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PDHGEQZ User Guide∗.

Björn Adlerborn† Bo K̊agström† Daniel Kressner‡

Abstract

Given a general matrix pair (A,B) with real entries, we provide software routines for
computing a generalized Schur decomposition (S, T ). The real and complex conjugate pairs
of eigenvalues appear as 1×1 and 2×2 blocks, respectively, along the diagonals of (S, T ) and
can be reordered in any order. Typically, this functionality is used to compute orthogonal
bases for a pair of deflating subspaces corresponding to a selected set of eigenvalues. The
routines are written in Fortran 90 and targets distributed memory machines.

1 Introduction

PDHGEQZ is a parallel ScaLAPACK-style [6] package of routines for solving nonsymmetric real
generalized eigenvalue problems. The package is written in Fortran 90 and targets distributed
memory HPC systems. Using the, small and tightly coupled bulge, multishift QZ algorithm
with aggressive early deflation, it computes the generalized Schur decomposition (S, T2) =
(QTHZ,QTT1Z) of an upper Hessenberg matrix H, upper triangular matrix T1, where (H,T1) ∈
Rn×n, such that Q and Z are orthogonal, S is quasi-upper triangular, and T2 is upper triangular.
This document concerns the usage of PDHGEQZ and is a supplement to the article [3]. For the
description of the algorithm and implementation, we refer to [3] and the references therein
(especially, [2, 7, 11, 12, 13]). We have also included a parallel version of the initial Hessenberg-
triangular reduction [1], as well as a routine for parallel reordering of eigenvalues of a matrix
pair in generalized real Schur form [9]. Moreover, a preliminary version of a serial multishift QZ
algorithm with aggressive early deflation is included, see [11], which is used internally within
PDHGEQZ in favour of the LAPACK [4] routine DHGEQZ.

2 Installation

The routines have successfully been tested on both Windows and Linux-like machines. In the
following, a Linux-like installation is assumed. There are no pre-built libraries available, so the
user must download and build the package before using the software.
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2.1 Prerequisites

To build the library the following is required:

• Fortran 90/95 compiler, or later.

• MPI library, for example, OpenMPI or Intel-MPI.

• BLAS library, for example, OpenBLAS or ACML.

• The LAPACK library, version 3.4.0 or later.

• The ScaLAPACK library, version 2.0.1 or later where BLACS and PBLAS are included.

2.2 Building the package

2.2.1 Download location

The latest version of PDHGEQZ can be obtained via the package homepage1 in a tar.gz format
with the name pdhgeqz latest.

2.2.2 Structure of the package

After downloading and moved to a proper location, the package is expanded by issuing

tar xvfz pdhgeqz latest.tar.gz

The unpacked package is structured in the following way:

• examples/ This folder contains three different simple drivers:

– EXRAND1.f: Generates a Hessenberg-Triangular problem, Hessrand1 [3], and com-
putes its generalized real Schur form.

– EXRAND2.f: Generates a random matrix pair (A,B) where the entries are uniformly
distributed in the interval [0, 1]. The problem is reduced to Hessenberg-triangular
form using a QR factorisation of B, producing an upper triangular T , followed by
calling PDGGHRD which further reduces the (A, T ) pair to the desired Hessenberg-
triangular form. Once there, we apply our parallel QZ algorithm to compute the
generalized real Schur form and eigenvalues.

– EXRAND3.f: This example reads two matrices A and B from two files using the Matrix
Market file format [5]. The matrices A and B are stored in the files mhd4800a.mtx

and mhd4800b.mtx respectively, and can be downloaded, with other benchmarks,
at the Matrix Market homepage2. A and B are treated as dense, although they
are sparse (< 1% nonzero entries), and first reduced to Hessenberg-triangular form
before the parallel QZ algorithm is applied, as described for the example EXRAND2.f.
After the generalized real Schur form is obtained, a reordering of the eigenvalues is
performed such that all eigenvalues within the unit circle are moved to the top of the
matrix pair, using the routine PDTGORD.

1PDHGEQZ homepage: https://archive.cs.umu.se/software/pdhgeqz/
2http://math.nist.gov/MatrixMarket
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• make inc/ This folder contains various templates of make.inc files for different compiler
setups.

• Makefile This is the default Makefile for building the PDHGEQZ package, which generally
does not need to be modified. This Makefile will call the Makefiles stored in subdirec-
tories. After a successful build, the library will be stored in the root folder as the file
libpdhgeqz.a.

• make.inc File included by the Makefile. Should be modified to match the compiler setup.

