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1 Introduction
The Description of Action document states for Deliverable D3.6:

“D3.6 Algorithm design for hybrid methods
Report on partitioning techniques and performance bottlenecks for hybrid
methods including block Cimmino. Analysis of methods for saddle-point and
overdetermined systems.”

This deliverable is in the context of Task 3.4 (Hybrid Direct-Iterative Methods).
To fix our notation, our target is to solve the system

Ax = b, (1)

where A is a sparse matrix of dimensionsm×n. For the matrix A, we only store coefficients
that can be nonzero and call these entries. It is possible that some entries might have
the numerical value zero either because of numerical cancellation or because we have a
set of matrices where an entry is sometimes nonzero but sometimes zero. This might
happen, for example, if the matrix is the Jacobian of a nonlinear problem. The entry in
row i and column j is denoted by aij. The right-hand side vector b is of length m and the
solution vector x is of length n. In this deliverable, we consider vectors x and b as dense.
The methods that we use in this deliverable for solving equation (1) are hybrid methods.
Hybrid methods combine direct and iterative methods in order to solve systems larger
than can be easily solved with a direct method alone. This means that direct methods
need only be used on a subproblem. We discuss this in more detail in Sections 2 and 3.

As we describe in Section 2 there are various hybrid methods and and some can be
considered as sophisticated preconditioners of the kind investigated in Task 4.3. Here we
will concentrate on block projection methods and, in particular, on the block Cimmino
method which we discuss in Section 3. A very important aspect of this method concerns
the partitioning of the system to provide parallelism and to accelerate convergence. We
consider this in Sections 4 and 5.

The block Cimmino approach is very flexible and we present some preliminary remarks
on how it might be used to solve saddle-point problems and on rectangular systems,
including least-squares problems, in Sections 6 and 7.

We then describe experiments on partitioning and give some preliminary results on
the performance of the code in Section 8.

Finally, we present some conclusions and sketch our future workplan in Section 9.

2 Hybrid methods
The algorithms and code that we are discussing in this deliverable are an example of
a hybrid method for the solution of sparse equations. The term “hybrid” is used in
many contexts, for example hybrid programming combines various elements of parallel
support packages (multi-threading, OpenMP, and MPI). The term hybrid Fortran defines
a Python-based preprocessor that uses OpenMP on CPUs and CUDA Fortran on GPUs.
Of course, hybrid computing refers to computing in a heterogeneous environment with,
for example, CPUs and GPUs. In our context, the term hybrid has been used since the
early 1980s and refers to methods that combine direct and iterative methods to solve a
set of linear equations.
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There are several examples of hybrid methods in this context. In multigrid methods,
one commonly uses a direct method as a coarse grid solver but the overall method is
clearly iterative.

In domain decomposition approaches, a direct method is often used on the local
subdomains and an iterative method on the interface problem, possibly preconditioned
using direct method techniques. There are many examples of codes using this approach,
for example MaPHYS (Inria, Bordeaux), PDSLin (LBNL), ShyLU (Sandia, Albuquerque),
and HIPS (Inria, Bordeaux and Minnesota). In the lorasc preconditioner in workpackage
4.3, the preconditioners are based on the Schur complement and direct solves are used in
each subdomain.

Another possibility is to perform a direct factorization and solution of a nearby problem
for use as a preconditioner, an example of this being the code PSPIKE from Purdue.

Finally, we have the class of block iterative methods where a direct solver is used on
the subblocks and this factorization is effectively used to precondition the iterative solver
through a block Jacobi or block Gauss–Seidel algorithm. The method that we are using
in this deliverable is from this class and can be regarded as an accelerated block Cimmino
method. We discuss this in more detail in the next section.

