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1 Introduction
The Description of Action document states for Deliverable D6.2:

D6.2: “Evaluation of existing and novel methods for static and dynamic
scheduling in various types of HPC systems. Includes documentation of algo-
rithms and prototypes developed.”

This deliverable is in the context of Task–6.1 (Scheduling and Runtime Systems).
The ongoing challenge for high-performance computing (HPC) is the design of sys-

tems capable of exascale performance (i.e., 1018 floating point operations per second [ex-
aFLOP/s]). To achieve such an ambitious goal with additional power and energy con-
sumption constraints, one must increase parallelism at all levels, with a corresponding
and unprecedented increase in heterogeneity. This heterogeneity will go beyond tradi-
tional HPC systems—which currently consist of mostly homogeneous, massively parallel
nodes—with the addition of accelerators (graphics processing units [GPUs]) and coproces-
sors (Intel Xeon Phis). In the exascale era, the computing nodes themselves are expected
to be very heterogeneous, with lower power consumption nodes based on ARM chips or
IBM’s reduced instruction set computer (RISC) architecture, regular nodes based on x86
chips (with additional GPU accelerators and Xeon Phi coprocessors thrown into the mix),
and very specialized nodes for specific applications. To fully exploit such complex and
highly heterogeneous systems, novel scheduling strategies and runtime systems should be
investigated to enable scientific and engineering task-based applications to fully utilize
these systems.

The primary goal of this deliverable is to evaluate existing scheduling strategies and
investigate novel approaches in the context of numerical linear algebra libraries, which
are the building blocks of many scientific and engineering simulations. To cope with the
permanent change in HPC architectures, the current trend in the numerical linear algebra
community is to employ task-based programming models to guarantee the portability
and scalability of software. The underlying idea is to rethink each application as a set of
tasks to be executed with respect to data dependencies and constraints imposed by the
application. Both the data dependency tracking and the task execution are then delegated
to a task-based runtime system, which serves as an interface between user applications
and the hardware. The effectiveness of runtime systems depends mainly on the scheduling
strategies and policies. Consequently, it is critical to devote more energy to evaluating
different scheduling methods and analyzing their affinity with high-performance linear
algebra libraries.

To assess the performance of existing scheduling strategies in the context of extreme-
scale linear algebra libraries, we developed a new library called PlaStar (Section 2.5).
This library implements task-based dense linear algebra algorithms, with the flexibility to
choose between different scheduling strategies thanks to the StarPU [3] runtime system
on which the PlaStar library is based.

The remainder of this work is organized as follows. In Section 2, we discuss the
underlying principles of PlaStar and other task-based dense linear algebra libraries that
are used for evaluating the scheduling strategy. Section 3 contains a discussion of different
static and dynamic runtime systems on various HPC systems. Section 4 outlines promising
ideas for novel scheduling strategies. Experimental results are reported in Section 5, and
Section 6 contains our concluding remarks.
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2 Linear Algebra Libraries and Runtime Systems
The primary use of high-performance linear algebra software in scientific applications is in
solving linear systems. Whether one needs to solve a system arising from the discretization
of a partial differential equation, fit a model to some data in a least-squares sense, or solve
a KKT system in an optimization problem, there will undoubtedly be linear systems to
be solved. As applications have evolved, these systems have become larger, necessitating
the use of high-performance linear algebra routines to solve them in a reasonable amount
of time. Usually, such dense systems are solved using Cholesky, LU , QR, or symmetric-
indefinite factorizations. More recently, a few high-performance linear algebra software
libraries have been developed to cope with the aforementioned changes in modern HPC
systems.

With the advent of multicore architectures, for example, the Linear Algebra PACKage
(LAPACK) was introduced to effectively exploit cache-based memory architectures. How-
ever, its memory layout—which consists of the subdivision of matrices in block columns—
and the fork-join parallelism model lead to a serious performance penalty on modern,
massively parallel architectures. To address the limitations of LAPACK-style routines,
a new generation of numerical linear algebra libraries has been designed using the novel
task-based programming paradigm. Such libraries rely heavily on task-based runtime sys-
tems and represent a very rich context for exploring new scheduling strategies. In this
section, we present some of the task-based linear algebra libraries and their associated
runtime systems.