• readme A shorter version of this Users’ Guide. Intended as a quick installation quide.

• src/ This folder contains all source files, in Fortran format, related to the PDHGEQZ soft-
ware, stored in four different subdirectories:

– ab2ht/ Source files for the parallel Hessenberg-triangular reduction.

– kkqz/ Source files for the sequential QZ solver with multishift and aggressive early
deflation.

– reorder/ Source files for the parallel generalized eigenvalue reordering.

– pdhgehz/ Main source files for the parallel QZ solver with multishifts and aggressive
early deflation.

• testing/ This folder contains test routines.

• tools/ This folder contains various auxiliary routines, used for generation of matrices,
input/output, etc.

• userguide.pdf A copy of this User Guide.

2.2.3 Compiling and building the PDHGEQZ package

By issuing the command

make all - this is the same as issuing make,

the library libpdhgeqz.a should be compiled, linked, and stored in the root folder. The three
examples found in the examples/ folder as well as the test routine stored in the testing/ folder
will also be built by this command. If only the library is desired, instead issue the command

make lib

which will compile, link and store the library in the root folder.
During make all some quick tests will be performed and hopefully the following will be

displayed on the console:

% 5 tests out of 5 passed.

The script file runmpi.sh in the testing/ folder might need some attention, depending
upon what MPI installation the user has. The default MPI execution is mpirun.
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2.3 Running tests

The three examples provided contain small problems, i.e. n < 6000, and should execute rather
quickly. The problem size is governed by the parameter N. Change this, in file EXRAND1.f

or EXRAND2.f, and rebuild, to run a different sized problem. The example problems can be
executed serially, or in parallel with some MPI tool, for example mpirun or mpiexec.

3 Using the PDHGEQZ library

3.1 ScaLAPACK data layout convention

We follow the convention of ScaLAPACK for the distributed data storage of matrices. Suppose
that P = Pr · Pc parallel processors are arranged in a Pr × Pc rectangular grid. The entries
of a matrix are then distributed over the grid using a 2-dimensional block-cyclic mapping with
block size nb in both row and column dimensions. In principle, ScaLAPACK allows for different
block sizes for the row and column dimensions but to avoid too many special cases in the code,
square blocks are assumed, i.e. mb = nb.

3.2 Software hierarchy

Figure 1 shows an overview of the main routines related to our parallel QZ software, which are
based upon routines provided by ScaLAPACK, BLACS, PBLAS, LAPACK, BLAS and MPI.
One-directed arrows indicate that one routine calls other routines. For example, PDHGEQZ1

is called by PDHGEQZ, PDHGEQZ0 and PDHGEQZ3 and calls four routines: PDHGEQZ2, PDHGEQZ4,
PDHGEQZ5, and PDHGEQZ7. PDHGEQZ3 will call PDHGEQZ0 instead of PDHGEQZ1 recursively if the
AED window is large, i.e. nAED > 6000, indicated with the double directed arrow between
PDHGEQZ0 and PDHGEQZ3. To keep the stack from growing uncontrollably, due to static alloca-
tions, the level of recursive calls are limited; this version only supports one level of recursion.
Main entry routine is PDHGEQZ, see Figure 2 for an interface description. Depending upon prob-
lem size n, PDHGEQZ calls PDHGEQZ0 or PDHGEQZ1 to perform the reduction; see section 4 and
parameter nmin1. Table 1 gives a brief description of the routines displayed in Figure 1.

3.3 Calling sequence

The main purpose is to compute the generalised real Schur decomposition of a matrix pair in
(upper)Hessenberg-triangular form using the routine PDHGEQZ. As a pre-processing step the gen-
eral square matrix pair must be transformed to Hessenberg-triangular form using the supplied
routine PDGGHRD. PDGGHRD used in conjunction with PDHGEQZ are exemplified in the routines
found in the folder examples/. As a post-processing step, the supplied routine PDTGORD can
be used to reorder the eigenvalues returned by PDHGEQZ. Below follows call sequences for these
routines. As previously stated, both PDGGHRD and PDTGORD are preliminary.

3.3.1 PDHGEQZ

The interface for PDHGEQZ is similar to the existing (serial) LAPACK routine DHGEQZ, see Fig-
ure 2. The main difference between PDHGEQZ and DHGEQZ is the use of descriptors to define

3See Table 2 for PDHGEQZ parameters.
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PDHGEQZ PDHGEQZ0

PDHGEQZ5 PDHGEQZ7

PDHGEQZ3 PDHGEQZ1

PDGGHRD PDTGORD PDHGEQZ2 PDHGEQZ4

SCALAPACK BLACS PBLAS

BLAS LAPACK MPI

Figure 1: Software hierarchy for PDGEHQZ.

partitioning and the globally distributed matrices across the Pr × Pc process grid, instead of
leading dimensions, and that PDHGEQZ requires an integer workspace.

