
H2020–FETHPC–2014: GA 671633

D4.3
Prototype software, phase 2

October 2017

NLAFET D4.3: Prototype software, phase 2

Document information

Scheduled delivery 2017-10-31
Actual delivery 2017-10-31
Version 1.0
Responsible partner INRIA

Dissemination level

PU — Public

Revision history

Date Editor Status Ver. Changes
2017-10-05 Inria members Draft 0.1 Initial version of document produced
2017-10-27 Inria members Version 1.0 Revision based on partner comments

Author(s)

Laura Grigori, Simplice Donfack, Olivier Tissot, INRIA

Internal reviewers

Carl Christian Kjelgaard Mikkelsen, UMU
Florent Lopez, STFC

Copyright

This work is c©by the NLAFET Consortium, 2015–2018. Its duplication is allowed only
for personal, educational, or research uses.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

Table of Contents
1 Executive Summary 5

2 Introduction 5

3 Using preAlps library 6
3.1 Overview . 6
3.2 Installation . 6
3.3 Input data formats . 8

4 Enlarged Conjugate Gradient 9
4.1 Introduction . 9
4.2 Routines . 11
4.3 Example program . 13

5 LORASC 15
5.1 LORASC preconditioner . 15
5.2 Routines . 16
5.3 Example program . 17

6 Experiments 19
6.1 Enlarged Conjugate Gradient . 19

6.1.1 Environment . 19
6.1.2 Description of test matrices . 20
6.1.3 Performance of ECG . 20

6.2 LORASC . 23
6.2.1 Environment . 23
6.2.2 Performance of LORASC . 23

7 Routines 25

8 Conclusion 27

9 Acknowledgments 28

http://www.nlafet.eu/ 2/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

List of Figures
1 Runtimes for Ela400 with a tolerance of 10−5 on 48 processors. 21
2 Strong scaling for Ela400 with a tolerance of 10−5 22
3 Performance of LORASC on 3D linear elasticity problems 24
4 Strong scaling performance of LORASC on elasticity 3D problem 25

http://www.nlafet.eu/ 3/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

List of Tables
1 Dependencies of preAlps with external librairies. 7
2 Test matrix . 20
3 Runtimes comparison between ECG(12) and PETSc PCG for Ela400 . . . 22
4 Runtime of Block Jacobi and LORASC for a 3D linear elasticity problem . 25

http://www.nlafet.eu/ 4/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

1 Executive Summary
This document describes a prototype version of preAlps, a library that implements com-
munication avoiding solvers based on enlarged Krylov subspace methods and robust pre-
conditioners. It focuses in particular on enlarged CG (ECG) and LORASC preconditioner
described in deliverable D4.2.

This document explains how to install preAlps and how to use its routines to solve a
sparse linear system of equations. The library can be downloaded from https://github.
com/NLAFET/preAlps. ECG can be used as an iterative solver and can be combined with
block Jacobi, LORASC, or any other efficient preconditioner. It is based on reverse
communication so that it can be used also for matrix-free problems. LORASC can be
used in combination with ECG but also with any other Krylov solver for symmetric
positive definite matrices. Our experiments show that ECG and LORASC can be used
efficiently for solving challenging problems.

2 Introduction
The Description of Action document states for Deliverable 4.3:

“Prototype software, phase 2
Prototypes for Krylov-based iterative methods, and multilevel preconditioners.”

This deliverable is in the context of WP4, Task 4.2 (Iterative methods) and Task 4.3
(Preconditioners).

The focus of WP4 is on solving large sparse linear systems of equations by using
preconditioned iterative methods based on Krylov subspace solvers. Each iteration of
a typical Krylov subspace solver involves matrix-vector multiplications and several dot
products in order to orthogonalize the Krylov subspace. These dot products require
collective communication among all processors which does not scale to a very large number
of processors. This is the main bottleneck for the scalability of Krylov subspace methods.
To increase the scalability of Krylov subspace solvers, our research in NLAFET focuses on
enlarged Krylov subspace methods [8] and a robust and algebraic preconditioner LORASC
[6].

Enlarged Krylov subspace methods [8] represent a new approach that consists of en-
larging the Krylov subspace by a maximum of t vectors per iteration, based on a domain
decomposition of the graph of the input matrix. The solution of the linear system is
sought in the enlarged subspace, which is a superset of the classical subspace. The en-
larged Krylov projection subspace methods lead to faster convergence in terms of number
iterations and parallelizable algorithms with less communication, compared to classical
Krylov methods. In addition, each iteration of such a method relies on multiplying a ma-
trix with multiple vectors at once, and this typically allows for better resource utilization.

LORASC [6] is a robust algebraic preconditioner that can be built and applied in
parallel. The graph of the matrix is partitioned by using nested dissection partitioning
into N disjoint domains and a separator formed by the vertices connecting the N domains.
The permuted matrix has an arrow head structure with N+1 blocks on the main diagonal.
The preconditioner relies on the Cholesky factorization of the first N diagonal blocks

http://www.nlafet.eu/ 5/29

https://github.com/NLAFET/preAlps
https://github.com/NLAFET/preAlps
http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

and on approximating the Schur complement corresponding to the separator block. The
approximation of the Schur complement involves the factorization of the last diagonal
block and a low rank correction obtained by solving a generalized eigenvalue problem.

This document describes a prototype of the preAlps library developed as part of
NLAFET. This library aims at solving large scale sparse linear systems on massively
parallel architectures. In its current state the library contains routines for solving sym-
metric positive definite (SPD) linear systems with enlarged Conjugate Gradient (ECG)
in parallel. It also provides routines for using LORASC as a preconditioner, which can
be used in combination with ECG or with another Krylov method for SPD matrices as
for example provided in PETSC[4]. We also provide preliminary results that show the
parallel performance of the library.

3 Using preAlps library

3.1 Overview
preAlps is a parallel library that implements several preconditioners and iterative solvers
based on communication avoiding principle. It focuses on two main aspects: the refor-
mulation of Krylov-based iterative methods to allow a drastic reduction in the number
of global communications with respect to classical formulations, and the design of ro-
bust preconditioners to accelerate the convergence of iterative methods. The current first
prototype of the library provides an efficient implementation of ECG and LORASC pre-
conditioner. ECG is based on enriching the Krylov subspace used in classical methods
that allows to reduce drastically the communication cost of the iterative solver. LORASC
is based on a low rank approximation of the Schur complement. These algorithms are
well suited for parallelism and are described in details in [8] and [6]. In our experiments,
by increasing the numbers of vectors added to the Krylov subspace by 12 instead of 1
as in the traditional conjugate gradient (CG) approach, ECG is up to 3x faster than the
equivalent solver routine in PETSC, while LORASC is up to 7x faster than Block Jacobi
preconditioner.

3.2 Installation
preAlps is developed at INRIA in the context of the NLAFET project, and it can be
downloaded from https://github.com/NLAFET/preAlps. The library depends on few
external librairies that need to be installed and linked with preAlps:

• BLAS and LAPACK [3]: BLAS is a standard library for performing basic vector and
matrix operations. LAPACK is a standard software for numerical linear algebra.
Although any library providing BLAS and LAPACK can be used, we recommend
MKL [17].

