from the lack of features in the OpenMP library compared to other runtime systems. In
particular it remains quite difficult to exploit GPUs in this context. For this reason, we
are currently developing a new code called SpLDLT with the same purpose as SSIDS but
implemented with the StarPU runtime system. It relies on the same APTP strategy for
the LDLT factorization.

Finally, in our work we only focused on symmetric systems so far that represent a large
proportion of applications for our solvers. Symmetric systems constitute the most difficult
case among symmetrically structured problems because we exploit symmetry for reducing
memory footprint and computational costs. In addition, it is challenging to preserve
both numerical stability and symmetry in the case of indefinite systems. However, our
algorithms and pivoting strategy can be adapted to the case of non-symmetric problems
without major difficulties so we do not anticipate any problems in generating algorithms
and code for this case.
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# Name n nz(A) nz(L) Flops Application/Description
(103) (106) (106) (109)

1 Schmid/thermal2 1228 4.9 51.6 14.6 Unstructured thermal FEM
2 Rothberg/gearbox 154 4.6 37.1 20.6 Aircraft flap actuator
3 DNVS/m_t1 97.6 4.9 34.2 21.9 Tubular joint
4 Boeing/pwtk 218 5.9 48.6 22.4 Pressurised wind tunnel
5 Chen/pkustk13 94.9 3.4 30.4 25.9 Machine element
6 GHS_psdef/crankseg_1 52.8 5.3 33.4 32.3 Linear static analysis
7 Rothberg/cfd2 123 1.6 38.3 32.7 CFD pressure matrix
8 DNVS/thread 29.7 2.2 24.1 34.9 Threaded connector
9 DNVS/shipsec8 115 3.4 35.9 38.1 Ship section

10 DNVS/shipsec1 141 4.0 39.4 38.1 Ship section
11 GHS_psdef/crankseg_2 63.8 7.1 43.8 46.7 Linear static analysis
12 DNVS/fcondp2 202 5.7 52.0 48.2 Oil production platform
13 Schenk_AFE/af_shell3 505 9.0 93.6 52.2 Sheet metal forming
14 DNVS/troll 214 6.1 64.2 55.9 Structural analysis
15 AMD/G3_circuit 1586 4.6 97.8 57.0 Circuit simulation
16 GHS_psdef/bmwcra_1 149 5.4 69.8 60.8 Automotive crankshaft
17 DNVS/halfb 225 6.3 65.9 70.4 Half-breadth barge
18 Um/2cubes_sphere 102 0.9 45.0 74.9 Electromagnetics
19 GHS_psdef/ldoor 952 23.7 144.6 78.3 Large door
20 DNVS/ship_003 122 4.1 60.2 81.0 Ship structure
21 DNVS/fullb 199 6.0 74.5 100.2 Full-breadth barge
22 GHS_psdef/inline_1 504 18.7 172.9 144.4 Inline skater
23 Chen/pkustk14 152 7.5 106.8 146.4 Tall building
24 GHS_psdef/apache2 715 2.8 134.7 174.3 3D structural problem
25 Koutsovasilis/F1 344 13.6 173.7 218.8 AUDI engine crankshaft
26 Oberwolfach/boneS10 915 28.2 278.0 281.6 Bone micro-FEM
27 ND/nd12k 36.0 7.1 116.5 505.0 3D mesh problem
28 ND/nd24k 72.0 14.4 321.6 2054.4 3D mesh problem
29 Janna/Flan_1565 1565 59.5 1477.9 3859.8 3D mechanical problem
30 Oberwolfach/bone010 987 36.3 1076.4 3876.2 Bone micro-FEM
31 Janna/StocF-1465 1465 11.2 1126.1 4386.6 Underground aquifer
32 GHS_psdef/audikw_1 944 39.3 1242.3 5804.1 Automotive crankshaft
33 Janna/Fault_639 639 14.6 1144.7 8283.9 Gas reservoir
34 Janna/Hook_1498 1498 31.2 1532.9 8891.3 Steel hook
35 Janna/Emilia_923 923 21.0 1729.9 13661.1 Gas reservoir
36 Janna/Geo_1438 1438 32.3 2467.4 18058.1 Underground deformation
37 Janna/Serena 1391 33.0 2761.7 30048.9 Gas reservoir

