

H2020-FETHPC-2014: GA 671633

NLAFET Working Note 7

Experiments with sparse Cholesky using a
sequential task-flow implementation

Iain Duff, Jonathan Hogg, and Florent Lopez

November, 2016

NLAFET Working Note

http://www.nlafet.eu/ 2/2

Document information
This preprint report is also published as Technical Report RAL-TR-2016-016, Science &
Technology Facilities Council, UK.

Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

Experiments with sparse Cholesky using a sequential task-flow

implementation

Iain Duff†, Jonathan Hogg†, and Florent Lopez†

ABSTRACT

We describe the development of a prototype code for the solution of large sparse symmetric positive definite

systems that is efficient on parallel architectures. We implement a DAG-based Cholesky factorization that

offers good performance and scalability on multicore architectures. Our approach uses a runtime system

to execute the DAG. The runtime system plays the role of a software layer between the application and

the architecture and handles the management of task dependencies as well as the task scheduling. In

this model, the application is expressed using a high-level API, independent of the hardware details,

thus enabling portability across different architectures. Although widely used in dense linear algebra,

this approach is nevertheless challenging for sparse algorithms because of the irregularity and variable

granularity of the DAGs arising in these systems. We assess the ability of two different Sequential Task

Flow implementations to address this challenge: one implemented with the OpenMP standard, and the

other with the modern runtime system StarPU. We compare these implementations to the state-of-the-art

solver HSL MA87 and demonstrate comparable performance on a multicore architecture.

Keywords: sparse Cholesky, SPD systems, runtime systems, StarPU, OpenMP

AMS(MOS) subject classifications: 65F30, 65F50

†Scientific Computing Department, STFC Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire,

OX11 0QX, UK.

Correspondence to: florent.lopez@stfc.ac.uk

NLAFET Working Note 7. Also published as RAL Technical Report RAL-TR-2016-016.

This work is supported by the NLAFET Project funded by the European Union’s Horizon 2020 Research

and Innovation Programme under Grant Agreement 671633.

November 9, 2016

Contents

1 Introduction 1

2 Task-based sparse Cholesky factorization 1

3 Sequential Task Flow parallel programming model 4

4 Runtime systems 5

5 Parallelization of a task-based Cholesky factorization using an STF programming

model 8

6 Strategy of parallelization and task scheduling in MA87 10

7 Experimental results 11

7.1 Performance analysis . 14

7.2 Reducing the impact of DAG unrolling . 16

8 Concluding remarks 19

A Test problems 22

i

1 Introduction

We investigate the use of a runtime system for implementing a sparse Cholesky decomposition for solving

the linear system

Ax = b, (1.1)

where A is a large sparse symmetric positive-definite matrix. We focus on exploiting multicore architectures

that are now ubiquitous in high performance computing. DAG-based algorithms have been shown to be

extremely efficient in terms of performance and scalability and have been widely used in dense linear

algebra as in the PLASMA software package [2]. They have been adapted to sparse algorithms in, for

example, the HSL MA87 solver [14] implementing a supernodal Cholesky factorization, and the qr mumps

solver [8] implementing a multifrontal QR method.

The traditional approach for implementing a task-based solver includes the development of an ad

hoc scheduler which relies on the knowledge of the algorithm to manage synchronisations and enforce

dependencies between processes and is implemented using a low-level multithreading library such as

pthreads (POSIX threads). This approach, however, lacks portability as it is developed for a specific

target architecture. It can then be costly in terms of programming effort to port the code to different

architectures and adapt it to emerging ones. This would be particularly challenging when targeting

heterogeneous architectures equipped with different types of processing units with different capabilities

such as GPU-accelerated multicore systems. Instead, in this work, we explore an alternative approach

based on the use of a runtime system that consists of a software layer between the architecture and the

application. The application is implemented using a high-level API provided by the runtime system, and

low level details such as data consistency and task scheduling are delegated to the runtime system.