3 Block Cimmino method
We now describe the block Cimmino (BC) method for solving linear systems such as (1).
We first consider the case when A is square or underdetermined of dimensions dimensions
m by n with m ≤ n. The overdetermined case is discussed in Section 7. The matrix A
can be partitioned as: 

A1

A2

·
·
·
AP


x =



b1

b2

·
·
·
bP


(2)

and the algorithm computes a solution iteratively from an initial estimate x(0) according
to:

ui = Ai+ (
bi − Aix(k)

)
i = 1, . . . , P (3)

x(k+1) = x(k) + ω
P∑

i=1
ui, (4)

where Ai+ is the Moore-Penrose generalized inverse of Ai.
We note that the set of P equations are totally independent and can be solved in

parallel although all systems need to be solved before the update of x in the second
equation can be completed.

When solving the P subproblems in equation (3), we note that the shape of these
subproblems is as shown in Figure 1, where ri = bi − Aix(k). We have a choice of methods
for solving these equations. We could use an orthogonal factorization of the rectangular
systems but that can be quite costly and require a lot of storage for the factors. Another
possibility is to use the normal equations with the coefficient matrix AiAiT but that can
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Figure 1: Shape of subproblems.

cause numerical stability problems and the matrix can be quite dense. To get a good
balance between stability and preservation of sparsity we choose to solve the equations

Aiui = ri,

by direct methods using an augmented system of the form(
I AiT

Ai 0

)(
ui

vi

)
=

(
0
ri

)
. (5)

These systems are symmetric indefinite so we need a direct code that can accommodate
numerical pivoting. Since we also want to perform each solution in parallel, we use the
parallel direct solver MUMPS in the first instance.

Notice that, in common with most hybrid methods, by setting a block size larger than
the original system dimension, we would just be performing a direct solution, albeit not
very efficiently. From this viewpoint, we see that the hybrid approach can be considered
more as an extension to direct methods rather than just as a preconditioning of an iterative
method.

The iteration equations (3-4) can be written as:

x(k+1) = x(k) + ω
P∑

i=1
Ai+ (

bi − Aix(k)
)

=
(
I − ω

P∑
i=1

Ai+
Ai

)
x(k) + ω

P∑
i=1

Ai+
bi

= Qx(k) + ω
P∑

i=1
Ai+

bi.

We can write the fixed point iteration as

Hx = ξ, (6)

where H = I − Q. Then the matrix H = ω
∑P

i=1 A
i+
Ai is a sum of projection matrices

and is thus positive definite. Therefore the system (6) can be solved by the conjugate
gradient method. We note that, since ξ = ω

∑P
i=1 A

i+
bi, the parameter ω appears on

both sides of equation (6) so we can arbitrarily set it to one.
The convergence of the block Cimmino method depends on the angles between the

subspaces determined by the partitioning in equation (2). Clearly if the subspaces were
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Figure 2: Convergence when angle between subspaces is small.

Figure 3: Convergence when angle between subspaces is large.

orthogonal, for example if the columns could be permuted so that the partitioned matrix
was block diagonal, then the solution to the overall problem would just be a direct sum of
the solution to the subproblems and no iterations would be required. In fact, the cosine
of the angles between subspaces is given by the singular values of the matrices AiAjT

that we would like to be close to zero. We thus see the major role that is played by the
partitioning algorithm which is why we spend time discussing it in this deliverable.

There are two ways that ill-conditioning can affect the solution when using the block
Cimmino algorithm.

• One is in the direct solver. The systems being solved are symmetric indefinite
problems where ill-conditioning can cause most sparse direct methods to behave
poorly or unpredictably.

• The other way is between the blocks where the block Cimmino algorithm can require
many iterations if the subspaces are far from orthogonal.

As a simple illustration of this second effect we illustrate the convergence of a simple
Cimmino iteration between two planes where we see that if we widen the angle from that
shown in Figure 2 to that shown in Figure 3 then the number of iterations substantially
decreases.