Below follows a list and description of the arguments:

• JOB (global input) CHARACTER*1.
= ’E’: compute only the eigenvalues represented by ALPHAR, ALPHAI, and BETA. The gen-
eralized Schur form of (H,T ) will not be computed.
= ’S’: compute the generalized Schur form of (H,T ) as well as the eigenvalues represented
by ALPHAR, ALPHAI, and BETA.

• COMPQ (global input) CHARACTER*1.
= ’N’: Left generalized Schur vectors (i.e., Q) are not computed.
= ’I’: Q is initialized to the unit matrix, and the orthogonal matrix Q is returned.
= ’V’: Q must contain an orthogonal matrix Q1 on entry, and the product Q1 · Q is
returned.

• COMPZ (global input) CHARACTER*1.
= ’N’: Right generalized Schur vectors (i.e., Z) are not computed.
= ’I’: Z is initialized to the unit matrix, and the orthogonal matrix Z is returned.
= ’V’: Z must contain an orthogonal matrix Z1 on entry, and the product Z1 · Z is
returned.
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Table 1: PDHGEQZ routines.
Routine Description

PDHGEQZ Main entry routine. Calls PDHGEQZ0 or PDHGEQZ1 depending upon problem size.
PDHGEQZ0 Multishift Parallel QZ with AED. Tuned for larger problems and might do recursive calls

when doing AED. Calls PDHGEQZ1 when problem size is split into smaller subproblems.
PDHGEQZ1 Multishift Parallel QZ with sequentially performed AED. Tuned for smaller problems.
PDHGEQZ2 Performs sequential AED, while off-diagonal blocks, outside the AED window, are updated

in parallel.
PDHGEQZ3 Performs parallel AED and shift computation.
PDHGEQZ4 Performs sequential multishift QZ with AED, calls KKQZ for this purpose. Called by

PDHGEQZ1 when a subproblem, of order less than nmin3
3, has been identified. Off-diagonal

blocks, outside the subproblem, are updated in parallel.
PDHGEQZ5 Parallel multishift QZ iteration based on chains of tightly coupled bulges.
PDHGEQZ7 Parallel identification and deflation of infinite eigenvalues.
PDTGORD Reorders a cluster of eigenvalues to the top of the matrix pair (S, T ) in generalized real

Schur form.
PDGGHRD Parallel Hessenberg-triangular reduction, used by PDHGEQZ3 to restore the matrix pair to

Hessenberg-triangular form.

• N (global input) INTEGER
The order of the N ×N matrices H, T , Q, and Z.

• ILO, IHI

It is assumed that H and T is already in upper triangular form in rows and columns
(1 : ILO−1) and (IHI+1 : N). 1 ≤ ILO ≤ IHI ≤ N, if N> 0; ILO = 1 and IHI = 0, if N = 0.

• H (global input/output) DOUBLE PRECISION array of dimension (DESCH(9),*).
DESCH (global and local input) INTEGER array of dimension 9.
H and DESCH define the distributed matrix H.
On entry, H contains the upper Hessenberg matrix H. On exit, if JOB = ’S’, H is quasi-
upper triangular in rows and columns (ILO : IHI), with 1 × 1 and 2 × 2 blocks on the
diagonal where the 2× 2 blocks correspond to complex conjugated pairs of eigenvalues. If
JOB=’E’, H is unspecified on exit.

• T (global input/output) DOUBLE PRECISION array of dimension (DESCT(9),*).
DESCT (global and local input) INTEGER array of dimension 9.
T and DESCT define the distributed matrix T .
On entry, T contains the upper triangular matrix T . If JOB=’E’, T is unspecified on exit,
otherwise T is on exit overwritten by another upper triangular matrix QT · T · Z.