• METIS[11] and ParMETIS [12]: the sequential and parallel graph partitioning
tools. METIS is required in order to use ECG, while ParMETIS is required in
order to use LORASC. We recommend to install ParMETIS as it already con-
tains all METIS routines. preAlps were tested with METIS 5.1.0 and ParMETIS

http://www.nlafet.eu/ 6/29

https://github.com/NLAFET/preAlps
http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

BLAS METIS ParMETIS CPaLAMeM PARPACK MUMPS PARDISO
ECG Solver × × × MKL
LORASC × × × × × ANY

preconditioner
Full × × × × × × MKL

installation

Table 1: Dependencies of preAlps with external librairies.

4.0.3. These partitioning tools can be downloaded from http://glaros.dtc.umn.
edu/gkhome/metis/metis/overview and http://glaros.dtc.umn.edu/gkhome/
metis/parmetis/overview.

• CPaLAMeM (C Parallel Linear Algebra Memory Management): a library developed
at INRIA (Alpines group) and part in the context of NLAFET. It provides several
highly efficient routines for manipulating sparse and dense matrices. It also provides
several tools for memory management and debugging purpose. CPaLAMeM library
is distributed with preAlps and will be installed with the library.

• PARPACK [13]: a parallel library used to solve eigenvalue problems. PARPACK is
required in order to use LORASC. A latest version can be downloaded from http:
//www.caam.rice.edu/software/ARPACK/ . At the moment, only PARPACK is
supported in preAlps, but we plan to use other eigenvalue solvers as the one devel-
oped in the NLAFET project (see Deliverable 2.5 for dense matrices).

• MUMPS [2]: a distributed parallel sparse direct solver. preAlps were tested with
MUMPS 5.1.2. It can be downloaded from http://mumps.enseeiht.fr/

• PARDISO: a sequential and multithreaded sparse direct solver. This library is
optional if MKL is already provided. If MKL is not provided, PARDISO from
http://pardiso-project.org/ should be installed.

In addition, the example program test_ecgsolve.c allows the end user to call CG
and Block Jacobi from PETSC and compare its performance with ECG from preAlps.
PETSC [4] provides a suite of routines for scientific applications including solvers and
preconditioners.

The complete installation of preAlps could be summarized as follows:

1. Install all the dependencies libraries.
Table 1 shows the list of dependencies of the main components of preAlps with
exernal librairies. In order to use ECG Solver, BLAS, METIS and MKL (with
PARDISO) are required. In order to use LORASC, BLAS, ParMETIS, CPaLAMeM,
PARPACK and MUMPS are required. For the full installation of preAlps, BLAS,
ParMETIS, PARPACK, MUMPS and MKL (with PARDISO) are required. In all
the cases, CPaLAMeM library is provided with preAlps.

http://www.nlafet.eu/ 7/29

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/
http://mumps.enseeiht.fr/
http://pardiso-project.org/
http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

2. At the top of the preAlps folder, edit the make.inc file in order to set the corre-
sponding path for the external libraries.

3. Next, type make install_cpalamem to install CPaLAMeM.
We note that the git repository of preAlps contains the latest stable version of
CPaLAMeM. If a new version of preAlps is available, it will be necessary to type
make remove_cpalamem before make install_cpalamem in order to reinstall an
updated version of CPaLAMeM.

4. Then, type make to compile preAlps and create the library lib/libpreAlps.a and
the example programs.

5. Now, the functions from the lib preAlps can be called by a program by includ-
ing their corresponding header file. The folder example provide few stand-alone
programs to test the library.

3.3 Input data formats
Most routines in preAlps require matrices stored into a compressed sparse row format
(CSR). CPaLAMeM provides a routine to read such matrices as CPLM_MatCSR_t ob-
jects. The CPLM_MatCSR_t structure are presented as follows:

• m, n : the size of the matrix.

• rowPtr: the beginning index of each rows as described in the CSR format.

• colInd, val: the column indices and the corresponding values of each non-zeros
elements of the matrix.

The following block of code presents an example for reading an external matrix.

1 /* Including headers */
2 #include <CPLM_mat_csr.h>
3

4 int main(int argc, char **argv){
5

6 /* The matrix file to load */
7 char matrixFileName[]="cage4.mtx";
8

9 /* Create an empty CSR Matrix */
10 CPLM_Mat_CSR_t A = CPLM_MatCSRNULL();
11

12 /* Load the matrix file */
13 CPLM_LoadMatrixMarket(matrixFileName, &A);
14 ...

http://www.nlafet.eu/ 8/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

4 Enlarged Conjugate Gradient

4.1 Introduction
We briefly recall the definition of Enlarged Conjugate Gradient (ECG) [8] for solving the
linear system Ax = b. The method has been previously described in Deliverable 4.2.

We use the following notations: U> is the transpose of a matrix U , A is a symmetric
(A> = A) positive definite (x>Ax > 0, ∀x 6= 0) real matrix of size n × n, B is a real
matrix of size n× t where t is the number of vectors used in Enlarged CG, B(i) is the i-th
column of a matrix B, X0 is an initial guess for the linear system AX = B, i.e. it is a
real matrix of size n× t. We denote the initial residual matrix R0 = B −AX0. We call t
the initial block size. Unless otherwise stated, ||.|| denotes the usual euclidean norm both
for vectors and matrices.

Given a splitting decomposition represented by the operator T ,

T (x) =

∗
...
∗
∗
...
∗

. . .

∗
...
∗
∗
...
∗

where x is a vector of size n and T (x) is of size n× t. The first columns of T (x) contains
the first components of x and so on for the following columns of T (x). The initial residual
denoted r0, the corresponding enlarged Krylov subspace is defined as

Kk,t = span�{T (r0), AT (r0), . . . , Ak−1T (r0)}. (4.1)

Using this definition, Grigori, Moufawad and Nataf [8] derive a Short Recurrence
Enlarged CG. The stopping criterion is the euclidean norm of rk = ∑

iR
(i)
k and the

approximate solution is xk = ∑
iX

(i)
k . In [7], we use the framework of Block Conjugate

Gradient [16] to derive two versions of ECG: Orthodir (Algorithm 1) which corresponds to
the SRE-CG in [8] and Orthomin (Algorithm 2) which corresponds to the Block Conjugate
Gradient of O’Leary.

http://www.nlafet.eu/ 9/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

Algorithm 1 Preconditioned Orthodir Enlarged CG
Require: A, M , b, x0, kmax, εsolver
Ensure: ||b− Axk|| < εsolver or k = kmax
1: R0 = T (b− Ax0)
2: r0 = b− Ax0
3: P0 = 0
4: P1 = M−1R0
5: k = 1
6: while ||rk−1|| > εsolver||b|| and k < kmax do
7: Qk = APk
8: A-orthonormalize(Pk,Qk)
9: αk = P>k Rk−1
10: Xk = Xk−1 + Pkαk
11: Rk = Rk−1 −Qkαk
12: Zk = M−1Qk