2.1 The PLASMA Library
The Parallel Linear Algebra for Multicore Architectures (PLASMA) package is a dense
linear algebra library designed to fully exploit modern many/multicore shared memory
computers. PLASMA implements efficient parallel task-based variants of level-3 Basic
Linear Algebra Subprograms (BLAS) and LAPACK routines. Roughly, PLASMA rou-
tines consist of three main steps. First, each dense input matrix, initially stored in
column-major form, is converted to tile layout. This approach offers many advantages.
Small tiles are more likely to fit into the cache memory, which can reduce cache and
translation lookaside buffer (TLB) misses, increase opportunities for data prefetching,
and—consequently—improve overall performance. Then, at the computation step, each
task operates at tile granularity. It is here that efficient runtime systems and scheduling
strategies are required to schedule each task to the appropriate computing unit. At the
last step, the output matrices are converted back to column-major data layout.

The first version of PLASMA [2] was based on a runtime system called QUeueing And
Runtime for Kernels (QUARK) [30], developed by Assim et al. QUARK was developed
primarily to serve as a runtime support system for the PLASMA library. It allowed task-
based applications to execute tasks asynchronously in many/multicore shared memory
architectures. In addition, QUARK permitted both static and dynamic task scheduling.

With the introduction of the task-based paradigm in OpenMP 3.0, followed by the
dataflow-based task scheduling provided in the OpenMP 4.0 standard, the QUARK run-
time system in PLASMA was replaced with OpenMP [31]. PLASMA’s current version,
PLASMA 171, is now based on OpenMP, with performance comparable to the QUARK-
based PLASMA.

1https://bitbucket.org/icl/plasma
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2.2 The DPLASMA Library
Although it is actually a separate library, the Distributed Parallel Linear Algebra for
Multicore Architectures (DPLASMA) [7] package can be considered as an extension of
PLASMA for use on heterogeneous and distributed-memory architectures. Like PLASMA,
DPLASMA is based on tile algorithms, but it relies on a completely different runtime sys-
tem and task-based programming model. DPLASMA uses PaRSEC [8]; the key difference
between ParSEC and other runtimes is the task-based programming model.

Task-based programming models can be divided into two main classes: (1) sequential
task flow (STF) models and (2) parametrized task graph (PTG) models. In the STF
model, task are inserted sequentially, data dependencies are detected using data access
information, and each node unrolls the directed acyclic graph (DAG). Consequently, each
node has access to the entire DAG. STF is the most common model; for example, it is
implemented by both QUARK and StarPU [3], (Section 2.4). On the other hand, in the
PTG model, tasks and their associated dependencies are expressed symbolically. Each
node exploits this symbolic representation to extract the portion of the DAG relevant to
the tasks it has to execute. This model is implemented by the Parallel Runtime Scheduling
and Execution Controller (PaRSEC), which is the runtime system behind DPLASMA.

PaRSEC provides high-performance, architecture-aware features to schedule tasks in
both shared and distributed memory architectures and also supports accelerators and
coprocessors.

2.3 The MAGMA Library
The MAGMA library [27] is an implementation of LAPACK routines for heterogeneous
manycore systems with GPUs. MAGMA is limited to a single hybrid CPU/GPU node
but can support multiple GPUs. Unlike PLASMA, DPLASMA, and Chameleon—which
are based on tile algorithms with a lot of support from runtime systems for dynamic
task scheduling—MAGMA is much closer to the LAPACK parallelism style with 1-D
block cyclic data distribution and static scheduling. More details on MAGMA scheduling
strategies are discussed in Section 3.

2.4 The Chameleon Library
The Chameleon library is also based on the PLASMA tile algorithm style. The main
contribution of the Chameleon library is that it provides a unified interface, developed
in the Matrices Over Runtime Systems at Exascale (MORSE) project [1], to define data
dependencies and task submission. Chameleon’s task management abstract layer permits
different low-level runtime systems. Put differently, Chameleon enables a user to choose
the appropriate runtime system for scheduling a given linear algebra tile algorithm. So
far, Chameleon supports QUARK, PaRSEC, and StarPU.

2.5 Prototype Algorithm
In order to assess different scheduling strategies, we developed a new task based dense
linear algebra library called PlaStar. The PLASMA on top of StarPU runtime system
(PlaStar) is another variant of the PLASMA library that relies on the StarPU runtime
system instead of OpenMP. StarPU is a fully featured runtime system initially designed
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for heterogeneous multicore architectures and recently extended for use in distributed-
memory systems. PlaStar was initiated in the context of the Parallel Numerical Linear
Algebra for Extreme Scale Systems (NLAFET) project and is currently under active
development.