In the work of [18], several experiments were performed comparing the block Cimmino
code with the direct sparse solver, MUMPS. Usually, MUMPS was faster but required
considerably more memory than block Cimmino. However, sometimes block Cimmino
was faster and we show, in Table 1, some of Zenadi’s results on test matrices from Tim
Davis’ collection1 [5]. The reason for the F for Cage14 is that MUMPS did not have
sufficient memory available to factorize the matrix. Indeed, as we see in Table 2, the
block Cimmino method requires far less memory than MUMPS because the direct solver
is only used on subproblems. This is true in general since the performance and memory

1https.tamu.edu
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Problem Order Entries Factorization times
MUMPS BC CG its

Cage13 445,315 7,479,343 76 2.8 4.1
Cage14 1,505,785 27,130,349 F 5.8 14.5
Hamrle3 1,447,360 5,514,242 208.4 4.7 300.5

Table 1: Times in seconds for MUMPS and block Cimmino (BC) using 64 mpi-processes
and 16 threads per mpi-process.

required by a sparse direct factorization is not linear in problem size so the sum of the
costs for the factorization of the smaller problems will usually be less than the cost for
the original problem.

Problem Memory per node
MUMPS BC

Cage13 2.8 GB 37 MB
Cage14 30 GB 102 MB
Hamrle3 462 MB 53 MB

Table 2: Storage required for MUMPS and BC.

An approach that was developed by [6] enforces numerical orthogonality between
the partitions by adding extra variables and constraints and extracts a condensed small
subsystem that can be reused for efficient further solves (similar to Schur complement
techniques). This method was defined in [6] as the ABCD solver, standing for Augmented
Block Cimmino Distributed solver. That is the system Ax = b is augmented to[

A C
B S

] [
x
y

]
=

[
b
f

]
(7)

where the added matrices are chosen so that the subspaces generated by the partitions
are mutually orthogonal and the solution x is unchanged.

4 Preprocessing for block iterative methods
The main preprocessing steps that we consider are based on scaling and partitioning. We
assume that the matrix is irreducible (that is cannot be permuted to a non-trivial block
triangular form).

There are good algorithms available to partition irreducible matrices to a bordered
block diagonal form as shown in Figure 4. If we use this partitioning to define the
blocks of rows for the block Cimmino method so that each block on the diagonal defines
these blocks, then the block rows are only non-orthogonal because of the overlaps in
the border columns. Thus a method that reduces the number of columns in the border
could be expected to be beneficial. The market leader for obtaining this form is generally
considered to be PaToH [2], but this code is not parallel and is not Open Source so we
examine the use of other codes in Section 8.

http://www.nlafet.eu/ 7/17



NLAFET D3.6: Algorithm design for hybrid methods

Figure 4: A singly bordered block diagonal form.

Because we are developing robust software for solving general unsymmetric systems,
it is crucial to scale the matrix prior to factorization. The market leader here is the HSL
code MC64 [8] but again it is not parallel so we use a simpler but still effective scaling
given in [1].

5 Hypergraph partitioning
A hypergraph H, is defined by a pair of sets H = (V ,N ) where V is a set of vertices
and N a set of hyperedges also called nets. Every net n ∈ N in this hypergraph
is defined as a subset of vertices that is to say n ⊆ V . From this definition it is
easy to see that a graph is a special case of a hypergraph where every net contains
two elements. We illustrate how to translate the original matrix partitioning problem
into a hypergraph partitioning problem using the simple 6-by-6 sparse matrix with
the sparsity pattern presented in Figure 5a. From this sparsity pattern we build the
hypergraph shown in Figure 5b where vertices correspond to row indices and we define
one net per column containing the row indices with nonzero entries in this column.
We thus, in our hypergraph, have the vertex set V = {1, 2, 3, 4, 5, 6} and six nets
N = {n1, n2, n3, n4, n5, n6} = {{1, 5}, {1, 2, 4, 6}, {3, 6}, {1, 4}, {1, 2, 3, 5}, {2, 3, 6}}.

Recall, from Section 4, that our aim is to partition A into block-rows such that the
number of overlapping nonzero columns between the blocks is minimized. If we look
back at our hypergraph model, finding a block-row partitioning corresponds to finding a
vertex partition of H such that each net is involved in as few partitions as possible. This
objective is known as a K-way partitioning problem.