13: Pk+1 = Zk − PkQ>k Zk − Pk−1Q
>
k−1Zk

14: rk = ∑t
i=1R

(i)
k

15: k = k + 1
16: end while
17: xk = ∑t

i=1X
(i)
k

Algorithm 2 Preconditioned Orthomin Enlarged CG
Require: A, M , b, x0, kmax, εsolver
Ensure: ||b− Axk|| < εsolver or k = kmax
1: R0 = B − AX0
2: r0 = b− Ax0
3: P1 = M−1R0
4: k = 1
5: while ||rk−1|| > εsolver||b|| and k < kmax do
6: Qk = APk
7: A-orthonormalize(Pk,Qk)
8: αk = P>k Rk−1
9: Xk = Xk−1 + Pkαk
10: Rk = Rk−1 −Qkαk
11: Zk = M−1Rk

12: Pk+1 = Zk − PkQ>k Zk
13: rk = ∑t

i=1R
(i)
k

14: k = k + 1
15: end while
16: xk = ∑t

i=1X
(i)
k

http://www.nlafet.eu/ 10/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

4.2 Routines
Our implementation of ECG is based on Reverse Communication Interface [10] and writ-
ten in C and MPI. Following this scheme we provide 4 routines:

• preAlps_ECGInitialize(ECG_t* ecg, double* rhs, int* rci_request),

• preAlps_ECGIterate(ECG_t* ecg, int* rci_request),

• preAlps_ECGStoppingCriterion(ECG_t* ecg, int* stop)

• preAlps_ECGFinalize(ECG_t* ecg, double* solution).

In order to ease its usage, we encapsulate all the required information by ECG in the
structure preAlps_ECG_t. This structure is defined as,

1 typedef struct {
2 /* Array type variables */
3 double* b; /* Right hand side */
4 CPLM_Mat_Dense_t* X; /* Approximated solution */
5 CPLM_Mat_Dense_t* R; /* Residual */
6 CPLM_Mat_Dense_t* P; /* Descent direction */
7 CPLM_Mat_Dense_t* AP; /* A*P */
8 CPLM_Mat_Dense_t* P_prev; /* Previous descent direction */
9 CPLM_Mat_Dense_t* AP_prev; /* A*P_prev */

10 CPLM_Mat_Dense_t* alpha; /* Descent step */
11 CPLM_Mat_Dense_t* beta; /* Step to construt search directions */
12 CPLM_Mat_Dense_t* gamma; /* Step to construct odir search directions */
13 CPLM_Mat_Dense_t* Z; /* Extra memory */
14 CPLM_Mat_Dense_t* H; /* Descent directions needed to reduce block size */
15 CPLM_Mat_Dense_t* AH; /* A*H */
16 double* work; /* working array */
17 int* iwork; /* working array */
18

19 /* Single value variables */
20 double normb; /* norm_2(b) */
21 double res; /* norm_2 of the residual */
22 int iter; /* Iteration */
23

24 /* Options and parameters */
25 int globPbSize; /* Size of the global problem */
26 int locPbSize; /* Size of the local problem */
27 int maxIter; /* Maximum number of iterations */
28 int enlFac; /* Enlarging factor */
29 double tol; /* Tolerance */
30 ECG_Ortho_Alg_t ortho_alg; /* A-orthonormalization algorithm */
31 ECG_Block_Size_Red_t bs_red; /* Block size reduction */
32 MPI_Comm comm; /* MPI communicator */
33 } ECG_t;

where Ortho_Alg_t and Block_Size_Red_t are enum. The structure CPLM_Mat_Dense_t
represents local dense matrices, it contains the pointer to the data (val), the number of
rows (info.m), the number of columns (info.n) and an enum to specify the matrix storage

http://www.nlafet.eu/ 11/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

type (ROW_MAJOR or COL_MAJOR). As it is now, the reduction of the search directions during
the iterations (see Deliverable 4.2) is not implemented.

First, the user has to declare a variable of type ECG_t and set values for the parameters:
comm, globPbSize, locPbSize, maxIter, enlFac, tol, ortho_alg (bs_red is not used
for the moment). The variable globPbSize corresponds to the number of unknowns of
the global solution x (the dimension of A) and locPbSize corresponds to the number of
unknown owned locally (the number of rows of A that are stored locally).

Then, in order to allocate memory and initialize the structure, the user has to call
preAlps_ECGInitiliaze(&ecg, rhs, &rci_request) where rhs is an array (double *)
representing the right hand side and rci_request is an integer. After this call, he has
to apply the preconditioner to ecg.R and put the result into ecg.P. And then, he has to
apply the operator A to ecg.P and put the result into ecg.AP. These two operations has
to be executed in parallel assuming that ecg.R, ecg.P, ecg.AP contains local rows of R,
P and AP which are distributed as row panel over the processors.

Afterwards, the user has to call preAlps_ECGIterate(&ecg,&rci_request) until con-
vergence of the method. Following RCI scheme, after this call the user has to check the
value of rci_request. If rci_request = 0, then the user is requested to apply A on
ecg.P and put the resul into ecg.AP. If rci_request = 1, then the user can check for
convergence of the method. If the method did not converge, then depending of the choice
of the orthogonalization algorithm (ORTHODIR or ORTHOMIN) he has to apply the precon-
ditioner to ecg.R (ORTHOMIN) or ecg.AP (ORTHODIR) and put the result into ecg.Z.

When convergence is reached, it is possible to recover the solution and free the struc-
ture ecg by calling preAlps_ECGFinalize(&ecg,sol) where sol is an array (double*)
already allocated.

To sum up, for solving a linear system with a block Jacobi preconditioner, the general
calling sequence will be

1 // Set parameters
2 ecg.comm = MPI_COMM_WORLD; /* MPI Communicator */
3 ecg.globPbSize = M; /* Size of the global problem */
4 ecg.locPbSize = m; /* Size of the local problem */
5 ecg.maxIter = maxIter; /* Maximum number of iterations */
6 ecg.enlFac = 2; /* Enlarging factor */
7 ecg.tol = tol; /* Tolerance of the method */
8 ecg.ortho_alg = ORTHODIR; /* Orthogonalization algorithm */
9 // Allocate memory and initialize variables

10 preAlps_ECGInitialize(&ecg,rhs,&rci_request);
11 // Finish initialization
12 preAlps_BlockJacobiApply(ecg.R,ecg.P);
13 preAlps_BlockOperator(ecg.P,ecg.AP);
14 // Main loop
15 while (stop != 1) {
16 ierr = preAlps_ECGIterate(&ecg,&rci_request);
17 if (rci_request == 0) {
18 // AP = A*P
19 preAlps_BlockOperator(ecg.P,ecg.AP);
20 }
21 else if (rci_request == 1) {
22 ierr = preAlps_ECGStoppingCriterion(&ecg,&stop);
23 if (stop == 1) break;

http://www.nlafet.eu/ 12/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

24 if (ecg.ortho_alg == ORTHOMIN)
25 // Z = M^-1*R
26 preAlps_BlockJacobiApply(ecg.R,ecg.Z);
27 else if (ecg.ortho_alg == ORTHODIR)
28 // Z = M^-1*AP
29 preAlps_BlockJacobiApply(ecg.AP,ecg.Z);
30 }
31 }
32 // Retrieve solution and free memory
33 preAlps_ECGFinalize(&ecg,sol);

4.3 Example program
The following listing is an abbreviated version of usage of Enlarged Conjugate Gradient
routines for solving a parallel linear system. We provide in this example routines for
calling block Jacobi as a preconditioner. However the user can combine ECG with any
preconditioner. The routines for initializing and applying a preconditioner and associated
data structures can evolve in our library. The user can also use his own routine for
computing the matrix set of vectors product instead of using the preAlps_BlockOperator
routine.