The OpenMP-based PLASMA library demonstrates very competitive performance
with the highly optimized Intel Math Kernel Library (MKL); however, it is limited to
shared-memory architectures. The goal of the PlaStar library is twofold. First, it mains
at designing a task-based dense linear algebra solver that gives to users the flexibility ex-
ploit different scheduling strategies. Second, it mains at taking the algorithm design effort
invested in PLASMA to the next level: heterogeneous and distributed systems. The cur-
rent version of PlaStar is already fully functional in shared-memory systems. While a few
routines are already extended to distributed systems, we are actively working to integrate
the cuBLAS and Matrix Algebra on GPU and Multicore Architectures (MAGMA see
Section 2.3) kernels into PlaStar to add support for GPUs. In the long term, this library
will serve as a framework for the implementation of fault-tolerant algorithms presented
in the deliverable D6.6.

We chose to use StarPU in our project because of its maturity and because it imple-
ments most state-of-the-art scheduling strategies. For these reasons, StarPU is the most
suitable choice for a fair comparison of different scheduling strategies. In addition, it is an
appropriate framework for investigating novel scheduling strategies, because it allows users
to implement their own custom scheduling policies. The PlaStar library for the evaluation
of different scheduling strategies is available on the NLAFET GitHub project in the repos-
itory NLAFET/PlaStar that can be found at https://github.com/NLAFET/PlaStar.

3 Scheduling Strategies for Various HPC Systems
The ultimate goal of any scheduling strategy is to achieve an optimal mapping of com-
putation resources to tasks, given some optimization targets. The main target in HPC
applications is the minimization of the overall execution time, but minimization of power
and energy consumption might also be desirable. While the target seems clearly defined,
there are a large number of research papers that have explored a wide spectrum of schedul-
ing strategies and policies [11]. This large variation in scheduling strategies boils down to
the fact that the perfect scheduling strategy for one class of problems may be completely
useless for another. However, even though each problem may require a specific scheduling
policy, some generic strategies have proven successful in many cases.

3.1 Generic Scheduling Strategies
Random Assume we have a system of n workers and an overall performance of P ,
that each worker i ∈ [1, n] has a performance of Pi, and let ri = Pi

P
denote the relative

performance of each worker. The random scheduling strategy consists of assigning ri%
of the work load to each worker, i. Basically, a worker with a high processing speed is
assigned more work. The efficiency of this strategy depends strongly on the accuracy
of the performance model. The main drawback is the lack of a dynamic load balancing
scheme to correct potential errors in the estimation of the performance of each worker
and of the whole system.
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Greedy/Eager All the tasks ready to be executed are stored in a single queue that
is shared by all workers. Each worker pop a task from the centralized queue as soon as
it becomes idle. The main drawback of this strategy is that tasks are scheduled very
late, which prevents the possibility of data prefetching, data reuse, and data transfer
and computations overlapping. Nevertheless, this strategy optimizes load balancing on
homogeneous systems.

Work Stealing Work stealing is a decentralized strategy with a local queue of tasks
for each worker. All tasks assigned to a worker are added to a queue. An idle worker can
steal a task from the most loaded worker. This strategy has an efficient load balancing
policy but requires checking each worker’s workload before stealing a task.

Local Work Stealing A decentralized strategy similar to the work stealing strategy.
The difference is that, when becoming idle, a worker steals a task from the queue of a
neighboring worker, rather than the most loaded worker.

These generic scheduling strategies may be very efficient on homogeneous systems where
all the workers have the same processing speed. But the design of a high-performance
scheduler for heterogeneous systems requires considering the processing speed of every
worker and estimating the completion time of each task on each of the workers.
Scheduling strategies exploiting this knowledge are discussed in the following section.

3.2 Scheduling Strategies Based on Performance Models
The main idea behind scheduling strategies based on performance models is to estimate
the cost of scheduling a given task on each worker to help the scheduler minimize the
application’s execution cost. This cost can include the execution time, memory consump-
tion, and/or power and energy consumption. To this end, one may exploit theoretical or
empirical methods in this strategy. Theoretical approaches involve considering the peak
processing time of each worker (CPU core or GPU), the bandwidth and latency of the
available memory, and the time to solution and memory complexity of each task. Based
on this information, the scheduler can approximate the completion time of each task for
each worker and make the appropriate scheduling decisions to reduce the overall execution
time. Unfortunately, on many systems, peak performance estimates can differ significantly
from the actual performance seen during execution. This discrepancy/gap is often closed
by improving the performance model itself by measuring the real performance parameters
of the system and the execution time of each task. Depending on the application, an
accurate performance model may facilitate the design of a static scheduling strategy that
has comparable performance to a dynamic strategy.

