

H2020-FETHPC-2014: GA 671633

NLAFET Working Note 6

A new sparse solver using
a posteriori threshold pivoting

Jonathan Hogg

November, 2016

NLAFET Working Note

http://www.nlafet.eu/ 2/2

Document information
This preprint report is also published as Technical Report RAL-TR-2016-017, Science &
Technology Facilities Council, UK.

Acknowledgements This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the grant agreement number
671633.

A new sparse LDLT solver using A Posteriori Threshold Pivoting

Jonathan Hogg

ABSTRACT

We describe version 2.0 of the SPRAL Sparse Symmetric Indefinite Direct Solver (SSIDS). Version 1
performed the factorization only on a single GPU. The new version adds support for CPU and hybrid
execution, capable of utilising multiple GPUs.

Notably, the CPU algorithm uses OpenMP 4.0 tasks to implement a multifrontal algorithm with dense
factorizations using a posteriori threshold pivoting based on the same threshold technique as traditional
threshold partial pivoting.

Keywords: sparse symmetric factorization, indefinite systems, a posteriori pivoting, OpenMP

AMS(MOS) subject classifications: 65F30, 65F50

Scientific Computing Department, STFC Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire,
OX11 0QX, UK.

NLAFET Working Note 6. Also published as RAL Technical report RAL-TR-2016-017.

This work was supported in part by the NLAFET Project funded by the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement 671633.

November 28, 2016

Contents

1 Introduction 1

2 High-level parallel strategy 1

3 Subtree factorization on CPU 3

4 A posteriori threshold pivoting kernel 4

5 Relation between full pivoting and threshold pivoting 7
5.1 Stability . 7

6 Results 9
6.1 Haswell desktop . 10
6.2 Haswell compute node . 10

6.2.1 Effect of pivoting method and failed pivot handling . 15
6.2.2 Using separate NUMA regions . 15

6.3 Ivy bridge/GPU compute node . 15
6.4 Parameter selection . 16
6.5 Comparison versus other codes . 16

7 Conclusions and Future Work 16

i

Figure 1: Architecture for GPU test machine

NUMA Node 0 NUMA Node 1

core core core core

core core core core

core core core core

core core core core

GPU 0

1 Introduction

In 2014 we released version 1.0 of SSIDS that provided a sparse direct solver to solve Ax = b through a
symmetric indefinite factorization A = LDLT . It is described in [4]. This work was limited to a single GPU,
and could not make use of the CPU. In this paper we describe version 2.0 of SSIDS. This adds a new CPU
implementation that is faster than existing implementations without using the GPU, but is also able to use
the GPU code from version 1.0 to perform heterogeneous computation on the CPU and one or more GPUs.

The CPU implementation uses the same sort of a posteriori threshold pivoting (APTP) algorithm as
our GPU implementation, but builds it on top of the OpenMP 4.0 tasking system. It combines this with a
fail-in-place technique to ensure all permutations during the dense factorization are local. We demonstrate
that the combination provides considerably better performance than existing techniques.

Whilst we could have used the more capable runtime systems provided by, for example, StarPU [1], this
would add additional dependencies to the SPRAL mathematical software library and may cause problems
for portability, for example if the user wishes to use a conflicting runtime system at a higher level. We
therefore restrict ourselves to OpenMP 4.0 and CUDA as the mechanisms for expressing parallelism. The
code is written in a mixture of Fortran, C++ and CUDA.

The paper is organised as follows. Section 2 describes high level parallelization that splits the factorization
into one or more subtrees that are assigned to available resources (CPUs or GPUs) using a traditional
method. These parts are then combined using only the CPU. Section 3 describes the design of the CPU
implementation, and its memory management techniques that prove crucial to its performance. This calls the
dense factorization kernels described in Section 4. Theoretical results supporting the use of full pivoting at
the finest granularity are given in Section 5. Finally, numerical results are given in Section 6 and conclusions
in Section 7.

2 High-level parallel strategy

We consider a machine to consist of one or more NUMA nodes, each of which may have one or more GPUs
attached. This is illustrated by our main GPU test machine, pictured in Figure 1. We use the term resource
to mean either all the cores of a NUMA node, or a single GPU. Often the communications between NUMA
nodes are sufficiently fast that it is beneficial to consider the cores across all NUMA nodes as a single resource
(this is our default).

OpenMP task parallelism cannot easily express task dependencies between different resources, for the
following reasons:

• Different NUMA regions have to use different OpenMP parallel regions with a proc bind clause to
ensure task execution on the desired region. However, OpenMP tasks bind to the nearest parallel
region or task group, and task dependencies are not considered with other task binding regions, so we
cannot use tasks to synchronise between different teams on different regions. We could use non-task
synchronisations such as OpenMP locks or POSIX mutexes. However, this could lead to tasks sitting
idle longer than necessary.

1

• We could (in theory) include tasks that just wait on GPU events, but again this may lead to tasks
idling longer than necessary. Combined with the level-set rather than task-based design of the existing
GPU code, mixing the two modes was considered a bad idea.

Even if such parallelism was easy to express, inter-resource communication is more expensive than intra-
resource communication, so should be minimized. This is achieved through tree parallelism. The assembly
tree is split into one or more leaf subtrees per resource. The remaining root subtree(s) are then executed solely
on the combined CPU resources, because (at present) the GPU code does not support external contributions.
In the future it may make sense to offload large dense matrix operations to the GPU.