1 /* STD */
2 #include <stdlib.h>
3 #include <stdio.h>
4 #include <stddef.h>
5 /* MPI */
6 #include <mpi.h>
7 /* MKL */
8 #include <mkl.h>
9 /* CPaLAMeM */

10 #include <cpalamem_macro.h>
11 #include <cpalamem_instrumentation.h>
12 /* preAlps */
13 #include "operator.h"
14 #include "ecg.h"
15

16 /**/
17 /* CODE */
18 /**/
19 int main(int argc, char** argv) {
20

21 /*================ Initialize ================*/
22 MPI_Init(&argc, &argv);
23 int rank, size, ierr;
24 MPI_Comm_size(MPI_COMM_WORLD, &size);
25 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
26

27 /*======== Construct the operator using a CSR matrix ========*/
28 const char* matrixFilename = argv[1];
29 CPLM_Mat_CSR_t A = MatCSRNULL();
30 int M, m;
31 int* rowPos = NULL;

http://www.nlafet.eu/ 13/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

32 int* colPos = NULL;
33 int* dep = NULL;
34 int sizeRowPos, sizeColPos, sizeDep;
35 // Read and partition the matrix
36 preAlps_OperatorBuild(matrixFilename,MPI_COMM_WORLD);
37 // Get the CSR structure of A
38 preAlps_OperatorGetA(&A);
39 // Get the sizes of A
40 preAlps_OperatorGetSizes(&M,&m);
41 // Get row partitioning of A
42 preAlps_OperatorGetRowPosPtr(&rowPos,&sizeRowPos);
43 // Get col partitioning induced by this row partitioning
44 preAlps_OperatorGetColPosPtr(&colPos,&sizeColPos);
45

46 /*======== Construct the preconditioner ========*/
47 preAlps_BlockJacobiCreate(precond_type,
48 &A,
49 rowPos,
50 sizeRowPos,
51 colPos,
52 sizeColPos);
53

54 /*============= Construct a random rhs =============*/
55 double* rhs = (double*) malloc(A.info.m*sizeof(double));
56 // Set the seed of the random generator
57 srand(0);
58 for (int i = 0; i < A.info.m; ++i)
59 rhs[i] = ((double) rand() / (double) RAND_MAX);
60

61 /*================ ECG solve ================*/
62 ECG_t ecg;
63 // Set parameters
64 ecg.comm = MPI_COMM_WORLD; /* MPI Communicator */
65 ecg.globPbSize = M; /* Size of the global problem */
66 ecg.locPbSize = m; /* Size of the local problem */
67 ecg.maxIter = 1000; /* Maximum number of iterations */
68 ecg.enlFac = 2; /* Enlarging factor */
69 ecg.tol = 1e-5; /* Tolerance of the method */
70 ecg.ortho_alg = ORTHODIR; /* Orthogonalization algorithm */
71 // Get local and global sizes of operator A
72 int rci_request = 0;
73 int stop = 0;
74 double* sol = NULL;
75 sol = (double*) malloc(m*sizeof(double));
76 // Allocate memory and initialize variables
77 preAlps_ECGInitialize(&ecg,rhs,&rci_request);
78 // Finish initialization
79 preAlps_BlockJacobiApply(precond_type,ecg.R,ecg.P);
80 preAlp_BlockOperator(ecg.P,ecg.AP);
81 // Main loop
82 while (stop != 1) {
83 ierr = preAlps_ECGIterate(&ecg,&rci_request);
84 if (rci_request == 0) {
85 preAlps_BlockOperator(ecg.P,ecg.AP);
86 }

http://www.nlafet.eu/ 14/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

87 else if (rci_request == 1) {
88 ierr = preAlps_ECGStoppingCriterion(&ecg,&stop);
89 if (stop == 1) break;
90 if (ecg.ortho_alg == ORTHOMIN)
91 preAlps_BlockJacobiApply(ecg.R,ecg.Z);
92 else if (ecg.ortho_alg == ORTHODIR)
93 preAlps_BlockJacobiApply(ecg.AP,ecg.Z);
94 }
95 }
96 // Retrieve solution and free memory
97 preAlps_ECGFinalize(&ecg,sol);
98

99 if (rank == 0)
100 printf("=== ECG ===\n\titerations: %d\n\tnorm(res): %e\n",ecg.iter,ecg.res);
101

102 /*================ Finalize ================*/
103 // Free arrays
104 if (rhs != NULL) free(rhs);
105 if (sol != NULL) free(sol);
106 preAlps_OperatorFree();
107 MPI_Finalize();
108 return ierr;
109 }

5 LORASC

5.1 LORASC preconditioner
In this section, we briefly recall LORASC, a robust algebraic preconditioner of the form
M = (L + D̃)D̃−1(D̃ + LT) as presented in the Deliverable 4.2. The graph of the input
matrix is first partitioned by using k-way partitioning with vertex separators into N
disjoint domains and a separator Γ formed by the interface vertices connecting the N
domains. Such a partitioning can be obtained by using existing software as METIS [11].
The permuted matrix has a block arrow structure, as presented in equation (5.3), in which
the first N diagonal blocks correspond to the disjoint domains, while the last diagonal
block AΓΓ corresponds to the separator.

Consider a symmetric positive definite matrix A of size n × n, which has a bordered
block diagonal structure as in Equation (5.3). We refer in the following to LORASC
preconditioner as M . The preconditioner M is defined by the following approximate
factorization

M = (L+ D̃)D̃−1(D̃ + LT) (5.1)

=

A11

. . .

ANN
AΓ1 · · · AΓN S̃

A−1

11
. . .

A−1
NN

S̃−1

A11 AΓT

. . .
...

ANN ATΓN
S̃

 ,

http://www.nlafet.eu/ 15/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

where D̃ = Block-Diag(A11, A22, ..., ANN , S̃), L is defined as

L =

0

. . .

0
AΓ1 · · · AΓN 0

 , (5.2)

and S̃ is an approximation of the Schur complement S = AΓΓ −
∑N
j=1AΓjA

−1
jj .

Definition 5.1 (LORASC preconditioner). Let A be an n×n symmetric positive definite
matrix with a bordered block diagonal structure,

A =

A11 ATΓ1

. . .
...