3.2.1 Dynamic Scheduling

Once the performance model is obtained, it can be exploited to minimize the overall com-
pletion time of each task. This approach is related to dynamic programming or dynamic
optimization. The reduction of the application’s overall execution time is achieved by
scheduling a task to a worker whose current task is expected to complete early. This
strategy denoted heterogeneous earliest finish time (HEFT) is implemented by StarPU.
The scheduler records the tasks already scheduled for each worker; the scheduler can then
estimate the date of availability for each worker and deduce the date of completion for
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the current task to schedule on each worker. During the execution, the estimation errors
are corrected by updating the performance model with the real termination data of com-
pleted tasks. This policy can also be extended to consider the data transfer between the
CPU and the GPUs, as implemented in StarPU as the deque model data aware (DMDA)
policy.

3.2.2 Static Scheduling

Some dense linear algebra applications have predictable compute patterns, which is a
prerequisite for successful static scheduling. In addition, the huge gap between modern
multicore CPUs and advanced accelerators/GPUs and coprocessors simplifies scheduling
decisions for some well known dense linear algebra applications. As a consequence, a
static scheduling strategy based on the hardware configuration and software stack of the
system, as well as performance analysis and profiling of the target routine, may be very
competitive compared to dynamic scheduling strategies.

Depending on the arithmetic intensity and data volume of a given application, it may
be divided into two blocks: (1) a GPU-friendly block and (2) a CPU-friendly block. GPU-
friendly routines are characterized by a high arithmetic intensity and a large amount of
data (e.g., large dense matrix–matrix multiplication kernels). On the other hand, CPU-
friendly routines consist of very complex algorithms that require sophisticated low-level
optimizations like branch prediction, resolution of data dependence hazards, and efficient
management of buffer cache/memory requests.

With this in mind, designing a scheduling strategy for hybrid CPU/GPU architectures
can now be reduced to the identification of the CPU-friendly blocks and the GPU-friendly
blocks that compose a given application. The MAGMA library, for example, uses this
approach, and all MAGMA routines are based on static scheduling strategies [13, 14].
Roughly, matrix factorization algorithms consist of a recursion of a panel factorization
followed by an update to the trailing matrix. Since the panel factorization is CPU friendly
and the trailing matrix update is floating-point intense (i.e., GPU friendly), MAGMA
starts the factorization by moving the whole matrix to the GPU and then uses the CPU
cores for the panel factorization.

3.3 Hybrid Dynamic/Static Scheduling Strategies
Static scheduling strategies are efficient for dense linear algebra kernels on hybrid CPU/GPU
architectures, but they reveal their limitations when using complex applications and/or
distributed-memory systems with many GPUs. A reasonable compromise may consist of
combining these static scheduling strategies with efficient dynamic scheduling strategies,
as investigated by Suraj Kumar et al. [17].

3.3.1 The Case of Heterogeneous Multicore/Accelerator Architectures

Since some tasks may be labeled as CPU friendly and others labeled as GPU friendly, it
seems like an attractive option to simply statically schedule a given task to either CPU
cores or GPUs, depending on the task’s affinity. Unfortunately, this strategy may lead to
severe resource starvation. For example, when all tasks involving GPU-friendly routines
are finished, the GPUs remain idle while other tasks that were statically scheduled to the
CPU may still be waiting in the queue to be executed. In those cases, dynamic scheduling,
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based on task and resource affinity, can be an alternative. The idea behind the affinity-
based dynamic scheduling strategy is to go beyond the dichotomy that connects tasks to
a single resource. Instead, each task has a list of resource affinities (i.e., starting with the
types of hardware on which the task performs best). When a worker becomes idle, the
next task is selected based on its affinity for the available (idle) hardware, relative to the
other remaining tasks [18].

In [5], Oliver Beaumont et al. provided theoretical analysis of the affinity-based strat-
egy’s performance in the context of dense linear algebra on a heterogeneous CPU/GPU
architecture. They also pointed out a serious performance issue related to this strategy.
For example, when all CPU-friendly tasks are finished, an idle CPU can be assigned to
a GPU-friendly task, although a GPU may become idle shortly after. They improved
the scheduler using a strategy called “spoliation.” Basically, when a task is assigned to a
resource on which it will be very slow, it can be canceled and reassigned when a more ap-
propriate worker becomes idle. The decision is not automatic; it depends on the estimated
completion time and how far the non-appropriate resource has gone in the computation.
That said, this approach has shown very promising results, and the strategy has been
extended to several classes of heterogeneous workers [4].

3.3.2 Distributed-Memory Systems

The increasing gap between the high computation peak and the stagnating communication
speed of modern distributed-memory HPC systems makes the interconnect bandwidth a
critical resource that must be used carefully. Consequently, inter-node dynamic load
balancing strategies may fail to reduce the application completion time and even lead to
a performance penalty. The consequence for scheduling is that dynamic scheduling should
be limited to the node level, while efficient static scheduling strategies must be employed
across nodes to reduce communication costs caused by dynamic work balancing.