The K-way partitioning problem consists in finding a partitioning of H defined as
P = {V1,V2, ..,VK} where each part Vk is a pairwise disjoint nonempty subset of V , while
minimizing a given cost function X also called the cutsize. We define c[n] as the cost of
any net n ∈ N and, for a partitioning P , we define the connectivity of this net λn as the
number of parts connected by n. A net is said to be cut if it connects more than one part.
The most commonly used cost functions for computing the cutsize are either

χ1(P ) =
∑

n∈NE

c[n], (8)

where NE represents the set of nets that are cut, or
χ2(P ) =

∑
n∈NE

(λn − 1)c[n]. (9)

In addition, the cutsize minimization problem can be constrained by a load balancing
criterion such as for each part Vk we impose

Wk ≤ Wavg(1 + ε) (10)

http://www.nlafet.eu/ 8/17
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(b) Hypergraph.

Figure 5: Figure 5a illustrates the nonzero pattern of a 6-by-6 sparse matrix and we show
in Figure 5b the hypergraph associated with this nonzero pattern. In this hypergraph,
each node corresponds to a row and each net (hyperedge) corresponds to a column and
connects all the rows that have nonzero entries in this column.

where Wk corresponds to the weight of part Vk, Wavg is the average part weight and ε is
a maximum imbalance ratio allowed. Note that the hypergraph partitioning problem is
known to be NP-hard [13].

Using our small example, we illustrate in Figure 6a a naive partitioning of the
original matrix into three block-rows. The partitioning is P = {V1,V2,V3} =
{{1, 2}, {3, 4}, {5, 6}}. Note that, in our experiments, we assign a unit cost to every
net and, because we aim to have a similar number of rows in each partition, we assign
unit weight to the vertices (that is, Wk = cardinality(Vk). In this partitioning, the
load balancing is perfect because each partition contains two rows and the cutsize of
this partitioning is χ1(P ) = 6 and χ2(P ) = 10. In Figure 7a, we illustrate another
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(a) Naive matrix partitioning.
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(b) Naive Hypergraph partitioning.

Figure 6: Naive matrix partitioning and hypergraph.

http://www.nlafet.eu/ 9/17



NLAFET D3.6: Algorithm design for hybrid methods

choice of partitioning where P = {V1,V2,V3} = {{1, 4, 5}, {3, 6}, {2}}. It is easy to
see from Figure 7a that the number of net cuts is reduced and thus the amount of
overlapping between nonzero columns in the block is limited compared to the previous
naive partitioning. We have χ1(P ) = 3 and χ2(P ) = 5. Note that, although we have
fewer interactions between the rows across the blocks, this partitioning has a larger load
imbalance than the previous one.

× × × ×
× ×

× ×
× × ×

× × ×
× × ×

1

4

5

3

6

2

1 2 3 4 5 6

(a) Matrix partitioning.

12
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4

5

6

n1

n2

n3

n4

n5

n6

(b) Hypergraph partitioning.

Figure 7: Matrix partitioning and hypergraph.

6 Saddle-point problems
Matrices of the form

S =
(

H A
AT 0

)
(11)

where H and A are sparse matrices, H is square of order m and A is overdetermined
(of dimensions m × n, m ≥ n) are called saddle-point matrices. These are ubiquitous
in scientific computing and arise in constrained problems and mixed finite elements, for
example. The matrix S in (11) is sparse, symmetric but indefinite. The structure is really
important and most algorithms that ignore this can, on occasion, do spectacularly badly.

If a matrix of this structure is processed by a standard partitioning algorithm like
PaToH then the structure will not be fully recognized. Note that, if one partition is all in
the last n rows of the matrix S, then it does not matter what the entries are in the last
n columns of any of the other blocks, the nearness to orthogonality is obtained from only
the first m entries in the rows of the block.

The question that we want to address is whether it is better to constrain the
partitioning to avoid including rows from the first m rows and those from the last n
rows in the same partition. We could partition the first m rows and the last n rows
independently but then there may be more overlap in the first m columns than from a
structure-blind approach.

We plan to investigate this during the next period of the NLAFET project.

http://www.nlafet.eu/ 10/17
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7 Overdetermined systems
A major positive aspect of the block Cimmino method is that it does not require the
matrix in equation (1) to be symmetric nor even square. The method is therefore a
candidate for solving both underdetermined and overdetermined systems without the
necessity of forming the normal equations. In the keynote paper by Elfving [9], he shows
that the algorithm returns the minimum norm solution of a consistent system in the
underdetermined case and the least squares solution in the overdetermined case.