Assignment of leaf subtrees to resources is done in a round robin fashion. First, the leaf subtrees are
ordered in descending order of floating-point operation count. The largest subtree is assigned to the fastest
resource, the next largest subtree to the next fastest resource, and so on until all subtrees are assigned. If
there are more subtrees than resources, we loop back around again.

We define the load balance as:

balance = max
i

nresxi/αi∑
j(xj/αj)

where nres is the number of resources, xi is the total number of floating point operations assigned to
resource i and αi is proportional to the speed of the resource (eg flop/s). In a perfectly balanced situation,
balance = 1.0. In our implementation, we treat all NUMA regions as having α = 1.0, and all GPUs as having
the same value relative to that (e.g. if the GPUs are twice as fast as the total cores of a NUMA region we
set α = 2.0 for the GPUs). Furthermore, we prevent scheduling of subtrees on the GPU with size less than
some minimum, gpumin, because a minimum amount of work is needed for sufficient parallelism to exist and
to compensate for communication and start-up latencies.

We define bmin to be the minimum value of balance we are willing to accept and use Algorithm 1 to find
a subtree partition that meets it. Note the existence of a maximum iteration count, for we do not wish the
root subtree to grow too large.

Algorithm 1 find subtree partition()

Initialise partition as set of independent subtrees in assembly forest.
Assign subtrees to resources and calculate balance.
while balance > bmin and # iterations < max itr do

Find largest subtree in partition.
Move root node of subtree to root subtree, creating a new subtree from each child.
If there are now insufficient subtrees of size at least gpumin, exit
Assign subtrees to resources and calculate balance.

end while
Return partition with least balance value encountered.

With the subtree partition and assignment determined, data structures are set up on each resource. The
CPU and GPU implementations are both fully self contained, allowing different underlying data structures
(and factorizations if desired). They communicate only through contribution block objects that provide
a means to access the contribution block from the root of a subtree to its parent, and a way to free the
underlying memory of that block when it is no longer required.

We use the OpenMP proc bind() directive to bind threads to the desired NUMA nodes, and rely on
a first-touch policy to ensure memory is allocated in the appropriate locations. Synchronisations are done
by locating the leaf subtree and root subtree calculations in different OpenMP parallel regions: one must
complete before the other can start. Each GPU gets its own CPU thread (which will be largely idle) that
waits on a CUDA event before exiting the leaf subtree parallel region. We thus have a construct that looks
similar to that shown in Algorithm 2.

2

Algorithm 2 High-level OpenMP structure

! Leaf subtrees
!$OMP parallel proc bind(spread) num threads(num regions * max gpu per region)

if(thread num<num regions) then
! Represents a NUMA region
!$OMP parallel proc bind(close) num threads(region num threads)

Process leaf subtree(s) in parallel
!$OMP end parallel

else
! Represents a GPU
Launch subtrees on GPU
Wait for all subtrees to complete

end if
!$OMP end parallel

3 Subtree factorization on CPU

The CPU factorization is implemented in C++ and follows a traditional multifrontal design. An OpenMP
4.0 task is created for each node, with a dependency inout on itself and in on its parent node. The reason
for an in and not an out dependency on the parent node is due to the semantics of OpenMP. The OpenMP
4.0 standard [6] states dictates the following meanings for dependency types:

in “The generated task will be a dependent task of all previously generated sibling tasks that reference at
least one of the list items in an out or inout dependence-type list.”; and

out/inout “The generated task will be a dependent task of all previously generated sibling tasks that
reference at least one of the list items in an in, out, or inout dependence-type list.”

As we want to be able to factorize all children of a node in parallel (each is generating a separate contribution
block), the semantics we want are in, not out (which would serialise them). Rather than the above
workaround with children depending in a reverse fashion on their parents, in an ideal world the parent
node would have an in dependence on each child. However OpenMP does not allow an arbitrary number of
dependencies per task (a node may have an arbitrary number of children).

Near the leaf nodes of the tree, handling each (tiny) node as a separate task generates significant overhead.
In these cases, we group nodes together into small leaf subtrees that are factorized as a single task using a
separate kernel. This kernel can be further optimized to exploit the small nature of the nodes it contains.
However, in our implementation, the structure is still largely as discussed below.

Each node is notionally a m×m (symmetric) frontal matrix F of which n columns are fully summed and
can be eliminated (subject to numerical stability), and m−n are non-fully summed and form the contribution
block to be passed to the parent. In our implementation, the fully summed columns are stored directly into
the matrix factors, whilst the (m−n)×(m−n) contribution block is stored separately in temporary memory.

At each node we perform the following operations:

assemble pre() Allocates memory for both the fully summed columns (which must be zeroed) and the
contribution block (which need not be). Assembles contribution from children into the fully summed
columns only.

factor() Factorizes the fully summed columns and calculates the contribution block.

assemble post() Assembles contribution from children into the contribution block.

The contribution block does not need to be zeroed (an expensive operation), as the gemm() operations can
be told to treat it as zero during calculation.

3

For a large node, each of these operations is parallelized (node parallelism). Taskgroups are used to ensure
all parallel tasks within each operation are completed before the next operation begins. This restriction could
be removed with some effort, but the additional complication of the code was deemed not to be worthwhile.
The assemble tasks use a 1D parallelization across block columns of each child node, whilst the factor task
uses the task parallel scheme described in Section 4.