ANN ATΓN
AΓ1 · · · AΓN AΓΓ

 . (5.3)

Let S = AΓΓ −
∑N
j=1AΓjA

−1
jj A

T
Γj. Given a tolerance τ , a lower bound ε = 1

τ
for the

generalized eigenvalue problem Su = λAΓΓu, let λ1, λ2, ..., λi be the generalized eigenvalues
less than ε, i.e. for all k ∈ {1, ..., i} then λk < ε, and let v1, v2, ..., vi be the corresponding
AΓΓ-orthonormal generalized eigenvectors.

The LORASC preconditioner of A is defined as

MLORASC := (L+ D̃)D̃−1(D̃ + LT).

where D̃ = Block−Diag(A11, A22, ..., ANN , S̃) and L is given by (5.2). The matrix S̃ is
defined as

S̃−1 = A−1
ΓΓ + EΣET , (5.4)

where E,Σ are defined as

E = (v1 v2 ... vi) , (5.5)

Σ = Diag (σ1, σ2, . . . , σi) , with σk = ε− λk
λk

, k ∈ {1, 2, ..., i}. (5.6)

The parallel construction of LORASC using N processors is summarized in Algorithm
3.

5.2 Routines
LORASC preconditioner can be built separately and used in any sparse iterative solvers.
The implemented routines are described as follows:

• preAlps_LorascAlloc (preAlps_Lorasc_t **lorasc) : creates an object of the
type preAlps_Lorasc_t. The resulting object can be used by the end-user to replace
the default parameters such as the deflation_tolerance (ε in definition 5.1).

http://www.nlafet.eu/ 16/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

Algorithm 3 Parallel construction of LORASC using N processors
Require: SPD matrix A, N processors, subset of NΓ processors, tolerance ε
1: Partition the graph of A into N disjoint domains using k-way partitioning with vertex

separators, and permute the matrix into a block arrow structure as

A =

A11 ATΓ1

. . .
...

ANN ATΓN
AΓ1 · · · AΓN AΓΓ

 . (5.7)

2: Distribute A on N processors such that processor j holds AΓj and Ajj, distribute AΓΓ
on NΓ processors by using a block row distribution

3: Processors j = 1, . . . , N compute locally the Cholesky factorization of Ajj
4: A subset of NΓ processors compute the Cholesky factorization of AΓΓ in parallel
5: All processors solve the generalized eigenvalue problem Su = λAΓΓu and compute the

eigenvalues smaller than ε and associated eigenvectors using PARPACK, where S =
AΓΓ −

∑N
j=1AΓjA

−1
jj A

T
Γj (the result is returned on processor 0, the shifted eigenvalues

are stored in Σ and the eigenvectors in E)
Ensure: M = (L + D̃)D̃−1(D̃ + LT) where D̃ = Block-Diag(A11, A22, ...ANN , S̃) and

S̃−1 = A−1
ΓΓ + EΣET

• preAlps_LorascBuild (preAlps_Lorasc_t *lorasc, CPLM_Mat_CSR_t *A,
CPLM_Mat_CSR_t *locAP, MPI_Comm comm) : constructs LORASC preconditioner
from an input matrix A and stores all the required internal workspace in the object
lorasc. First, it partitions and permutes the matrix A into a block arrow structure,
then distributes it to each processor. After this distribution, each processor stores
in the output matrix locAP its block from a 1-D block row distribution of the
permuted matrix A. Finally it constructs the preconditioner itself.

• preAlps_LorascApply (preAlps_Lorasc_t *lorasc, double *x, double *y) :
applies LORASC preconditioner on a vector x and return the result in the vector y.

• preAlps_LorascApplyMat (preAlps_Lorasc_t *lorasc,
CPLM_Mat_Dense_t *A, CPLM_Mat_Dense_t *B) : applies LORASC preconditioner
on a dense matrix A, and returns the result in a dense matrix B. This routine does
the same computation as preAlps_LorascApply routine with the difference that it
applies the preconditioner on a dense matrix.

• preAlps_LorascDestroy (preAlps_Lorasc_t **lorasc) : frees the internal mem-
ory allocated by LORASC preconditioner and destroys lorasc object.

5.3 Example program
The following listing illustrates how LORASC can be used as a preconditioner in an
example program for solving a sparse linear system. In this example, we use ECG as

http://www.nlafet.eu/ 17/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

iterative solver with an enlarging factor of 1, which is similar to using the classical CG
algorithm.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <mpi.h>
5 #include <CPLM_mat_load_mm.h>
6 #include <CPLM_mat_csr.h>
7 #include "preAlps_utils.h"
8 #include "preAlps_preconditioner.h"
9 #include "preAlps_lorasc.h"

10 #include "preAlps_ecg.h"
11

12 int main(int argc, char** argv){
13

14 int i, bsize, ierr, nbprocs, my_rank;
15 char matrix_filename[150]="", rhs_filename[150]="";
16 CPLM_Mat_CSR_t A = CPLM_MatCSRNULL(), locAP = CPLM_MatCSRNULL();
17 double *x = NULL, *b = NULL;
18

19 /* Generic preconditioner object */
20 preAlps_preconditioner_t *precond = NULL;
21

22 /* Lorasc preconditioner */
23 preAlps_Lorasc_t *lorascA = NULL;
24

25 /* Start MPI*/
26 MPI_Init(&argc, &argv);
27 MPI_Comm_size(MPI_COMM_WORLD, &nbprocs);
28 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
29

30 /* Load the matrix on processor 0 */
31 if(my_rank==0){
32 /* Get user parameters */
33 for(i=1;i<argc-1;i+=2){
34 if (strcmp(argv[i],"-mat") == 0) strcpy(matrix_filename,argv[i+1]);
35 if (strcmp(argv[i],"-rhs") == 0) strcpy(rhs_filename,argv[i+1]);
36 }
37

38 /* Read the matrix in CSR format */
39 CPLM_LoadMatrixMarket(matrix_filename, &A);
40

41 /* Read the rhs */
42 CPLM_DVectorLoad(rhs_filename, &b, &bsize, 0);
43 }
44

45 /* Memory allocation for LORASC preconditioner */
46 ierr = preAlps_LorascAlloc(&lorascA); preAlps_checkError(ierr);
47

48 /* Set LORASC parameters */
49 lorascA->deflation_tolerance = 1e-2; //eigenvalues deflation tolerance
50

51 /* Build the preconditioner and distribute the matrix according to the Block arrow
structure */

http://www.nlafet.eu/ 18/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

52 ierr = preAlps_LorascBuild(lorascA, &A, &locAP, MPI_COMM_WORLD);
preAlps_checkError(ierr);

53

54 /* Create a generic preconditioner object compatible with EcgSolver*/
55 preAlps_PreconditionerCreate(&precond, PREALPS_LORASC, (void *) lorascA);
56

57 /* Solve the system using ECGSolve*/
58 ECG_t ecg; /* Enlarge CG solver */
59 /* Set the solver parameters */
60 ecg.comm = MPI_COMM_WORLD; /* MPI Communicator */
61 ecg.globPbSize = A.info.m; /* Size of the global problem */
62 ecg.locPbSize = locAP.info.m; /* Size of the local problem */
63 ecg.maxIter = 10000; /* Maximum number of iterations */
64 ecg.enlFac = 1; /* Enlarging factor */
65 ecg.tol = 1e-8; /* Tolerance of the method */
66 ecg.ortho_alg = ORTHOMIN; /* Orthogonalization algorithm */
67