In our original formulation and in the code of Zenadi [18] that we use for our
experiments in this paper, we use row partitioning of the underdetermined system. This
is important since if the matrix is of full rank, that is to say it has full row rank, then the
subsystems that are solved by the direct method will have the same property. However,
if we perform a row partitioning on an overdetermined matrix even if it is of full rank
(column rank) so that the least-squares solution is unique, then the subsystems need not
be nonsingular.

We must thus use a column partitioning on the overdetermined matrix that, as shown
in [9], goes through in exactly the same way as described for the underdetermined and
square cases in Section 3. We have not yet modified the code of [18] to do this, partly
because we have not received least-squares problems from our application partners, but
we are currently in communication with them to obtain such problems.

8 Preliminary results
In this section we present some results comparing partitioners and some very preliminary
results from the block Cimmino code. The matrices that we use are given in Table 3.
We use the two smaller matrices to compare the partitioning algorithms, and we run the
block Cimmino algorithm on our local parallel platform on the two larger matrices. The
matrices are from the SuiteSparse set of test matrices [5].

Matrix Application n nnz
bayer01 chemical process simulation 57,735 275,735
cage10 DNA electrophoresis 11,397 150,645
cage11 DNA electrophoresis 39,082 559,722
cage12 DNA electrophoresis 130,228 2,032,536

Table 3: Matrices used in this study.

Our starting point is the Open Source code of Mohammed Zenadi [18]. We have
been porting his code that uses MPI and multi-threading to our machines and have been
resolving a few issues, working jointly with colleagues in Toulouse, Philippe Leleux and
Daniel Ruiz. The default partitioning method used in the code is PaToH [4]. In the
NLAFET project, we are now testing various partitioning approaches since the number of
block Cimmino iterations is strongly related to the number of columns in the border of the
bordered block diagonal form that we illustrated in Figure 4. For these experiments, we
used all the hypergraph codes for which we had easy access and which had not too severe
licensing issues. hMETIS [11] is a code from the MeTiS suite and is not Open Source,
but we tested it as it is a hypergraph partitioner with good documentation. HSL_MC66
is from HSL and so is also not Open Source but it is local to RAL and so easy to access

http://www.nlafet.eu/ 11/17
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and use. It is an instantiation of the MONET code of Blake and Hu [10]. The Zoltan
code from Sandia [3] is Open Source and has a parallel version, PHG, so we study this
particularly closely as for these reasons it looks the best replacement for PaToH.

We also tried to use the Mondriaan code of Bisseling [14, 17] but, although it does
now provide matrix partitionings, its primary goal is the parallel implementation of sparse
matrix - vector multiplication, and we found that, although it gave good partitionings,
they had a much smaller number of parts than requested by our codes. Indeed, in
most cases, only two or four parts were returned. We had trouble downloading the new
hypergraph partitioning code, KaHyPar [15], from Karlsruhe due to missing dependencies
and are following this up with the authors. However, KaHyPar is only a serial code and,
although a parallel version is planned, it is likely to be some time before it is available.

We show, in Figures 8 to 11, some results from four of the codes on the matrices
bayer01 and cage10 from Table 3. For the bayer01 matrix, the number of cut edges in
Figure 8, that is the number of border columns in the matrix form shown in Figure 4,
is quite similar for all codes with Zoltan and PaToH having very similar performance.
Another important feature of partitioning codes is that they try to obtain a good balance
between the sizes of the parts as this can greatly effect parallel performance, particularly
on distributed memory architectures. We see, for the bayer01 matrix in Figure 9, that
three of the codes all achieve a balance of less than 1.1 for the ratio of the largest to
the average block size. Although the imbalance is significantly more for hMETIS this is
partly caused by the interpretation of the input request by the code.
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Figure 8: Number of edges in cutset.