Of particular note is the memory management. For security reasons, the OS must ensure all memory is
zero upon allocation, and thus maintains a cache of pre-cleared pages that are zeroed at times the machine
is not busy. For certain memory-hungry applications, such as direct solvers, this cache can quickly become
exhausted, and memory allocation slows down. To minimize this overhead, we implement our own memory
management:

• Entries of the factors are managed using a stack allocator as they are never released (until the user
releases the factorization). To avoid the need for explicit zeroing in the assemble pre() operation, this
uses calloc() as the underlying memory allocation mechanism, which is able to exploit the fact that
OS pages are zero when allocated.

• Work spaces used by more than one thread and storage for contribution blocks is allocated using a
buddy system allocator. This allows memory to be recovered without loss, at the expense of requiring
more space than some other methods.

• Work spaces used by a single thread use a static workspace maintained by each thread sufficient to
store a single block of the matrix.

4 A posteriori threshold pivoting kernel

The factor() operation performs the dense factorization(
F11 FT21

F21 F22

)
=

(
L11

L21 I

)(
D11

F21 − L21D11L
T
21

)(
L11 LT21

I

)
,

where L11 and L21 are lower triangular and D11 is block diagonal with 1× 1 and 2× 2 blocks. Pivots may
only be selected from F11. In practice, only the lower triangle of F is stored because of symmetry.

Most existing solvers use one of two underlying approaches:

Threshold Partial Pivoting (TPP) ensures that all entries of lij < u−1 for some fixed threshold u before
accepting a pivot. If D11 can be stably inverted (an easy condition to meet) then growth in the factors
is bounded and the factorization is backwards stable. This requires global communication on each
column factorized to perform the threshold test. This approach is used, for example, in MA57 [3] and
HSL MA97 [5].

Supernode Bunch-Kaufmann (SBK) applies the stable dense LDLT approach of Bunch and
Kaufmann[2] to F11 and then performs a solve with F21 to obtain L21. As entries of F21 are not
considered during pivoting the overall factorization may be unstable. This approach is used, for
example, in PARDISO [7].

Clearly, SBK involves less communication and is hence faster (especially as core count increases, assuming
n is kept reasonably small by splitting supernodes if appropriate). Its lack of stability can often be countered
by appropriate numerical pre-treatments (e.g. use of a matching-based ordering) and then a few steps of
an iterative method (e.g. iterative refinement or FGMRES). However, even with the most sophisticated
(and expensive) techniques, the numerical instability cannot be overcome for some matrices, and a stable
factorization (i.e. using TPP) must be performed instead.

In this section, we describe an implementation of an a posteriori threshold pivoting (APTP) approach that
aims to combine the speed of SBK on stable matrices with the stability of TPP on numerically challenging

4

ones. This is achieved by testing the condition lij < u−1 on a block column basis rather than on a column-
wise one.

The new algorithm is shown as Algorithm 3. Tasks are presented as subroutine calls that update (i.e.
have an inout dependency on) arguments before the semicolon, and have an input dependency on all blocks
after it. The variable nelimj is special as we do not express OpenMP task dependencies involving it, but
instead use atomic updates. The tasks are as follows:

Factor(Ajj , nelimj) first stores a backup of block Ajj and then performs a pivoted factorization Ajj =
PjLjjDjjL

T
jjPj , where Pj is a permutation. Initialise nelimj to block size for atomic reduction for

number of successful pivots in block j.

ApplyN(Aij , nelimj; Ajj) and ApplyT(Aji, nelimj; Ajj) first store a backup of block Aij (respectively
Aji) and then performs the operation Lij = PjAij(LjjDjj)

−T (respectively Lji = (LjjDjj)
−1AjiP

T
j)

on uneliminated entries (i.e. the full block for ApplyN and only those in columns corresponding to
failed pivots for ApplyT), before finding the first column nelimij in Lij (nelimji inLji) that contains
an entry lpq > u−1. This is then atomically reduced to find the global nelimj = min(nelimj , nelimij).

Eliminated entries only exist in the ApplyT case (i.e. those in columns corresponding to successful
pivots), in which case the rows are permuted according to Pj .

Adjust(nelimj; All blocks A:j and Aj:) adjusts nelimj down by one if we would otherwise accept only
the first column of a 2×2 pivot. The dependence on all blocks in the column ensures atomic reductions
are complete.

UpdateNN(Aik; Aij, Akj, nelimj), UpdateNT(Aik; Aij, Ajk, nelimj) and UpdateTT(Aik;
Aji, Ajk, nelimj) perform the update operations Aik = Aik − LijDjjL

T
kj (UpdateNN),

Aik = Aik − LijDjjLjk (UpdateNT), and Aik = Aik − LTjiDjjLjk (UpdateTT) respectively on
uneliminated entries. If Aik is in row or column j, then failed rows or columns (those with an index
greater than nelimj) are first restored from the backup before they are updated by the eliminated
columns. The backup memory may then be reused for another block. The ‘N’ and ‘T’ refer to the
orientation of the input blocks compared to a standard implementation of LDLT that only features
UpdateNN.

Note that we are using a fail-in-place approach, where columns and rows corresponding to failed pivots
are not permuted outside their block as in most implementations. This leads to the multiple variants of
Apply and Update operations, as such entries must be kept up-to-date and participate in pivoting. Figure 2
visualises the data structure part-way through the factorization in which some pivots have failed. However,
the overhead of such is not as high as might first appear. If a block has been completely eliminated (the
most common case), the UpdateNT and UpdateTT operations become no-ops, and ApplyT becomes a row
permutation that would be required anyway.