• ALPHAR (global output) DOUBLE PRECISION array, dimension N

ALPHAI (global output) DOUBLE PRECISION array, dimension N

BETA (global output) DOUBLE PRECISION array, dimension N

On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j = 1, ..., N , will be the generalized
eigenvalues. ALPHAR(j) + ALPHAI(j)*i and BETA(j), j = 1, ..., N are the diagonals of
the complex Schur form (H,T) that would result if the 2-by-2 diagonal blocks of the real
generalized Schur form of (H,T) were further reduced to triangular form using complex
unitary transformations. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive,
then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1)

negative.
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SUBROUTINE PDHGEQZ( JOB, COMPQ, COMPZ,
$ N, ILO , IHI , H, DESCH, T, DESCT,
$ ALPHAR, ALPHAI, BETA, Q, DESCQ, Z , DESCZ,
$ WORK, LWORK, IWORK, LIWORK, INFO )

∗ . .
∗ . . S ca l a r Arguments . .
∗ . .

CHARACTER COMPQ, COMPZ, JOB
INTEGER IHI , ILO , INFO, N
INTEGER LWORK, LIWORK

∗ . .
∗ . . Array Arguments . .
∗ . .

DOUBLE PRECISION H(∗ ) , T(∗ ) , Q(∗ ) , Z(∗ )
DOUBLE PRECISION WORK(∗ ) , ALPHAI(∗ ) , ALPHAR(∗ ) , BETA(∗ )
INTEGER IWORK(∗ ) , DESCH( 9 ) , DESCT( 9 ) , DESCQ( 9 ) , DESCZ(9)

Figure 2: Interface for PDGEHQZ

• Q (global input/output) DOUBLE PRECISION array of dimension (DESCQ(9),*).
DESCQ (global and local input) INTEGER array of dimension 9. Q and DESCQ define the
distributed matrix Q.
If COMPQ = ’N’, Q is not referenced.
If COMPQ = ’I’, Q is initialized to the unit matrix, and on exit it contains the orthogonal
matrix Q, where QT is the product of the transformations which are applied to the left
hand side of H and T.
If COMPQ = ’V’, on entry, Q must contain an orthogonal matrix Q1, and on exit this is
overwritten by Q1 ·Q, where QT is the product of the transformations which are applied
to the left hand side of H and T.

• Z (global input/output) DOUBLE PRECISION array of dimension (DESCZ(9),*).
DESCZ (global and local input) INTEGER array of dimension 9. Z and DESCZ define the
distributed matrix Z.
If COMPZ = ’N’, Z is not referenced.
If COMPZ = ’I’, Z is initialized to the unit matrix, and on exit it contains the orthogonal
matrix Z, where Z is the product of the transformations which are applied to the right
hand side of H and T.
If COMPZ = ’V’, on entry, Z must contain an orthogonal matrix Z1, and on exit this is
overwritten by Z1 · Z, where Z is the product of the transformations which are applied
to the right hand side of H and T.

• WORK (local workspace) DOUBLE PRECISION array of dimension LWORK.
LWORK (global input) INTEGER.
If LWORK = -1, then a workspace query is assumed and required workspace is returned in
WORK(1) and no further computation is performed.

• IWORK (local workspace) INTEGER array of dimension LIWORK.
LIWORK (global input) INTEGER.
If LIWORK = -1, then a workspace query is assumed and required workspace is returned
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in IWORK(1) and no further computation is performed.

• INFO (global output) INTEGER
= 0, successful exit.
< 0, if INFO = -i, the i-th argument had an illegal value.

3.3.2 PDGGHRD

The interface for PDGGHRD is similar to the existing (serial) LAPACK routine DGGHRD, see Fig-
ure 3. The main difference between PDGGHRD and DGGHRD is the use of descriptors to define

SUBROUTINE PDGGHRD( COMPQ, COMPZ,
$ N, ILO , IHI , A, DESCB, B, DESCB,
$ Q, DESCQ, Z , DESCZ,
$ WORK, LWORK, INFO )

∗ . .
∗ . . S ca l a r Arguments . .
∗ . .

CHARACTER COMPQ, COMPZ
INTEGER IHI , ILO , INFO, N, LWORK

∗ . .
∗ . . Array Arguments . .
∗ . .

DOUBLE PRECISION A(∗ ) , B(∗ ) , Q(∗ ) , Z(∗ )
DOUBLE PRECISION WORK(∗ )
INTEGER DESCA( 9 ) , DESCB( 9 ) , DESCQ( 9 ) , DESCZ(9)

Figure 3: Interface for PDGGHRD

partitioning and the globally distributed matrices across the Pr × Pc process grid, instead of
leading dimensions.

Below follows a list and description of the arguments:

• COMPQ (global input) CHARACTER*1.
= ’N’: Do not compute Q.
= ’I’: Q is initialized to the unit matrix, and the orthogonal matrix Q is returned.
= ’V’: Q must contain an orthogonal matrix Q1 on entry, and the product Q1 · Q is
returned.