Table A.1: Test set for positive-definite matrices and their characteristics without node
amalgamation. n is the matrix order, nz(A) represents the number entries in the matrix
A, nz(L) represents the number of entries the factor L and Flops correspond to the
operation count for the matrix factorization.
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# Name n nz(A) nz(L) Flops
(103) (106) (106) (109)

1 Oberwolfach/t2dal 4.26 0.02 0.28 0.02
2 GHS_indef/dixmaanl 60.00 0.18 1.58 0.05
3 Oberwolfach/rail_79841 79.84 0.32 4.43 0.33
4 GHS_indef/dawson5 51.54 0.53 5.69 0.90
5 Boeing/bcsstk39 46.77 1.07 9.61 2.66
6 Boeing/pct20stif 52.33 1.38 12.60 5.63
7 GHS_indef/copter2 55.48 0.41 12.70 6.10
8 GHS_indef/helm2d03 392.26 1.57 33.00 6.16
9 Boeing/crystk03 24.70 0.89 10.90 6.26

10 Oberwolfach/filter3D 106.44 1.41 23.80 8.71
11 Koutsovasilis/F2 71.50 2.68 23.70 11.30
12 McRae/ecology1 1000.00 3.00 72.30 18.20
13 Cunningham/qa8fk 66.13 0.86 26.70 22.10
14 Oberwolfach/gas_sensor 66.92 0.89 27.00 22.10
15 Oberwolfach/t3dh 79.17 2.22 50.60 70.10
16 Lin/Lin 256.00 1.01 126.00 285.00
17 GHS_indef/sparsine 50.00 0.80 207.00 1390.00
18 PARSEC/Ge99H100 112.98 4.28 669.00 7070.00
19 PARSEC/Ga10As10H30 113.08 3.11 690.00 7280.00
20 PARSEC/Ga19As19H42 133.12 4.51 823.00 9100.00

Table A.2: Easy Indefinite test set. Statistics as reported by the analyse phase of SSIDS
with default settings, assuming no delays.
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# Name n nz(A) nz(L) Flops
(103) (106) (106) (109)

1 TSOPF/TSOPF_FS_b39_c7 28.22 0.37 2.61 0.26
2 TSOPF/TSOPF_FS_b162_c1 10.80 0.31 1.89 0.36
3 QY/case39 40.22 0.53 3.87 0.40
4 TSOPF/TSOPF_FS_b39_c19 76.22 1.00 7.28 0.75
5 TSOPF/TSOPF_FS_b39_c30 120.22 1.58 11.10 1.10
6 GHS_indef/cont-201 80.59 0.24 7.12 1.11
7 GHS_indef/stokes128 49.67 0.30 6.35 1.16
8 TSOPF/TSOPF_FS_b162_c3 30.80 0.90 6.37 1.41
9 TSOPF/TSOPF_FS_b162_c4 40.80 1.20 7.32 1.43

10 GHS_indef/ncvxqp1 12.11 0.04 3.56 2.52
11 GHS_indef/darcy003 389.87 1.17 23.20 3.01
12 GHS_indef/cont-300 180.90 0.54 17.20 3.58
13 GHS_indef/bratu3d 27.79 0.09 7.49 4.72
14 GHS_indef/cvxqp3 17.50 0.07 6.33 5.27
15 TSOPF/TSOPF_FS_b300 29.21 2.20 13.40 6.92
16 TSOPF/TSOPF_FS_b300_c1 29.21 2.20 13.50 7.01
17 GHS_indef/d_pretok 182.73 0.89 24.80 7.42
18 GHS_indef/turon_m 189.92 0.91 24.70 7.60
19 TSOPF/TSOPF_FS_b300_c2 56.81 4.39 27.00 14.10
20 TSOPF/TSOPF_FS_b300_c3 84.41 6.58 40.50 21.40
21 GHS_indef/ncvxqp5 62.50 0.24 22.90 24.30
22 GHS_indef/ncvxqp3 75.00 0.27 39.30 63.70
23 GHS_indef/ncvxqp7 87.50 0.31 51.00 101.00

Table A.3: Hard indefinite matrices test set. Statistics as reported by the analyse phase
of SSIDS with default settings, using matching-based ordering, assuming no delays.
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