The extra cost imposed by APTP over TPP is the requirement to take a backup of the pivotal
block column and the restoration and update of any failed pivots. The benefit is a more coarse-grained
synchronisation (i.e. fewer communications).

After completion of this algorithm, failed entries are permuted to the back of the matrix. At this stage
the entries can be refactorized (they have likely been updated since they failed) using either APTP or TPP,
or passed directly to the parent. We originally considered not permuting the failed entries, but instead
performing swaps and running again on the same block partitioning. However this turned out not to be
needed in practice as the number of failed pivots (that could be subsequently eliminated) was so small.

We note that there are a number of options for implementation of the Factor() task:

• Recursively perform an APTP factorization with a smaller block size.

• Perform complete pivoting (see Section 5).

• Use an implementation of TPP.

5

Algorithm 3 A posteriori threshold pivoting LDLT factorization.

for j = 1, . . . , nblk do
Factor(Ajj , nelimj)
for i = 1, . . . , j − 1 do

ApplyT(Aji, nelimj ; Ajj)
end for
for i = j + 1, . . . , mblk do

ApplyN(Aij , nelimj ; Ajj)
end for
Adjust(nelimj ; All blocks A:j and Aj:)
for k = 1, . . . , j − 1 do

for i = k, . . . , j − 1 do
UpdateTT(Aik; Aji, Ajk, nelimj)

end for
for i = j, . . . , mblk do

UpdateNT(Aik; Aij , Ajk, nelimj)
end for

end for
for k = j, . . . , nblk do

for i = k, . . . , mblk do
UpdateNN(Aik; Aij , Akj , nelimj)

end for
end for

end for

Figure 2: Part-way through execution of Algorithm 3. Iterations j = 1, 2, 3 have completed, and iteration
j = 4 is about to begin. Blue entries have been eliminated. Red entries have failed to be eliminated twice (by
column or row). Green entries indicate uneliminated entries considered for elimination on iteration j = 4.

6

In practice, we use a two-level approach involving an outer block size nb (an option accessible to the user)
and an inner block size nbi (fixed at compile time). APTP is performed in parallel using the outer block
size, and recurses to perform APTP in serial with the smaller inner block size. This inner block APTP then
uses complete pivoting for full blocks and a simple implementation of TPP for partial blocks.

In addition to Algorithm 3, we also offer a more aggressive variant that removes the Adjust() task,
replacing it with a global abort in the event that any lij < u−1. This provides a stable algorithm with the
same degree of parallelism as Cholesky. If a more advanced tasking system were used instead of OpenMP,
we could instead use speculative execution to achieve the same acceleration.

5 Relation between full pivoting and threshold pivoting

As described in the previous section, at the most fine-grained level we use complete pivoting on a small dense
block. The reason for doing so is that such a block fits in cache, so there is little penalty to searching the
entire matrix for a good pivot. Furthermore, it should cause any failed pivots of the APTP algorithm to
occur as late in each block as possible (if the cause is a poor diagonal pivot rather than an unusually large
off-diagonal entry).

Algorithm 4 Complete pivoting algorithm

1: Find maximum uneliminated entry in position (t,m) with value atm.
2: if |atm| < δ then
3: All remaining pivots are 0.
4: else if m == t then
5: Use as 1× 1 pivot
6: else
7: ∆ = ammatt − amtamt
8: if |∆| ≥ 1

2 |amt|
2 then

9: 2× 2 pivot
10: else
11: 1× 1 pivot on max (|amm|, |att|)
12: end if
13: end if

The complete pivoting algorithm proceeds column-wise in a traditional fashion, but the choice of the next
pivot is determined by the location of the maximum entry as shown in Algorithm 4. A brief summary of the
algorithm is that we first test if all remaining entries in the block are effectively zero. If so, we record all
uneliminated columns as zero pivots. If not, we try and use the largest entry as the pivot, either as a 1× 1
if it lies on the diagonal, or as the off-diagonal entry of a 2× 2 pivot if it is not. The test |∆| ≥ 1

2 |amt|
2 on

line 8 is a very conservative condition on the stability of the 2× 2 pivot. As we show below, if the condition
does not hold, then max(|amm|, |att|) must be large in its own right and is hence safe to use as a 1× 1 pivot
instead.

5.1 Stability

Algorithm 4 is as stable as traditional threshold partial pivoting with a pivot threshold of u = 0.25. Recall
that this is implied by all entries of L being bounded by u−1 = 4 with all 2 × 2 pivots inverted in a stable
fashion. We now show this is the case for each of the three nonsingular execution paths. For ease of reference,
we relabel a11 = amm, a21 = atm, a22 = att.

7

Immediate 1× 1 pivot case

Trivially

|li1| =
|ai1|
|a11|

≤ 1 < 4.

Successful 2× 2 pivot case

Without loss of generality we have (up to relabelling)

|a21| ≥ |a11| ≥ |a22|, (1)

∆ = a11a22 − a21a21.

The stability test used in recent HSL solvers (e.g. HSL MA97) for 2×2 pivots is the following set of conditions:

(a) |∆| ≥ 1
2δ|a21|,

(b) |∆| ≥ 1
2 |a11||a22|,

(c) |∆| ≥ 1
2 |a21||a21|.