• COMPZ (global input) CHARACTER*1.
= ’N’: Do not compute Z.
= ’I’: Z is initialized to the unit matrix, and the orthogonal matrix Z is returned.
= ’V’: Z must contain an orthogonal matrix Z1 on entry, and the product Z1 · Z is
returned.

• N (global input) INTEGER
The order of the N ×N matrices A,B,Q, and Z.

• ILO, IHI (global input) INTEGER
It is assumed that A and B is already in upper triangular form in rows and columns
(1 : ILO−1) and (IHI+1 : N). 1 ≤ ILO ≤ IHI ≤ N, if N> 0; ILO = 1 and IHI = 0, if N = 0.

8



• A (global input/output) DOUBLE PRECISION array of dimension (DESCA(9),*).
DESCA (global and local input) INTEGER array of dimension 9.
A and DESCA define the distributed matrix A.
On entry, the square general matrix A to be reduced. On exit, the upper triangle and the
first subdiagonal of A are overwritten with the upper Hessenberg matrix H = Q · A · Z,
and the remaining elements are set to zero.

• B (global input/output) DOUBLE PRECISION array of dimension (DESCB(9),*).
DESCB (global and local input) INTEGER array of dimension 9.
B and DESCB define the distributed matrix B.
On entry, the square upper triangular matrix B. On exit, overwritten by the upper
triangular matrix T = Q ·B · Z. The elements below the diagonal are set to zero.

• Q (global input/output) DOUBLE PRECISION array of dimension (DESCQ(9),*).
DESCQ (global and local input) INTEGER array of dimension 9. Q and DESCQ define the
distributed matrix QT .
If COMPQ = ’N’, Q is not referenced.
If COMPQ = ’I’, Q is initialized to the unit matrix, and on exit it contains the orthogonal
matrix QT , where Q is the product of the transformations which are applied to the left
hand side of A and B.
If COMPQ = ’V’, on entry, Q must contain an orthogonal matrix Q1, and on exit this is
overwritten by Q1 ·QT , where Q is the product of the transformations which are applied
to the left hand side of A and B.

• Z (global input/output) DOUBLE PRECISION array of dimension (DESCZ(9),*).
DESCZ (global and local input) INTEGER array of dimension 9. Z and DESCZ define the
distributed matrix Z.
If COMPZ = ’N’, Z is not referenced.
If COMPZ = ’I’, Z is initialized to the unit matrix, and on exit it contains the orthogonal
matrix Z, where Z is the product of the transformations which are applied to the right
hand side of A and B.
If COMPZ = ’V’, on entry, Z must contain an orthogonal matrix Z1, and on exit this is
overwritten by Z1 · Z, where Z is the product of the transformations which are applied
to the right hand side of A and B.

• WORK (local workspace) DOUBLE PRECISION array of dimension LWORK.
LWORK (global input) INTEGER.
If LWORK = -1, then a workspace query is assumed and required workspace is returned in
WORK(1) and no further computation is performed.

• INFO (global output) INTEGER
= 0, successful exit.
< 0, if INFO = -i, the i-th argument had an illegal value.

3.3.3 PDTGORD

The interface for PDTGORD is displayed in Figure 4.
Below follows a list and description of the arguments:
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SUBROUTINE PDTGORD( WANTQ, WANTZ,
$ SEL , PARA, N,
$ S , DESCS, T, DESCT,
$ Q, DESCQ, Z , DESCZ,
$ ALPHAR, ALPHAI, BETA,
$ M, DWORK, LDWORK,
$ IWORK, LIWORK, INFO )

∗ . .
∗ . . S ca l a r Arguments . .
∗ . .

LOGICAL WANTQ, WANTZ
INTEGER INFO, LIWORK, LDWORK, M, N

∗ . .
∗ . . Array Arguments . .
∗ . .

INTEGER SEL( ∗ ) , IWORK( ∗ )
INTEGER PARA( 6 ) , DESCS( 9 ) , DESCT( 9 ) , DESCQ( 9 ) , DESCZ( 9 )
DOUBLE PRECISION S (∗ ) , T(∗ ) , Q(∗ ) , Z(∗ )
DOUBLE PRECISION DWORK(∗ ) , BETA( ∗ ) , ALPHAI( ∗ ) , ALPHAR( ∗ )

Figure 4: Interface for PDTGORD

• WANTQ (global input) LOGICAL.
= .TRUE., Update QT , with all transformations applied from left hand side to S and T.
= .FALSE., Q is not referenced.