68

69 /* Call Ecg Solve */
70 /* ... */
71 /* See listing in ECG section */
72 /* ... */
73

74 if (my_rank == 0)
75 printf("=== ECG ===\n\titerations: %d\n\tnorm(res): %e\n",ecg.iter,ecg.res);
76

77 /* Destroy Lorasc preconditioner */
78 ierr = preAlps_LorascDestroy(&lorascA); preAlps_checkError(ierr);
79

80 /* Destroy the generic preconditioner object*/
81 preAlps_PreconditionerDestroy(&precond);
82

83 /* Free memory*/
84 if(b!=NULL) free(b);
85 CPLM_MatCSRFree(&locAP);
86

87 if(my_rank==0){
88 CPLM_MatCSRFree(&A);
89 }
90

91 MPI_Finalize();
92 return EXIT_SUCCESS;
93 }

6 Experiments

6.1 Enlarged Conjugate Gradient
6.1.1 Environment

Concerning ECG, the experiments were performed on a machine located at Umeå Uni-
versity as part of High Performance Computing Center North (HPC2N), called Keb-

http://www.nlafet.eu/ 19/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

nekaise. It is an heterogeneous machine formed by a mix of Intel Xeon E5-2690v4
with 2x14 cores (and E7-8860v4 for large memory computations), Nvidia K80 GPU
and Intel Xeon Phi 7250 (Knight’s Landing) with 68 cores. In our experiments, we
use the so-called compute nodes, which means formed by Intel Xeon E5-2690v4. For
a detailed description of the machine, we refer to the online documentation (https:
//www.hpc2n.umu.se/resources/hardware/kebnekaise).

6.1.2 Description of test matrices

We compare the performance of ECG and PETSc PCG on a set of matrices that are also
used in [6, 1, 15] where they are described in more details. In this document, we present
the results for one matrix in this set which is detailed in Table 2 where we present its size
and its number of nonzeros.

The Ela matrices arise from the linear elasticity problem with Dirichlet and Neumann
boundary conditions defined as follows

div(σ(u)) + f = 0 on Ω (6.1)
u = 0 on ∂ΩD (6.2)

σ(u) · n = 0 on ∂ΩN (6.3)

where Ω is a unit square cube. The matrices ElaN correspond to this equation discretized
using a triangular mesh with N × 10 × 10 points on the corresponding vertices and P1
finite elements scheme. ∂ΩD is the Dirichlet boundary, ∂ΩN is the Neumann boundary, f
is some body force, u is the unknown displacement field. σ(.) is the Cauchy stress tensor
given by Hooke’s law: it can be expressed in terms of Young’s Modulus E and Poisson’s
ratio ν. For a more detailed description of the problem see [14] and [6]. We consider
discontinuous E and ν, (E1, ν1) = (2× 1011, 0.25) and (E2, ν2) = (107, 0.45).

Table 2: Test matrix we use in our tests, its size, the number of nonzeros and the type of
problem it is coming from.

Size Nonzeros Problem
Ela400 145 563 4 907 997 3D Linear Elasticity P1 FE

In the experiments we use a block Jacobi preconditioner with as many blocks as proces-
sors. Before calling ECG, each processor factorizes the diagonal block of A corresponding
to the local row panel that it owns. At each iteration of ECG, each processor performs
a backward and forward solve locally in order to apply the preconditioner. Hence, the
application does not need any communication.

6.1.3 Performance of ECG

We compile preAlps (and its dependencies) using Intel toolchain installed on the machine:
mpiicc (based on icc version 17.0.1 20161005) and MKL version 2017.1.132.

http://www.nlafet.eu/ 20/29

https://www.hpc2n.umu.se/resources/hardware/kebnekaise
https://www.hpc2n.umu.se/resources/hardware/kebnekaise
http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

PETSc ECG(4) ECG(8) ECG(12) ECG(16) ECG(20) ECG(24)
0

1

2

3

4

5

6

T
im

e
 (

s)

Ela400

Figure 1: Runtimes for Ela400 with a tolerance of 10−5 on 48 processors.

We are using PETSc in order to compare our ECG implementation to PETSc PCG
implementation. PETSc 3.7.6 is compiled using the following configuration,

1 ./configure -with-cc=mpiicc --with-cxx=0 --with-fc=0 COPTFLAGS="-O3 -march=native
-mtune=native" --with-debugging=0 -with-blas-lapack-dir=${MKLROOT}
--with-mkl_pardiso-dir=${MKLROOT} --download-metis

In particular, PETSc is using MKL-PARDISO as exact solver for sparse matrices in the block
Jacobi preconditioner. CPaLAMeM has been linked with PETSc, and the METIS library
downloaded and installed by PEtSc.

When increasing the enlarging factor t the number of iterations decreases and the
number of flop per iteration is increasing. In other words, if t is small the communication
cost should dominate and if t is large the computational cost should dominate. There is
no simple way to choose a priori the optimal enlarging factor t. In Figure 1 we plot the
runtime as a function of t when solving Ela400 on 48 processors. Overall, ECG performs
better than PETSc PCG, both with the same preconditioner. Indeed, ECG runtime is 2
to 3 times faster than PCG runtime. On the other hand, experimental results confirm
that there exists a good choice of t. Indeed, the runtime is decreasing until t = 12 but
then it increases. It is important not to choose an enlarging factor too small, for example,
ECG(4) is two times slower than ECG(12). On the other side, increasing t is not useful
up to a certain number of right-hand sides, for example, ECG(12) is nearly two times
faster than ECG(24).

In Figure 2 we summarize the results obtained when performing a strong scalability
study on Ela400 with PETSc PCG and ECG(12). We start with 24 processors and double
the number of processors until 192. First, ECG(12) scaling is sub-linear and PETSc PCG
scales a little more than linearly. However, this test case is relatively small and thus the
runtime with 192 processors is very small (around 1 second). When using 8 times more
processors (from 24 to 192) PETSc PCG becomes around 8.9 times faster and ECG(12)
around 6.5 times faster. However, ECG(12) remains around 2 times faster than PETSc
PCG. With 192 processors ECG(12) is 86% faster and with 48 processors it is 3 times
faster.

http://www.nlafet.eu/ 21/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

24 48 96 192
nproc

0

2

4

6

8

10

12

14

T
im

e
 (

s)

Ela400

ECG(12)
PETSc

Figure 2: Strong scaling study for Ela400 with a tolerance of 10−5 and an enlarging factor
of 12.