The first condition ensures that the pivot is nonsingular, while the latter two ensure any cancellation in
the calculation is insignificant. Given condition (1), observe that (c)⇒(b). Furthermore, since |a21| ≥ δ, it
follows that (c)⇒(a). However, it is possible for condition (c) to be violated, consider for example(

α− ε α
α α− ε

)
⇒ ∆ = ε(ε− 2) = O(ε).

So, assuming condition (c) holds, we now consider the size of entries of L:(
li1
li2

)
=

(
a11 a21

a21 a22

)−1(
ai1
ai2

)
=

1

∆

(
a22ai1 − a21ai2
−a21ai1 + a11ai2

)
.

Using |a21| ≥ |ai1|, |ai2| and the triangular inequality we get(
|li1|
|li2|

)
≤ 1

∆

(
|a22||a21|+ |a21||a21|
|a21||a21|+ |a11||a21|

)
.

By condition (c) we have 1
∆ ≤ 2 1

|a21||a21| , combined with (1) to give

|li1|, |li2| ≤ 2
1

|a21||a21|
(|a21||a21|+ |a21||a21|) = 4 = (0.25)−1.

This corresponds to a traditional pivoting threshold of u = 0.25. This bound is achieved for the following
matrix in the limit ε→ 0, α− ε α α− ε

α 1
2
α2

α−ε − (α− ε)
α− ε − (α− ε) 0

 .

Failed 2× 2 pivot case

If condition (c) does not hold, we fall back on a 1 × 1 pivot corresponding to the maximum (absolute)
diagonal value. The failure of (c) means that

|∆| = |a11a22 − a21a21| <
1

2
|a21||a21|.

8

For the above to hold, a11a22 and a21a21 must have the same sign. Furthermore, from (1) we have |a21a21| ≥
|a11a22|. Combining these allows us to write

|a21a21| − |a11a22| <
1

2
|a21||a21|.

As wlog a11 ≥ a22, rearranging we have

1

2
|a21||a21| < |a11||a22| < |a11||a11|,

and hence
1

|a11|
<

√
2

|a21|
.

Which allows us to bound entries of L:

|li1| =
|ai1|
|a11|

≤ |a21|
|a11|

≤
√

2 < 4.

6 Results

We present results on the following machines:

Haswell desktop A desktop machine with a i7-4790 processor, providing 4 cores.

Haswell compute node A HPC node with 2×E5-2695 v3 processors, for a total of 28 cores.

Ivy Bridge/K40 compute node A HPC node with 2×E5-2650 v2 processors, for a total of 16 CPU cores,
and a K40 GPU.

We use the following codes:

SPRAL SSIDS The code described in this paper. All results are against the version with git tag
PAPER 20160922.

HSL MA86 A task-based supernodal symmetric indefinite solver from HSL. It uses a block column
orientated factorization, so is more limited in the parallelism it can exploit than the other codes
here. We use version 1.5.0.

HSL MA87 A task-based supernodal Cholesky solver from HSL. We use version 2.4.0.

HSL MA97 A multifrontal symmetric indefinite solver that uses a recursive parallel factorization at the
node level. We use version 2.4.0.

PARDISO A supernodal solver that uses Supernode Bunch-Kaufmann and a static pivoting scheme. We
use the version provided with the MKL as stated for each machine.

We use the following Test Sets, listed in Tables 1–3 respectively.

Test Set 1 Symmetric indefinite problems that require few delayed pivots. No scaling is performed. Results
are presented with SSIDS, HSL MA86, HSL MA97 and PARDISO.

Test Set 2 Symmetric indefinite problems that require significant scaling and pivoting. Matrices are
scaled and ordered using a matching-based ordering and scaling. Results are presented with SSIDS,
HSL MA97 and PARDISO only, as HSL MA86 does not offer the capability to use a matching-based
ordering without significant additional work.

Test Set 3 Positive-definite problems. Results are presented with SSIDS, HSL MA87, HSL MA97 and
PARDISO.

9

Table 1: Test Set 1: Easy Indefinite. Statistics as reported by the analyse phase of SSIDS with default
settings, assuming no delays.

Problem n nz(A) nz(L) flops
×103 ×106 ×106 ×109

Oberwolfach/t2dal 4.26 0.02 0.28 0.02
GHS indef/dixmaanl 60.00 0.18 1.58 0.05
Oberwolfach/rail 79841 79.84 0.32 4.43 0.33
GHS indef/dawson5 51.54 0.53 5.69 0.90
Boeing/bcsstk39 46.77 1.07 9.61 2.66
Boeing/pct20stif 52.33 1.38 12.60 5.63
GHS indef/copter2 55.48 0.41 12.70 6.10
GHS indef/helm2d03 392.26 1.57 33.00 6.16
Boeing/crystk03 24.70 0.89 10.90 6.26
Oberwolfach/filter3D 106.44 1.41 23.80 8.71
Koutsovasilis/F2 71.50 2.68 23.70 11.30
McRae/ecology1 1000.00 3.00 72.30 18.20
Cunningham/qa8fk 66.13 0.86 26.70 22.10
Oberwolfach/gas sensor 66.92 0.89 27.00 22.10
Oberwolfach/t3dh 79.17 2.22 50.60 70.10
Lin/Lin 256.00 1.01 126.00 285.00
GHS indef/sparsine 50.00 0.80 207.00 1390.00
PARSEC/Ge99H100 112.98 4.28 669.00 7070.00
PARSEC/Ga10As10H30 113.08 3.11 690.00 7280.00
PARSEC/Ga19As19H42 133.12 4.51 823.00 9100.00