• WANTZ (global input) LOGICAL.
= .TRUE., Update Z, with all transformations applied from right hand side to S and T.
= .FALSE., Z is not referenced.

• SEL (global input/output) INTEGER array, dimension N.
SEL specifies the eigenvalues in the selected cluster. To select a real eigenvalue w(j),
SEL(j) must be set to 1. To select a complex conjugate pair of eigenvalues w(j) and
w(j + 1), corresponding to a 2-by-2 diagonal block, must be set to 1; On output, SEL is
updated to reflect the performed reordering.

• PARA (global input) INTEGER array of dimension 6
PARA(1) = maximum number of concurrent computational windows allowed in the algo-
rithm. 0 < PARA(1) ≤ min(Pr, Pc) must hold.
PARA(2) = number of eigenvalues in each computational window. 0 < PARA(2) ≤ PARA(3)

must hold.
PARA(3) = size of computational window. PARA(2) ≤ PARA(3) ≤ nb must hold.
PARA(4) = minimal percentage of flops required for performing matrix-matrix multiplica-
tions instead of pipelined orthogonal transformations. 0 ≤ PARA(4) ≤ 100 must hold.
PARA(5) = width of block column slabs for row-wise application of pipelined orthogonal
transformations in their factorized form. 0 < PARA(5) ≤ nb must hold.
PARA(6) = the maximum number of eigenvalues moved together over a process border; in
practice, this will be approximately half of the cross border window size. 0 < PARA(6)

≤ PARA(2) must hold.
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• N (global input) INTEGER.
The order of the N ×N matrices S, T,Q, and Z.

• S (global input/output) DOUBLE PRECISION array of dimension (DESCS(9),*).
DESCS (global and local input) INTEGER array of dimension 9.
S and DESCS define the distributed matrix S. On entry, the global distributed upper quasi-
triangular matrix S, in Schur form. On exit, S is overwritten by the reordered matrix S,
again in Schur form, with the selected eigenvalues in the globally leading diagonal blocks
of (S, T ).

• T (global input/output) DOUBLE PRECISION array of dimension (DESCT(9),*).
DESCT (global and local input) INTEGER array of dimension 9.
T and DESCT define the distributed matrix T . On entry, the global distributed upper
triangular matrix T . On exit, T is overwritten by the reordered matrix T , again in upper
triangular form, with the selected eigenvalues in the globally leading diagonal blocks of
(S, T ).

• Q (global input/output) DOUBLE PRECISION array of dimension (DESCQ(9),*).
DESCQ (global and local input) INTEGER array of dimension 9.
Q and DESCQ define the distributed matrix Q. On entry, if WANTQ = .TRUE., the global
distributed matrix Q of left generalized Schur vectors. On exit, WANTQ = .TRUE., Q has
been postmultiplied by the global orthogonal transformation matrix, applied from the left,
which reorders the matrix pair (S, T ); the leading M columns of Q form left orthonormal
bases for the specified deflating subspaces. If WANTQ = .FALSE., Q is not referenced.

• Z (global input/output) DOUBLE PRECISION array of dimension (DESCZ(9),*).
DESCZ (global and local input) INTEGER array of dimension 9.
Z and DESCZ define the distributed matrix Z. On entry, if WANTZ = .TRUE., the global
distributed matrix Z of generalized right Schur vectors. On exit, WANTZ = .TRUE., Z has
been postmultiplied by the global orthogonal transformation matrix, applied from the
right, which reorders (S, T ); the leading M columns of Z form right orthonormal bases for
the specified deflating subspaces. If WANTZ = .FALSE., Z is not referenced.

• ALPHAR (global output) DOUBLE PRECISION array, dimension N

ALPHAI (global output) DOUBLE PRECISION array, dimension N

BETA (global output) DOUBLE PRECISION array, dimension N

On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j = 1, ..., N , will be the generalized
eigenvalues. ALPHAR(j) + ALPHAI(j)*i and BETA(j), j = 1, ..., N are the diagonals of
the complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of the real
generalized Schur form of (S,T) were further reduced to triangular form using complex
unitary transformations. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive,
then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1)

negative.

• M (global output) INTEGER.
The dimension of the specified pair of left and right eigenspaces (deflating subspaces).
0 ≤ M ≤ N. If M = 0, then no eigenvalues have been reordered.

11



• DWORK (local workspace) DOUBLE PRECISION array of dimension LDWORK.

LDWORK (global input) INTEGER.
If LDWORK = -1, then a workspace query is assumed and required workspace is returned
in DWORK(1) and no further computation is performed.