A similar relative behaviour of the codes is shown for the cage10 matrix in Figures 10
and 11 although, for all the codes, the number of cut edges increases far more quickly
with the number of partitions. This is because there are more denser columns in the
cage10 matrix that do need to be included in the cutset to get a good partition.

We have been porting and modifying the code of Zenadi and have obtained good
parallelism for some problems. We show the performance of the code on matrix cage12
in Figure 12.

The machine used for these runs is a local heterogeneous machine called SCARF. It
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Figure 10: Number of edges in cutset.

has a number of Intel nodes (including some E5-2650, E2660, X5675, X5530, and E5530
nodes)2. The actual configuration is determined by the batch scheduler at runtime. In
Figure 12 we see the expected good scaling of the iterations (the number of partitions
is fixed at 32 for these runs) and reductions in the time spent in the cg solution of
equation (6) and the MUMPS factorizations of systems of the form shown in equation (5).
We see, in Figure 13, that the number of iterations does not vary significantly when the
number of partitions increases although, as expected, the number does increase with the
number of partitions.

We note that, in the code of Zenadi and in the earlier paper [6], an algorithm ABCD
2See http://www.scarf.rl.ac.uk/hardware
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Figure 11: Imbalance of parts in partition.

(Augmented Block Cimmino Distributed) has been developed that totally avoids the
interaction between blocks by augmenting them so that they are mutually orthogonal.
This yields a pseudo-direct method that should converge in one iteration. We will also
be looking at this approach further in the NLAFET project although it arguably is not a
hybrid method.

All the partitioners that we considered earlier are largely numerically blind in the sense
that they work only with the pattern of the matrix. In a project [7] between ENSEEIHT-
IRIT, CERFACS, Strathclyde, and RAL, we are developing algorithms for finding hidden
structure in matrices, and we can use this to define a partitioning for the block Cimmino
algorithm that identifies the blocks on the diagonal in Figure 4 with clusters obtained from
the hidden structure algorithms. The code preprocesses the input matrix to permute it
to block triangular form and then first removes highly diagonally dominant rows before
invoking the clustering algorithms. Thus we perform experiments on a reduced version
of the cage11 matrix in Table 3 and we show results from this in Figure 14. We see
that the partitioning provided by the method in [7], that we denote by “Luce”, does give
slightly better results than our numerically-blind partitioners. What we have done here is
to establish a proof of concept. We will continue to explore this approach with this other
team during the next months of the NLAFET project.

Although the standard partitioners are numerically blind, it is possible to put integer
weights on edges or nodes, and [16] have used a crude stepwise function to approximate
numerical values when using the MeTiS [12] partitioner on the normal equations matrix.
They show some improvement over the default approach using PaToH. One of the authors
of this paper, Sukru Torun, is joining the EoCoE Centre of Excellence Project in Toulouse.
As part of our ongoing collaboration with this CoE, we will be joining forces to develop
more powerful partitioners so as to reduce the number of iterations required by the block
Cimmino algorithm.
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Figure 12: The speedup of block Cimmino for cage12 on the SCARF machine at RAL.
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Figure 13: The effect of the number of partitions on the convergence of block Cimmino
on a system with matrix cage12.
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9 Conclusions and future work
Task 3.4 on hybrid solution techniques is scheduled to continue until the end of the
NLAFET project and this current deliverable is mainly to identify the steps that we
will perform before the next deliverable for hybrid methods at M36. We now have
good familiarity with the code of Zenadi and with appropriate partitioning software,
establishing good relationships with the authors of this software. As we discussed in the
previous section, we will also be developing, in collaboration with others, numerically-
aware partitioners to directly address the convergence of the block Cimmino algorithm.

We will continue our experiments focusing on test problems arising from the
applications in our NLAFET project. We also wish to integrate the code with some
of the work done in workpackage 3.2, especially since our symmetric indefinite solver is
targeting multinode systems. This should marry well with the block approach that we
have discussed, as the parallel aspects from the partitioning will map well to distributed
memory systems (using MPI) to nicely complement our NLAFET direct solver at the
multinode level. In our opinion, this is a viable route to extreme scale exploitation.
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