6.1 Haswell desktop

Results are on a desktop machine with an i7-4790 processor, compiled with:

• gcc 6.2.0 with flags “-g -O2 -march=native”

• Intel MKL BLAS 11.0.3

• metis 4.0.3

Figures 4–5 show the comparative performance of SSIDS on a range of problems on this machine.
Clearly the code is outperformed by the dedicated Cholesky solver HSL MA87 for positive definite

problems. However on the indefinite problems it generally outperforms both HSL MA86 and HSL MA97
and is often comparable with PARDISO. On the larger problems it significantly outperforms PARDISO, but
is outperformed by HSL MA86. The very large problems failed to run with any solver on this machine as
they ran out of memory.

6.2 Haswell compute node

Results on a HPC node with 2×E5-2695 v3 processors, compiled with:

• gcc 6.1.0 with flags “-g -O2 -march=native”

• Intel MKL BLAS 11.3.1

• metis 4.0.3

10

Table 2: Test Set 2: Hard Indefinite. Statistics as reported by the analyse phase of SSIDS with default
settings, using matching-based ordering, assuming no delays.

Problem n nz(A) nz(L) flops
×103 ×106 ×106 ×109

TSOPF/TSOPF FS b39 c7 28.22 0.37 2.61 0.26
TSOPF/TSOPF FS b162 c1 10.80 0.31 1.89 0.36
QY/case39 40.22 0.53 3.87 0.40
TSOPF/TSOPF FS b39 c19 76.22 1.00 7.28 0.75
TSOPF/TSOPF FS b39 c30 120.22 1.58 11.10 1.10
GHS indef/cont-201 80.59 0.24 7.12 1.11
GHS indef/stokes128 49.67 0.30 6.35 1.16
TSOPF/TSOPF FS b162 c3 30.80 0.90 6.37 1.41
TSOPF/TSOPF FS b162 c4 40.80 1.20 7.32 1.43
GHS indef/ncvxqp1 12.11 0.04 3.56 2.52
GHS indef/darcy003 389.87 1.17 23.20 3.01
GHS indef/cont-300 180.90 0.54 17.20 3.58
GHS indef/bratu3d 27.79 0.09 7.49 4.72
GHS indef/cvxqp3 17.50 0.07 6.33 5.27
TSOPF/TSOPF FS b300 29.21 2.20 13.40 6.92
TSOPF/TSOPF FS b300 c1 29.21 2.20 13.50 7.01
GHS indef/d pretok 182.73 0.89 24.80 7.42
GHS indef/turon m 189.92 0.91 24.70 7.60
TSOPF/TSOPF FS b300 c2 56.81 4.39 27.00 14.10
TSOPF/TSOPF FS b300 c3 84.41 6.58 40.50 21.40
GHS indef/ncvxqp5 62.50 0.24 22.90 24.30
GHS indef/ncvxqp3 75.00 0.27 39.30 63.70
GHS indef/ncvxqp7 87.50 0.31 51.00 101.00

Figure 3: Timing results on Haswell desktop for Test Set 1 (easy indefinite).

0.1

1

10

0 5 10 15 20

S
p

ee
d

u
p

v
s

H
S

L
M

A
97

Problem

SSIDS
HSL MA86
PARDISO

11

Table 3: Test Set 3: Positive Definite. Statistics as reported by the analyse phase of SSIDS with default
settings.

Problem n nz(A) nz(L) flops
×103 ×106 ×106 ×109

CEMW/tmt sym 726.71 2.90 55.90 11.70
McRae/ecology2 1000.00 3.00 72.50 18.50
Schmid/thermal2 1228.05 4.90 94.80 18.60
DNVS/m t1 97.58 4.93 37.70 23.40
Boeing/pwtk 217.92 5.93 57.90 25.10
GHS psdef/crankseg 1 52.80 5.33 36.00 33.90
Rothberg/cfd2 123.44 1.61 44.20 34.30
DNVS/thread 29.74 2.25 25.40 35.70
GHS psdef/crankseg 2 63.84 7.11 47.00 48.80
Schenk AFE/af shell3 504.86 9.05 116.00 57.20
AMD/G3 circuit 1585.48 4.62 171.00 67.30
DNVS/ship 003 121.73 4.10 69.80 87.20
GHS psdef/ldoor 952.20 23.74 189.00 87.50
GHS psdef/apache2 715.18 2.77 177.00 183.00
Koutsovasilis/F1 343.79 13.59 193.00 228.00
Oberwolfach/boneS10 914.90 28.19 326.00 297.00
JGD Trefethen/Trefethen 20000 20.00 0.29 95.60 669.00
ND/nd24k 72.00 14.39 326.00 2080.00
Oberwolfach/bone010 986.70 36.33 1140.00 3910.00
GHS psdef/audikw 1 943.70 39.30 1310.00 5840.00

Figure 4: Timing results on Haswell desktop for Test Set 2 (hard indefinite).

0.1

1

10

0 5 10 15 20 25

S
p

ee
d

u
p

v
s

H
S

L
M

A
9
7

Problem

SSIDS
PARDISO

12

Figure 5: Timing results on Haswell desktop for Test Set 3 (positive definite).