In distributed dense linear algebra, for example, it is common to use 2-D block cyclic
data distribution of matrices across nodes, as promoted by the Scalable Linear Alge-
bra PACKage (ScaLAPACK) [28]. This data distribution is exploited in libraries like
DPLASMA and Chameleon to statically schedule tasks to nodes based on ownership of
the data required by the task (i.e., each node will be assigned a set of tasks that have
input and/or output dependencies on its data. After this first step of static scheduling,
various dynamic scheduling strategies are then used to assign tasks to CPU cores and
GPUs within each node.

3.4 Multilevel Scheduling Strategies
The new generation of dense linear algebra libraries (e.g., PLASMA, DPLASMA, PlaStar,
and Chameleon) owe their high efficiency, to some extent, to the tile memory layout. The
tile layout offers more room for parallelism, and dividing large matrices into small tiles
enables us to exploit cache memory more efficiently. To fit into caches, tile sizes are
optimized at core granularity. This strategy has demonstrated its efficiency on multicore
architectures but seems limited on massively parallel, heterogeneous multicore machines
with GPUs. A tile size optimized for CPU cores will be extremely penalizing for GPUs,
since GPUs require large matrices to deliver reasonable performance. In some cases, a
compromise on the tile size may decrease the performance of both the CPU and the GPU,
thereby degrading the system’s overall performance.
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Alternatively, one can design a multilevel scheduling strategy. The main idea here
is to enable different levels of task granularity and use an appropriate scheduler at each
level. At the highest level, large matrix tasks can be scheduled to the multicore CPU
and to the GPU. The GPU will then be more likely to process the large matrix task
directly, while the multicore CPU may divide the tasks in a cache-friendly manner and
use another scheduler to assign these tasks to the available CPU cores. A variant of the
multilevel strategy has been investigated in [9] by Cojean et al. To improve the load
balance between CPU cores and GPUs, they grouped multiple CPU cores together to
form virtual resources. For multilevel task scheduling, they extended the StarPU runtime
system to simulate an external runtime system that works at the aggregated resource level
and an inner runtime system that operates within the virtual resources.

A more general version of the multilevel scheduling calledn “hierarchical DAG,” was
proposed in [29] and implemented in the PaRSEC framework for distributed hybrid en-
vironments. While the resource aggregation approach tends to limit the heterogeneity in
different processing units by aggregating processing units to create more balanced virtual
resources, the hierarchical DAG adopts another approach. The hierarchical DAG allows
tiles of different sizes to coexist in the same runtime system, and—depending on the avail-
ability of resources—a large task can be dynamically subdivided into a finer-granularity
inner DAG. The authors demonstrated that, in the context of dense linear algebra, the
PaRSEC version based on the hierarchical DAG strategy (h-PaRSEC), has a significant
performance gain on distributed heterogeneous nodes compared to the standard ParSEC
implementation.

4 Towards Novel Scheduling Strategies
Despite a large collection of literature on scheduling strategies, the increasing heterogene-
ity of modern HPC processing units means that the need for novel scheduling approaches
is greater than ever. We envision adapting scheduling strategies that are already being
used successfully in other fields to extreme-scale dense linear algebra computations. Be-
low, we present some of the scheduling strategies that we believe have the potential for
these future heterogeneous HPC systems.

These approaches are divided into three primary methods: (1) distributed schedul-
ing, (2) myopic scheduling, and (3) approximate-dynamic programming. The aim is to
provide a theoretical analysis of these algorithms and to pursue an agenda for research
and implementation. Note that this analysis will go beyond the scope of this deliverable
thanks to a collaboration with experts in statistics and queue theory at the University of
Manchester.

4.1 Distributed Scheduling
Here, the aim is to study how congestion avoidance can be implemented through the
communication of appropriate “prices.” For instance, in the case of the transmission
control protocol (TCP), this shadow price consists of the packet drop probability [15],
which is used to guide several TCP connections toward an optimal operating point [16].
These primal-dual approaches have been developed to optimize task assignment with
heterogeneous server pools in service systems and in virtual machine placement [24, 12,
25]. We believe that further investigation of these approaches will help substantially in
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designing efficient scheduling strategies for heterogeneous and distributed dense linear
algebra kernels where communication represents a bottleneck.

4.2 Myopic Scheduling
We will analyze how system throughput can be optimized by leveraging information on
the system’s current state to appropriately schedule tasks. One class of algorithms, called
“BackPressure/MaxWeight,” employs information about the queue size to provide stabil-
ity properties. This method was first employed for scheduling in wireless ad-hoc networks
[26] and was then included in the development of input-queued network switch design
[20]. This approach is currently considered in fork-join networks (or in DAGs in HPC ap-
plications) [23], and similar approaches were developed in the context of the MapReduce
system.