• IWORK (local workspace) INTEGER array of dimension LIWORK.
LIWORK (global input) INTEGER.
If LIWORK = -1, then a workspace query is assumed and required workspace is returned
in IWORK(1) and no further computation is performed.

• INFO (global output) INTEGER.
= 0, successful exit.
< 0, if INFO = -i, the i-th argument had an illegal value. If the i-th argument is an array
and the j-entry had an illegal value, then INFO = -(i*1000+j).

4 Parameters related to PDHGEQZ and subroutines

PDHGEQZ offers tuning of machine dependent parameters for experienced users. However, there
is always a default value provided, and these settings should provide reasonable performance
for machines similar to those we have performed our performance-runs on, see [3].

Many of these parameters are dependent upon the value of nb, which the end user chooses
a value for when setting up descriptors for the distributed matrices. For a suitable value of
nb correlated to the problem size n, see [3] Section 3.2. The parameters are stored in the files
piparmq.f and pilanvx.f, found in the folder src/pdhgeqz/. PILAENVX( ISPEC = 50...56)
and PILAENVX( ISPEC = 80...85) are parameters related to PDHGEQZ, listed and described in
Table 2.

5 Terms of usage

The PDHGEQZ library is freely available for academic (non-commercial) use, and is provided on
an ”as is” basis. Any use of the PDHGEQZ library should be acknowledged by citing paper [3]
and this User Guide.

6 Conclusions and future work

We have presented the high performance software package PDHGEQZ. The latest version of the
package along with updated information and documentation will always be available for down-
load from the PDHGEQZ website. We welcome bug-reports, comments and suggestions from
users.
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Table 2: Tunable parameters for PDHGEQZ
ISPEC Name Description Default value

50 nmin1 Threshold for when to choose PDHGEQZ0 in-
stead of PDHGEQZ1; matrices of order less than
this value are reduced by PDHGEQZ1.

6000

51 nAED Size of the aggressive early deflation window. see [3] Section 3.2
52 NIBBLE Threshold for when to skip repeated AED

and instead do a multishift QZ sweep.
see [10] Section 3.4

53 nshift The number of simultaneous shifts in a multi-
shift QZ iteration (in PDHGEQZ0).

see [3]§ Section 3.2

54 nmin2 When current problem size is less than this
value, PDHGEQZ0 calls PDHGEQZ1 to perform
the remaining reduction.

201

55 nmin3 When current problem size is less than this
value PDHGEQZ1 stops executing and instead
performs the remaining reduction serially.

201

56 PAED Number of processes to use when performing
parallel AED.

see [3] Section 3.2

80 NUMWIN Maximum number of concurrent computa-
tional windows (for parallel reordering only).

min(pr, pc, n/nb)

81 WINEIG Number of eigenvalues/bulges in each window
(for parallel reordering only).

nb/2

82 WINSIZE Computational window size (for parallel re-
ordering only).

nb

83 MMULT Minimal percentage of flops required for
performing matrix-matrix multiplications in-
stead of pipelined orthogonal transformations
(for parallel reordering only).

0. Throughout our
tests, the matrix-
matrix multiplications
were faster than or
equivalent to pipelined
transformations. This
is probably caused
by the small problem
sizes we are running
on, i.e. the size of the
AED window. For
larger n and thereby
larger nAED, the value
for MMULT might need
fine tuning. However,
a value of 0 will al-
ways work and will
probably give good
enough performance.

84 NCB Width of block column slabs for row-wise ap-
plication of pipelined orthogonal transforma-
tions in their factorized form (for parallel re-
ordering only).

min(nb, 32)

85 WNEICR The maximum number of eigenvalues moved
together over a process border (for parallel
reordering only).

same as WINEIG
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A List and description of supplied drivers and auxiliary rou-
tines.

Beside the routines briefly described in Table 1, we list the other provided routines in Tables 3–7.

Table 3: Routines not listed in Figure 1 but related to, and called by, the main routines of
PDHGEQZ.

Routine Description

PDHGEQZ8 Called by PDHGEQZ7 to perform parallel chase and deflation of infinite eigenvalues at the
top left corner of (H,T ).

PDHGEQZ9 Called by PDHGEQZ7 to perform parallel chase and deflation of infinite eigenvalues at the
bottom right corner of (H,T ).

PDHGEQZA Called by PDHGEQZ5 to create bulges within a diagonal block of (H,T ), followed by updates
in parallel of off-diagonal elements.

PDHGEQZB Called by PDHGEQZ5 to chase bulges within a diagonal block of (H,T ), followed by updates
in parallel of off-diagonal elements.