0.1

1

10

0 5 10 15 20

S
p

ee
d

u
p

v
s

H
S

L
M

A
9
7

Problem

SSIDS
HSL MA87
PARDISO

Figure 6: Timing results on Haswell HPC node for Test Set 1 (easy indefinite).

0.1

1

10

0 5 10 15 20

S
p

ee
d

u
p

v
s

H
S

L
M

A
9
7

Problem

SSIDS
HSL MA86
PARDISO

13

Figure 7: Timing results on Haswell HPC node for Test Set 2 (hard indefinite).

0.1

1

10

0 5 10 15 20 25

S
p

ee
d

u
p

v
s

H
S

L
M

A
9
7

Problem

SSIDS
PARDISO

Figure 8: Timing results on Haswell HPC node for Test Set 3 (positive definite).

0.1

1

10

0 5 10 15 20

S
p

ee
d

u
p

v
s

H
S

L
M

A
9
7

Problem

SSIDS
HSL MA87
PARDISO

14

Table 4: Failed pivot handling comparison. tfact is the factorization time, ndelay is the number of delayed
pivots, fail1 is the number of pivots that failed the first pass, and fail2 is the number that failed the second
(i.e. after tpp). Factorization times that are significantly better are in bold.

Problem tfact ndelay fail1 fail2
tpp pass tpp pass

Boeing/pct20stif 0.17 0.17 13 108 192 4
GHS indef/sparsine 8.06 6.44 24 941 1562 23
PARSEC/Ga10As10H30 22.62 22.62 0 33 35 0
TSOPF/TSOPF FS b39 c7 0.08 0.08 997 1378 1248 965
QY/case39 0.09 0.11 2312 3334 2963 2182
TSOPF/TSOPF FS b39 c19 0.10 0.11 3464 4691 4175 3198
TSOPF/TSOPF FS b39 c30 0.12 0.14 5031 7013 6277 4818
GHS indef/ncvxqp1 0.24 0.20 78 222 97 76
GHS indef/cvxqp3 0.29 0.23 26 45 37 26
TSOPF/TSOPF FS b300 0.31 7.36 1235 10703 5285 1235
TSOPF/TSOPF FS b300 c1 0.34 15.11 1599 12015 6122 1599
GHS indef/bratu3d 0.21 0.22 27 199 172 3
GHS indef/ncvxqp5 0.59 0.42 60 1058 1164 46
TSOPF/TSOPF FS b162 c1 0.07 0.08 401 788 603 401
GHS indef/ncvxqp7 1.67 1.11 164 830 458 157

6.2.1 Effect of pivoting method and failed pivot handling

There are a number of options available that control pivot handling in the code. As mentioned previously,
an aggressive variant of APTP can be used that assumes no pivots ever fail. Our numerical experiments
showed this offered little benefit: it is likely that for small matrices there was insufficient work outside the
critical path, and for large matrices there was already sufficient work to keep all resources busy. Another
option was to use our implementation of traditional TPP instead of APTP, however our implementation is
not designed for large matrices (it does not exploit BLAS3 calls), and as such performs poorly on any except
the smallest matrices.

Another option is whether to attempt elimination of failed pivots after the first APTP pass, or whether
to just pass straight to the parent. At present the second pass is implemented using TPP, so will perform
poorly in the presence of many failed pivots. Table 4 shows the effects on a selection of matrices where
there are sufficient failed pivots to make a difference. For some problems there is a significant (up to 30%)
reduction in factorization time, however for other problems there is a much bigger increase due to the resulting
larger fronts. The columns fail1 and fail2 give the number of pivots that failed APTP and subsequent TPP
respectively. It is clear that for some problems, a significant number are being eliminated by the second
TPP pass.

6.2.2 Using separate NUMA regions

The option exists in the code to use each NUMA region as a separate resource to handle its own leaf subtree.
Keeping memory local to a region should improve performance by putting less stress on the processor to
processor link (e.g. QuickPath Interconnect on Intel systems). However the additional cost of this is the
additional synchronisation before starting the root subtree. In our tests this could cause significant delays,
so the default is to treat all cores as belonging to a single region.

6.3 Ivy bridge/GPU compute node

Results on a HPC node with 2×E5-2650 v2 processors and a K40 GPU.

15

Table 5: Effect of gpu α performance coefficient on selected problems.
Problem Factorization time GPU flops

α = 0.75 1.00 1.25 1.50 0.75 1.00 1.25 1.50
Koutsovasilis/F2 0.17 0.17 0.14 0.14 0 0 5.80×109 5.80×109

Cunningham/qa8fk 0.20 0.20 0.18 0.18 6.40×109 6.40×109 1.04×1010 1.04×1010

Oberwolfach/gas sensor 0.21 0.21 0.19 0.19 5.36×109 5.36×109 1.15×1010 1.15×1010

McRae/ecology1 0.40 0.40 0.29 0.28 0 0 8.98×109 8.98×109

Oberwolfach/t3dh 0.43 0.44 0.45 0.45 2.51×1010 2.51×1010 2.57×1010 2.57×1010

Lin/Lin 1.16 1.16 1.02 1.00 1.32×1011 1.32×1011 1.40×1011 1.40×1011

GHS indef/sparsine 8.89 8.69 11.05 11.07 3.77×1011 3.77×1011 2.68×1011 2.68×1011

• gcc 4.9.2 with flags “-g -O2 -march=native”

• nvcc 7.5.18 with flags “-arch=compute 35 -code=sm 35”

• Intel MKL BLAS 11.2.0

• metis 4.0.3

6.4 Parameter selection

Based on our test runs, we recommend that the minimum amount of work in a leaf subtree to be factorized,
gpumin on the GPU is at least 5 Gflop. We found that the load balance parameter bmin had little effect as
most often the splitting of the tree was limited by the maximum number of iterations or minimum size of
tree for the GPU. For a few problems setting bmin = 1.1 reduced performance, but bmin = 1.2 did not, so we
choose a default value of 1.2.