In homogeneous systems, other heuristics are commonly considered. Specifically, pri-
oritizing servers with low loads while keeping a low message passing overhead. An initial
proposal was the “power-of-d” choices paradigm, where two random servers are chosen
and then jobs are routed to the server with the shorter queue [21]. This approach is suc-
cessfully deployed in hash function design, Google used it for virtual machine placement,
and Spark used power-of-1.1 choices. An alternative approach is to prioritize idle servers
that pull jobs when idle; this method was implemented in Microsoft’s cloud servers [19].
Other approaches involve replicating jobs to reduce the (expected) make span.

4.3 Approximate Dynamic Programming
The above approaches do not allow for the level of forward planning required for HPC ap-
plications. Task assignment and scheduling is closely linked to planning along the critical
path of a DAG. Of course, the critical path can be solved through dynamic programming
(through Bellman-Ford, in particular); however, given the potential stochastic effects from
unknowns, it could be worth considering larger stochastic dynamic programs (i.e., Markov
decision processes). Although the full solution of these may not be computationally trace-
able, more modern approximate dynamic programming approaches might be applicable.
In fact, we will investigate the use of neuro-dynamic programming approaches [6], where
the Markov-decision processes’ Q-function is approximated by a neural network. This was
successfully employed more recently in the context of reinforcement learning of games [22].
Further, some distributed approaches can be implemented and parallelized [10].

Thus, the primary goal is to better understand how reinforcement learning can be
applied to provide better estimation and scheduling by generalizing the current critical
path analysis approaches that are currently used, for instance, in HEFT and in existing
runtime systems.

5 Experimental Results

5.1 Experimental Setups
Our experiments are designed to evaluate the efficiency of different scheduling strategies
for solving dense linear algebra problems on various HPC systems. Note that the compar-
ison of dense linear algebra algorithms or libraries is out of the scope of this work, and we
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rely on these libraries only as a framework to assess the potential of different scheduling
approaches for exploiting computational resources at full efficiency.

As described below, for our experiments, we considered three different multicore ar-
chitectures with two different types of NVIDIA GPUs.

Intel Xeon Haswell For Haswell, we employed a 10-core Intel Xeon E5-2650 v3 CPU,
with a base core clock frequency of 2.30 GHz, running on a dual-socket, non-uniform
memory access (NUMA) node (20 CPU cores per node). In double precision, its theo-
retical peak performance is 736 gigaFLOP/s for the 20 cores, with 32 GB of total main
memory (dynamic random access memory [DRAM]). The libraries were compiled using
GNU Compiler Collection (GCC) 7.1.0 and linked to MKL 17.2. Memory was allocated
on the two NUMA nodes in a round-robin fashion using numctl commands (i.e., numactl
–interleave=all).

Intel Xeon Broadwell For Broadwell, we employed a 10-core Intel Xeon E5-2690 v4
CPU, with a base core clock frequency of 2.6 GHz (3.5 GHz in Turbo mode), running
in a dual-socket configuration (28 CPU cores per node). Each core achieves up to 16
FLOPs per cycle in double-precision arithmetic. Consequently, in double precision, the
theoretical peak performance of the whole node (all 28 cores) is 1.20 teraFLOP/s when
set in base frequency mode. The libraries were compiled using GCC 6.3 and linked to
MKL 2017. Memory was allocated on the two NUMA nodes in a round-robin fashion.

Intel Xeon Phi Coprocessor We also performed experiments on the new self-hosted
Intel Xeon Phi coprocessor, code named Knights Landing (KNL). This 68-core 7250 KNL
chip can achieve up to 3.05 teraFLOP/s in double precision. The KNL has two types of
memory: (1) a large DDR4 memory with a low bandwidth (115.2 GB/s) and (2) a smaller
16 GB MCDRAM providing up to 490 GB/s of sustained bandwidth. We configured the
KNL in a flat mode, making the whole 16 GB MCDRAM available to be allocated directly
by the application. During the experiments, all of the memory allocations were restricted
to the 16 GB high-bandwidth memory using numactl –membind=1, where “1” is the
ID of the MCDRAM node. The libraries were compiled with GCC 7.0.1 and linked to
MKL 2017.2.174.

NVIDIA K40c GPU NIVDIA’s K40c is based on the Kepler GPU architecture and
consists of 2,880 CUDA cores. With 12 GB memory providing up to 288 GB/s of band-
width, the K40c GPU can achieve a peak performance of 1.43 teraFLOP/s in double
precision. The kernels are executed on this GPU using CUDA 8.