PDHGEQZ6 Called by PDHGEQZ2, PDHGEQZ4, PDHGEQZ8, PDHGEQZ9, PDHGEQZA, and PDHGEQZB to update
off-diagonal entries in parallel.

PDLACP4 Called by PDHGEQZ2, PDHGEQZ4, PDHGEQZ5, PDHGEQZ8 and PDHGEQZ9 to copy a global diagonal
block of (H,T ) to a local workspace copy, or vice versa.

PDROT Performs a planar rotation, in parallel.
DHGEQZ5 Serial chase of bulges within a diagonal block of (H,T )
DHGEQZ7 Serial chase of infinite eigenvalues, along the diagonal of T , up or down.

Table 4: Routines related to parallel reordering. These routines are also part of the SCASY

library, see [8] and SCASY homepage http://www8.cs.umu.se/∼granat/scasy.html, although
slightly modified here

.
Routine Description

PDTGSEN Reorders a cluster of eigenvalues to the top of the matrix pair (S, T ) in real generalized
Schur form. Also provides functionality to compute condition number estimate for eigen-
values and eigenspaces.

BDLAGPP Computes a transformation matrix Q resulting from performed swaps of diagonal blocks.
BDTGEXC Moves a diagonal block from one position to another.
BDTGEX2 Swaps two adjacent diagonal blocks.
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Table 5: Routines related to the parallel Hessenberg-triangular reduction.
Routine Description

PDGGHRD Parallel reduction of a matrix pair to Hessenberg-triangular form - main routine.
UPDATEANDREDUCECOLUMN Applies previous row updates and reduces a column.
UPDATEANDREDUCECOLUMN ROOT Applies previous row updates and reduces a column. This version uses a

single core to perform the updates and reduction and is called internally by
UPDATEANDREDUCECOLUMN.

KRNLUPDATEANDREDUCECOLUMN Applies previous row updates and reduces a column - kernel version.
SLIVERROWUPDATE Applies row updates.
KRNLROWUPDATE Applies row updates - kernel version.
SLIVERHESSCOLUMNUPDATE Reduces a matrix in Hessenberg form to triangular form.
KRNLCOLUMNANNIHILATE Annihilates sub diagonal entries - kernel version.
SLIVERCOLUMNUPDATE Applies column updates.
KRNLCOLUMNUPDATE Applies column updates - kernel version.
ACCUMULATEROWROTATIONS Accumulates row rotations into transformation matrices.
KRNLACCUMULATEROWROTATIONS Accumulates row rotations into transformation matrices - kernel version.
ACCUMULATECOLUMNROTATIONS Accumulates column rotations into transformation matrices.
KRNLACCUMULATECOLUMNROTATIONS Accumulates column rotations into transformation matrices - kernel version.
BLOCKSLIVERROWUPDATE Applies accumulated transformation on block rows.
BLOCKSLIVERCOLUMNUPDATE Applies accumulated transformations on block columns.
DUOBLOCKSLIVERCOLUMNUPDATE Applies accumulated transformations on block columns. This routine takes two

matrices as input and updates them at the same time.
GRN2LRN Computes a local range from a global range.

Table 6: Routines related to the serial multishift QZ, with aggressive early deflation, KKQZ.
Routine Description

KKQZ Serial multishift QZ with aggressive early deflation - main routine.
KKQZCONF Sets up parameters for the KKQZ routine. This routine needs to be called before any call

to PDHGEQZ.
INVHSE Computes an ”inverted” Householder reflector.
QZDACK Serial and blocked single/double shift QZ, based on [7].
QZDACKIT Performs a blocked single/double QZ iteration, based on [7].
QZEARLY Performs aggressive early deflation.
QZFCOL Forms a multiple of the first column of the shift polynomial for the generalized eigenvalue

problem.
QZINF Identifies and deflates infinite eigenvalues.
QZLAP Serial single/double shift QZ, based on the LAPACK routine DHGEQZ.
QZLAPIT Performs a single/double QZ iteration, based on the LAPACK routine DHGEQZ.

Table 7: Routines supplied in the tools/ folder.
Routine Description

PDMATGEN2 Generates a matrix with entries choosen from a uniform distribtution ∈ [0, 1].
PDLAPRNT Prints a distributed matrix.
PQZHELPS Contains routines for calculating residuals, and misc. short helper routines.
MMIO Contains misc. routines for reading and writing Matrix Market files.
PDRDMMM Reads a Matrix Market matrix file and stores the content in a globally distributed matrix.
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