Using these settings, we experimented with the GPU performance coefficient αgpu. The results are shown
in Table 5 for some problems selected from Test Set 1 (many problems were too small to benefit from the
GPU, other ones ran out of memory). Based on these results we have chosen αgpu = 1.0 as the default.

6.5 Comparison versus other codes

We provide a comparison against the same CPU-only codes as the previous section, but add the GPU-
only SSIDS v1 code (essentially the same as used for the GPU leaf subtrees in our new code), and WSMP
v16.06.01 with GPU acceleration. Unfortunately the CPU-only version of WSMP relies on a newer version
of GLIBC than was available on our cluster.

We note that the new code does not cope well in constrained memory environments. It seems the OpenMP
runtime can become quite hungry and further offers no graceful exit when memory is exhausted.

7 Conclusions and Future Work

We present a new open source sparse symmetric indefinite solver that provides performance comparable
to existing software on desktop architectures and provides best in class performance for large problems on
manycore shared memory architectures. Performance on positive definite systems still lags behind dedicated
sparse Cholesky factorization codes such as HSL MA87.

During the course of our work, we found a number of “rough edges” to current OpenMP implementations.
The gcc implementation seems to be the most feature complete, with the only flaw of crashing when it
generates too many tasks (this could presumably be rectified by switching to a different task when a given
task is generating too many). The intel implementation at present crashes when running our code, though
we have been unable to determine the cause of this error (some form of stack corruption), and also suffers

16

Figure 9: Timing results on GPU HPC node for Test Set 1 (easy indefinite).

0.1

1

10

0 5 10 15 20

S
p

ee
d

u
p

v
s

H
S

L
M

A
9
7

Problem

SSIDS
HSL MA86
PARDISO

WSMP
SSIDS v1

Figure 10: Timing results on GPU HPC node for Test Set 2 (hard indefinite).

0.1

1

10

0 5 10 15 20 25

S
p

ee
d

u
p

v
s

H
S

L
M

A
9
7

Problem

SSIDS
PARDISO

WSMP
SSIDS v1

17

Figure 11: Timing results on GPU HPC node for Test Set 3 (positive definite).

0.1

1

10

0 5 10 15 20

S
p

ee
d

u
p

v
s

H
S

L
M

A
9
7

Problem

SSIDS
HSL MA87
PARDISO

WSMP
SSIDS v1

from bugs around its implementation of the cancel construct. As such we recommend other authors approach
OpenMP 4.0 tasking with caution until these bugs are ironed out.

There are a number of areas where performance could be significantly improved:

Tree partitioning It seems likely that the straightforward approach taken in determining leaf subtrees
could be enhanced. There is significant work in the literature that could be reviewed to find alternative
algorithms, and a better performance model could be found.

Supernode amalgamation The current algorithm dates back to MA57 and before. It seems likely that
a better algorithm could be created, with different parameters for different subtrees (this may mean
delaying final generation of row lists until after subtree partitioning is decided).

Grouping of small nodes mid-tree The grouping of small nodes at the leaves could be expanded to
include a similar approach for mid-tree to reduce the number of tasks in flight.

Small node kernels Performance of these kernels could probably be significantly improved.

Fallback TPP kernel Add some blocking so BLAS3 can be used to boost performance. This will
significantly improve speeds where significant numbers of pivots fail the first pass of APTP and/or
are delayed.

It remains to be said that moving to a full task parallel approach as in HSL MA87 is also likely to yield
significant performance gains, but would require fundamental redesign of the code, and is probably not easily
achieved within the current OpenMP tasking framework.

References

[1] C. Augonnet, Scheduling Tasks over Multicore machines enhanced with Accelerators: a Runtime
System’s Perspective, PhD thesis, Université Bordeaux 1, 12 2011.

18

[2] J. R. Bunch and L. Kaufman, Some stable methods for calculating inertia and solving symmetric
linear systems, Mathematics of Computation, 31 (1977), pp. 1634–179.

[3] I. S. Duff, MA57—a code for the solution of sparse symmetric definite and indefinite systems, ACM
Transactions on Mathematical Software, 30 (2004), pp. 118–144.

[4] J. D. Hogg, E. Ovtchinnikov, and J. A. Scott, A sparse symmetric indefinite direct solver for
GPU architectures, ACM Transactions on Mathematical Software, 42 (2016), pp. 1:1–1:25.

[5] J. D. Hogg and J. A. Scott, HSL MA97: a bit-compatible multifrontal code for sparse symmetric
systems, Technical Report RAL-TR-2011-024, STFC Rutherford Appleton Laboratory, 2011.

[6] OpenMP 4.0 Complete Specifications, 2013. OpenMP Architecture Review Board.

[7] O. Schenk and K. Gärtner, On fast factorization pivoting methods for symmetric indefinite systems,
Electronic Transactions on Numerical Analysis, 23 (2006), pp. 158–179.

19