NVIDIA P100 GPU NVIDIA’s P100 is based on the Pascal GPU architecture and
consists of 2,880 CUDA cores. The P100 GPU can achieve a peak performance of 4.67 ter-
aFLOP/s in double precision (i.e., it is three times faster than the K40c GPU). The kernels
are executed on this GPU using CUDA 8.

5.2 Homogeneous Multicore Architectures and KNL
This experiment is based on the PlaStar library with the primary goal of comparing cur-
rent state-of-the-art dynamic scheduling strategies. We selected two PLASMA algorithms
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(the tile QR factorization algorithm and the tile Cholesky algorithm) to assess the effi-
ciency of four dynamic scheduling strategies. These strategies, which are described in
more detail in Section 3, are: random, greedy (eager), work stealing (ws), and local work
stealing (lws). The results for Haswell are shown in Figure 1, the results for Broadwell
are shown in Figure 2, and the results for KNL are shown in Figure 3.

Figure 1: Efficiency of different scheduling strategies on Intel Haswell, a homogeneous
multicore architecture with 20 cores, for the tile QR (left) and Cholesky (right) factoriza-
tions.

Figure 2: Efficiency of different scheduling strategies on Intel Broadwell, a homogeneous
multicore architecture with 28 cores, for the tile QR (left) and Cholesky (right) factoriza-
tions.

Figure 3: Efficiency of different scheduling strategies on Intel KNL, a homogeneous Xeon
Phi processor with 68 cores, for the tile QR (left) and Cholesky (right) factorizations.

Compared to the results obtained using the OpenMP runtime system and scheduler
(OMP), most of the scheduling strategies considered here (except for the random strategy)
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are very competitive. The three schedulers that performed well are designed to enable
dynamic load balancing. While the random scheduler initially assigns tasks to workers
depending on their processing speed, it does not have a mechanism to correct unbalanced
workloads. This suggests that, on homogeneous architectures, dynamic load balancing
is a key feature to consider in the design of efficient schedulers. To some extent, this
observation confirms our intuition. On homogeneous architectures, since all workers have
the same processing speed, no performance profile is required to assign a task to workers.
An alternative mechanism would be to reduce the execution time by distributing the
workload equally.

Note that we omitted the results of our experiment for the working stealing (ws)
strategy on the Broadwell architecture (Figure 2). The performance was so poor that we
believe it might be a bug. Although we did not report the results here, we are actively
investigating the issue.

5.3 Heterogeneous Multicore Architectures
Unlike for homogeneous systems, schedulers for heterogeneous architectures require an
accurate performance profile of the underlying compute system assign tasks to workers
based on a task’s affinity. In this section we compare the results of static scheduling
strategies and performance model–based dynamic scheduling strategies. We employed
the MAGMA library to serve as a framework for static scheduling strategies and we used
the DPLASMA library to assess performance with profile-based dynamic scheduling.

Figure 4: Comparison of the static and dynamic scheduling strategies on a heterogeneous
architecture consisting of an Intel Haswell CPU (20 cores) and either an NVIDIA K40c
GPU (left) or an NVIDIA P100 GPU (right). PLASMA uses a dynamic scheduling
strategy but only exploits the CPU cores. DPLASMA implements a dynamic scheduling
strategy for the CPU cores and the GPU. MAGMA uses a static scheduling strategy to
exploit the CPU cores and the GPU. A Cholesky factorization was used to facilitate this
comparison.

In the results reported in Figure 4, the heterogeneous system consists of two 10-core
Intel Haswell CPUs (20 total cores) with either one NVIDIA K40c GPU (left) or one
NVIDIA P100 GPU (right). For very small matrices, the PLASMA library, which is
limited to CPU cores only, provides better performance. This is likely because PLASMA
is not burdened with the data movement overhead associated with offloading tasks to
the GPU, which occurs in MAGMA and DPLASMA. However, once the matrix sizes be-
gan to increase, PLASMA stagnated quickly while DPLASMA and MAGMA maintained
their performance. Note that the static scheduling strategy implemented by MAGMA
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focuses on maximizing the use of the GPU at the cost of starving some CPU cores, while
the DPLASMA scheduler is designed to keep all of the workers busy. Consequently, on
the K40c GPU, MAGMA is limited to the GPU performance (1.29 teraFLOP/s) and is
outperformed by DPLASMA, which makes good use of the CPU cores and the GPU.
However, owing to the huge performance gap between the two 10-core Haswell CPUs
(0.7 teraFLOP/s) and the NVIDIA P100 GPU (4.67 teraFLOP/s), the static MAGMA
strategy of maximizing the GPU exploitation proved to be more beneficial overall. In
fact, because of the data movement cost and high ratio of the GPU performance over the
CPU performance, it seems reasonable to starve the CPU cores to minimize the overall
execution time.