Table 3: Runtimes comparison between ECG(12) and PETSc PCG for Ela400 with a
tolerance of 10−5 when increasing the number of processors.

nprocs runtimes (s)
ECG(12) 24 5.28

48 2.16
96 1.55
192 0.83

PETSc PCG 24 13.35
48 6.43
96 2.31
192 1.51

http://www.nlafet.eu/ 22/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

6.2 LORASC
6.2.1 Environment

In this section we discuss the performance of LORASC on a parallel machine formed by 28
compute nodes. This follows the description provided in [6]. Each node is equipped with
a 24 cores socket based on Intel Xeon E5-2670 (Sandy Bridge), each core has a frequency
of 2.6 GHz. We assign one MPI task per core. As described in [6], the construction of
LORASC is performed in parallel and requires computing the Cholesky factorization of the
diagonal blocks of A and solving a generalized eigenvalue problem. When N processors
are used, first the input matrix A is permuted by using METIS into a matrix with a
block arrow structure as in equation (5.3). The Cholesky factorization of each domain is
computed by one of the N processors using PARDISO from MKL’s scientific library. The
Cholesky decomposition of AΓΓ is computed in parallel by a subset of the N processors
using MUMPS 5.0.2 [2]. In our experiments, the number of processors used for AΓΓ is
determined by the minimum of N , and size(AΓΓ)/2000. Hence each processor will have
at least 2000 rows of AΓΓ. We observed that increasing the number of processors used
for the factorization of AΓΓ over this threshold leads to more communication between
processors, and no performance gain. Once the factorization of the diagonal blocks is
computed, the generalized eigenvalue problem is solved by using the parallel version of
ARPACK, PARPACK 2.1 [13]. We provide to PARPACK a parallel routine that applies
S to a vector and A−1

ΓΓ to a vector.
Once LORASC is built, the linear system is solved using ECG solver with an enlarging

factor of 1 which corresponds to the classical CG.

6.2.2 Performance of LORASC

We compare the performance of LORASC with block Jacobi from PETSc. On N pro-
cessors, block Jacobi preconditioner uses the Cholesky factorization of N diagonal blocks
of the matrix A permuted as following. The vertices corresponding to the separator Γ
are partitioned into N sets. The rows and columns of the input matrix A are permuted
such that the j-th set of vertices of the separator Γ are ordered after the vertices of the
j-th domain. Processor j owns the rows corresponding to these vertices. The residual
tolerance of the solver is fixed to 10−6 for all the preconditioners. In the following tables,
No prec refers to the version of CG without preconditioning.

Figure 3 presents the performance of LORASC on matrices arising from the discretiza-
tion of the 3D linear elasticity problem. The dimension of the matrices increases from
n = 4719 to n = 72963. In the results presented in Figure 3, the number of processors,
and hence the number of domains, is fixed to 16. For all the results, we include both
the time to construct the preconditioner and the time to solve the system. The runtime
of LORASC increases from 0.2 to 3 when the matrix size increases from 4719 to 72963.
LORASC is significantly faster than Block Jacobi, up to a factor of 6 for the matrix of
dimension n = 72963. In these results, all the eigenvalues smaller than ε = 10−2 are
deflated in LORASC. For example, for n = 9438, 8 eigenvalues are deflated, and for
n = 72963, 23 eigenvalues are deflated.

Figure 4 presents the performance of LORASC and Block Jacobi for a medium size ma-
trix with n = 145563 and 4907997 nonzero elements. The number of processors increases

http://www.nlafet.eu/ 23/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

4719 9438 18513 36663 54813 72963
0

2

4

6

8

10

12

14

Ti
m
e	
(s
)

Matrix	size

Performance	of	Lorasc	on	16	processors	when	N	varies

No	Preconditionner

Block	Jacobi

Lorasc

Figure 3: Performance of LORASC on 16 processors on 3D linear elasticity problems
when n varies from 4719 to 72963.

from 16 to 256. The number of domains used in LORASC and the number of diagonal
blocks used in Block Jacobi are equal to the number of processors. In addition, table 4
displays for both preconditioners the number of iterations (Iter), the time to construct
the preconditioner (Prec), the time to solve (Solve), and the total time of the iterative
process (Total = Prec + Solve). Similarly in Figure 4 the runtime is broken down into
the time to construct the preconditioner (Preconditioner), and the solve time (Solve).
One of the parameters that we need to pass to PARPACK is the number of eigenvalues
and eigenvectors that need to be computed. In this experiment the number of eigenvalues
computed by PARPACK is fixed to 150, and the eigenvalues smaller than the threshold
ε = 10−2 are deflated. In the future, we will work on estimating the number of eigenvalues
smaller than the threshold ε, and thus have an estimate of the number of eigenvalues that
needs to be computed by PARPACK and deflated by LORASC.

The results in Figure 4 show that LORASC is faster than Block Jacobi when up to
128 processors are used. It is 7 times faster than Block Jacobi on 16 processors. However,
the time required to compute LORASC increases when the number of domains increases.
More than 80% of the time is spent in solving the generalized eigenvalue problem with
PARPACK. Since the size of the interface Γ becomes larger when the number of domains
increases, the construction of LORASC requires solving a larger generalized eigenvalue
problem, and this becomes more expensive, even if we use a larger number of processors to
solve it. The time to build Block Jacobi is very small, but since the number of iterations
to converge grows when the number of processors increases, the solve time is important.
On 256 processors, even if Block Jacobi requires a factor of 64 more iterations to converge
than LORASC, the time to apply Block Jacobi is almost equal with the time to construct
LORASC.

These results show that for medium size problems and for a small to medium number

http://www.nlafet.eu/ 24/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

Block Jacobi LORASC
N Iter Prec Solve Total Iter Prec Solve Total
16 4058 3.5E-4 132.1 132.1 102 15.4 2.7 18.1
32 6020 3.5E-4 91.8 91.8 131 12.6 1.4 14.1
64 9096 3.7E-4 64.3 64.3 184 13.3 1.0 14.3
128 13321 3.7E-4 41.3 41.3 227 22.4 1.2 23.6
256 15573 3.7E-4 37.3 37.3 243 36.3 1.8 38.1

Table 4: Parallel runtime of Block Jacobi and LORASC on N processors for a matrix
arising from the discretization of a 3D linear elasticity problem. The matrix has dimen-
sion n = 145563 and 4907997 nonzeros. Iter denotes the number of iterations until
convergence of preconditioned CG, Prec denotes the time to construct the preconditioner
and Solve denotes the solve time.

Figure 4: Strong scaling performance of LORASC on elasticity 3D problem of size n =
145563 with 4907997 nonzeros.

of processors, LORASC is an efficient preconditioner. When the number of processors
increases and the interface Γ becomes too large, the resolution of the generalized eigenvalue
problem becomes expensive. However, if multiple linear systems with the same matrix
A need to be solved, and the right hand sides are not available simultaneously, then
LORASC remains an interesting option since the solve phase is very fast.