The big lesson from this experiment is that, on heterogeneous systems, the scheduler
should consider the heterogeneity level—in terms of performance—of the resources before
deciding on which scheduling policy to use. In the case of two 10-core Haswell CPUs
(0.7 teraFLOP/s) and an NVIDIA K40 GPU (1.29 teraFLOP/s), where the GPU is
almost 2× faster than the CPU, a dynamic scheduling based on task and resource affinity
may be an attractive option. In addition, the cost of offloading data lowers the real
attainable performance of the GPU, which reduces the performance gap between a CPU
+ GPU solution and a CPU-only solution. On the other hand, since the NVIDIA P100
(4.67 teraFLOP/s) is almost 7× faster than two 10-core Haswell CPUs (0.7 teraFLOP/s),
even when including the data movement cost, it would be beneficial to investigate a static
scheduling strategy where almost all of the workload is moved to the GPU, with a few
CPU-friendly tasks assigned to the CPU.

5.4 Heterogeneous Multi-GPU Architectures
In this section, we provide further results comparing static and dynamic scheduling strate-
gies by extending our experiments to include multiple GPUs. We again used two 10-core
Haswell CPUs (20 cores total); however, this time we add either two or three NVIDIA
K40 GPUs to the mix. Using multiple GPUs does present new challenges. First, how do
we maintain workload balancing between the GPUs? Second, how do we keep efficiently
exploiting the CPU cores when the performance gap between the CPU and the GPU is
low?

Once again, the results displayed in Figure 5 confirm that, when the GPU and CPU
are close in terms of performance, the performance profile–based scheduling strategies
(used in DPLASMA) have a distinct advantage over the static scheduling strategies (used
in MAGMA). The performance achieved by MAGMA with both two and three K40 GPUs
showed that it did not go beyond the peak performance of the GPUs, while DPLASMA
exceeds the peak performance of the GPUs by efficiently exploiting the CPU cores using
effective dynamic scheduling policies.

6 Conclusions
The significant increase in both the complexity and heterogeneity of modern and emerging
HPC systems makes a strong case for novel static and dynamic scheduling strategies
to efficiently match applications to HPC resources. The contribution of this work to
the design of novel scheduling strategies is twofold. First, we evaluated many existing
scheduling strategies in the context of extreme-scale dense linear algebra libraries. Second,
we proposed guidance for designing novel scheduling strategies based on lessons learned
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Figure 5: Comparison of static and dynamic scheduling strategies on a heterogeneous
architecture consisting of two 10-core Intel Haswell CPUs (20 cores) and NVIDIA K40
GPUs for a Cholesky factorization. DPLASMA implements a dynamic scheduling strategy
for the CPU cores and the GPUs. MAGMA, by contrast, uses a static scheduling strategy
to exploit the CPU cores and the GPUs.

from a performance analysis of current state-of-the-art scheduling strategies on various
HPC systems.

To assess the efficiency of scheduling strategies in homogeneous multicore and KNL
architectures, we developed a new dense linear algebra library by designing PLASMA
tile algorithms on top of the StarPU runtime system. From our experimental results on
various systems, we noticed that dynamic load balancing is the key feature to consider in
the design of scheduling strategies for homogeneous HPC systems.

For the evaluation of static and dynamic scheduling strategies on heterogeneous ar-
chitectures, we used existing dense linear algebra solvers, namely the MAGMA and
DPLASMA libraries. One notable observation from our assessment of scheduling strate-
gies on heterogeneous architectures is that the efficiency of the scheduler is highly sensitive
to the degree of heterogeneity of the resources. When there is a small difference in the
processing speed of the resources, using a dynamic scheduling strategy based on task
and worker affinity is an attractive option, as demonstrated by the performance of the
DPLASMA library. However, on heterogeneous systems exhibiting a very high perfor-
mance gap between the resources and a very high data movement cost, we found that
maximizing the use of the faster resources—even at the risk of starving the slower pro-
cessing units—is the key principle to consider in the design of an efficient scheduler.

We are currently working on new scheduling strategies in collaboration with experts
in statistics and queuing theory. We believe that this collaboration on the rigorous the-
oretical analysis and design of new scheduling strategies will lead to the prototyping of
efficient schedulers—initially in the StarPU runtime system framework and eventually for
other task-based runtime systems.
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