7 Routines
/*
* Read a sparse matrix from file (mtx or petsc binary) then partition it

http://www.nlafet.eu/ 25/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

* using METIS K-Way algorithm into the number of processor in the communicator
* comm and distribute it among those processors.
* input: matrixFilename: MatrixMarket or PETSc binary file
* comm : MPI communicator
*/

int preAlps_OperatorBuild(const char* matrixFilename, MPI_Comm comm);

/*
* Release memory allocated during preAlp_OperatorBuild.
*/

void preAlps_OperatorFree();

/*
* Print informations about the operator.
*/

void preAlps_OperatorPrint(int rank);

/*
* Apply the operator to a group of vector X and put the result into AX.
* input : X : CPLM_Mat_Dense_t
* output: AX: CPLM_Mat_Dense_t
*/

int preAlps_OperatorGetSizes(int* M, int* m);

/*
* Return the local part of the operator as a row panel CSR matrix.
*/

int preAlps_BlockOperator(CPLM_Mat_Dense_t* X, CPLM_Mat_Dense_t* AX);

/*
* Return the global size and local size of the operator A.
*/

int preAlps_OperatorGetA(CPLM_Mat_CSR_t* A);

/*
* Return a vector containing the global row index corresponding to the beginning
* of each row panel.
*/

int preAlps_OperatorGetRowPosPtr(int** rowPos, int* sizeRowPos);

/*
* Return a vector containing the global col index corresponding to the beginning
* of each local column block (column block i corresponds to values at the interface
* between processor i and my_rank)
*/

int preAlps_OperatorGetColPosPtr(int** colPos, int* sizeColPos);

/*

http://www.nlafet.eu/ 26/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

* Return a vector containing the indexes of the neighbor processors.
*/

int preAlps_OperatorGetDepPtr(int** dep, int* sizeDep);

/*
* Factorize the diagonal block associated to the local row panel owned locally
* input: A : a CSR matrix CPLM_Mat_CSR_t
* rowPos : the vector returned by preAlps_OperatorGetRowPosPtr
* sizeRowPos: the size of rowPos
* colPos : the vector returned by preAlps_OperatorGetColPosPtr
* sizeColPos: the size of colPos
*/

int preAlps_BlockJacobiCreate(CPLM_Mat_CSR_t* A,
int* rowPos,
int sizeRowPos,
int* colPos,
int sizeColPos);

/*
* Solve Mx = rhs and put the result into rhs.
* Internal usage only.
*/

int preAlps_BlockJacobiInitialize(CPLM_DVector_t* rhs);

/*
* Solve M B_out = A_in with M a block Jacobi preconditioner.
*/

int preAlps_BlockJacobiApply(CPLM_Mat_Dense_t* A_in, CPLM_Mat_Dense_t* B_out);

/*
* Free the memory allocated during the construction of the preconditioner.
*/

void preAlps_BlockJacobiFree();

8 Conclusion
In this document we described a first version of preAlps library devoted to solving large sparse
linear systems of equations by using preconditioned iterative methods. In its current version,
the library implements ECG iterative solver and LORASC preconditioner.

In the context of enlarged Krylov methods, our future work will focus on implementing the
dynamic reduction of the number of vectors added during each iteration of ECG such that the
computational cost per iteration is reduced while the same convergence rate is maintained. This
technique is described in [7]. In the context of LORASC, our performance results show that its
application during the iterative process is fast and scalable, but on larger number of processors,
its construction becomes expensive since it requires solving a generalized eigenvalue problem of a
larger size. Our future work will focus on approaches that allow to speed up the resolution of the
generalized eigenvalue problem, which for the moment increases when the number of processors

http://www.nlafet.eu/ 27/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

increases.

9 Acknowledgments
This project is funded from the European Union’s Horizon 2020 research and innovation pro-
gramme under the NLAFET grant agreement No 671633.

References
[1] Y. Achdou and F. Nataf. Low frequency tangential filtering decomposition. Numerical

Linear Algebra with Applications, 14:129–147, 2007.

[2] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23(1):15–41,
2001.

[3] Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, Jack Dongarra,
Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ guide, volume 9. SIAM, 1999.

[4] Satish Balay, Shrirang Abhyankar, M Adams, Peter Brune, Kris Buschelman, L Dalcin,
W Gropp, Barry Smith, D Karpeyev, Dinesh Kaushik, et al. Petsc users manual revision
3.7. Technical report, Argonne National Lab.(ANL), Argonne, IL (United States), 2016.

[5] L. Susan Blackford, Jaeyoung Choi, Andy Cleary, Eduardo D’Azevedo, James Demmel,
Inderjit Dhillon, Jack Dongarra, Sven Hammarling, Greg Henry, Antoine Petitet, et al.
ScaLAPACK users’ guide, volume 4. SIAM, 1997.

[6] L. Grigori, F. Nataf, and S. Youssef. Robust algebraic schur complement based on low rank
correction. Technical report, ALPINES-INRIA, Paris-Rocquencourt, 6 2014.

[7] L. Grigori and O. Tissot. Reducing the communication and computational costs of enlarged
krylov subspaces conjugate gradient. Research Report RR-9023, Feb 2017.

[8] Laura Grigori, Sophie Moufawad, and Frederic Nataf. Enlarged Krylov subspace conjugate
gradient methods for reducing communication. SIAM J. Matrix Anal. Appl., 2016.

[9] Martin H. Gutknecht. Block Krylov space methods for linear systems with multiple right-
hand sides: an introduction. 2006.

[10] A.Kalhan J. Dongarra, V.Eijkhout. Reverse communication interface for linear algebra
templates for iterative methods. Technical report, May 1995.

[11] George Karypis and Vipin Kumar. METIS –unstructured graph partitioning and sparse
matrix ordering system, version 2.0. 1995.

[12] George Karypis, Kirk Schloegel, and Vipin Kumar. Parmetis: Parallel graph partitioning
and sparse matrix ordering library. Version 1.0, Dept. of Computer Science, University of
Minnesota, 1997.

[13] R. B. Lehoucq, D. C. Sorensen, and C. Yang. Arpack User’s Guide: Solution of Large Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, 1997.

http://www.nlafet.eu/ 28/29

http://www.nlafet.eu/

NLAFET D4.3: Prototype software, phase 2

[14] F. Nataf, F. Hecht, P. Jolivet, and C. Prud’Homme. Scalable domain decomposition pre-
conditioners for heterogeneous elliptic problems. SC13, (Denver, Colorado, United States),
2013.

[15] Q. Niu, L. Grigori, P. Kumar, and F. Nataf. Modified tangential frequency filtering decom-
position and its fourier analysis. Numerische Mathematik, 116:123–148, 2010.

[16] D. P. O’Leary. The block conjugate gradient algorithm and related methods. Linear Algebra
and Its Applications, 29:293–322, 1980.

[17] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan
Wang. Intel math kernel library. In High-Performance Computing on the Intel R© Xeon Phi,
pages 167–188. Springer, 2014.

http://www.nlafet.eu/ 29/29

http://www.nlafet.eu/

	Executive Summary
	Introduction
	Using preAlps library
	Overview
	Installation
	Input data formats

	Enlarged Conjugate Gradient
	Introduction
	Routines
	Example program

	LORASC
	LORASC preconditioner
	Routines
	Example program

	Experiments
	Enlarged Conjugate Gradient
	Environment
	Description of test matrices
	Performance of ECG

	LORASC
	Environment
	Performance of LORASC

	Routines
	Conclusion
	Acknowledgments