Several dense linear algebra software packages have been built using this approach such as

DPLASMA [6], which uses the PaRSEC [7] runtime system and Chameleon which supports several runtime

systems including StarPU [5] and PaRSEC. Both packages are designed for distributed memory systems

equipped with accelerators. For sparse linear algebra, however, relatively few libraries have adopted this

approach. Two examples of runtime-based sparse solvers are qr mumps [1], that implements a multifrontal

QR method, and PaSTIX [13] that implements a supernodal Cholesky method. Compared to dense linear

algebra, the difficulty with employing this approach in the sparse case stems from the fact that the DAGs

are extremely irregular with a large variability of task granularity and irregularities in the dependency

pattern.

We focus on a Sequential Task Flow (STF) programming model for expressing the DAG. This model

offers a simple way to define the parallel code from the sequential one. Although this work is closely

related to that used in the StarPU version of PaSTIX, the expression of dependencies differs between

these two solvers. In the PaSTIX solver, dependencies are explicitly expressed and therefore it does not

take advantage of the STF features available in StarPU. We show that our codes, implemented with a

task-based runtime system supporting the STF model, can lead to an implementation of a sparse matrix

factorization that is as efficient as a state-of-the-art solver on a multicore system.

2 Task-based sparse Cholesky factorization

We first describe the supernodal Cholesky factorization method that we use for solving sparse symmetric

positive-definite systems. In particular, we will focus on a DAG-based variant of this algorithm that has

been proven to be efficient on multicore architectures in the HSL MA87 solver [14]. The factorization

is one of the three main phases for solving a linear system that includes an analysis phase preceding

the factorization, and a solve phase following it. We specifically focus on the factorization because it

corresponds to the most computationally expensive phase.

The supernodal Cholesky method is a factorization algorithm for sparse matrices where the input

matrix A is decomposed as

PAPT = LLT , (2.1)

1

where P is a permutation matrix and the factor L is a lower triangular matrix. The factorization is then

followed by a solve phase for computing x through the solution of the systems Ly = Pb and LTPx = y by

means of forward and backward substitution. Note that the matrix L is normally denser than the matrix

A because of nonzeros introduced in the elimination process. These are called fill-in and can be greatly

reduced by a good choice for the permutation matrix P . Two main techniques for choosing a P to reduce

fill-in are Minimum Degree [3, 4, 18,20] or Nested Dissection [12] or variants of these methods.

The dependencies between the coefficients in the factor L during the factorization can be expressed by

a tree structure called an elimination tree where each node of this tree represents a column in the factor.

In order to increase the efficiency of operations by exploiting Level 3 BLAS routines, the elimination tree

is transformed into an assembly tree where columns having a similar nonzero pattern are amalgamated

into a dense matrix that is referred to as a nodal matrix or supernode.

The factorization is effected by traversing the assembly tree in a topological order and performing

two main operations at each supernode: a dense Cholesky factorization of the current supernode and an

update of the ancestor supernodes using the resulting factors. The update operations may be performed

using either right-looking updates where ancestors nodes are updated as soon as the nodal factorization is

done, or left-looking updates where the current supernode is updated just before being factorized. We use

the software package HSL MC78 [15] to compute the assembly tree during the analysis phase.

There are two main sources of parallelism that can be exploited in the assembly tree: tree-level and

node-level parallelism. Tree-level parallelism is due to the fact that supernodes located in separate branches

of the tree can be processed independently and node-level parallelism is exploited when supernodes are

large enough to be efficiently processed in parallel. One approach for the parallelization of the supernodal

algorithm consists in exploiting these two levels of parallelism independently. For example, several

processes can be used to handle the factorization of independent supernodes in the tree and these processes

can exploit node-level parallelism by using multithreaded routines. Note that, with this strategy, there

is a synchronisation point between the processing of a node and the processing of its children therefore

potentially limiting parallelism. Instead, in our work, we follow the approach proposed in [14] where

supernodes are partitioned into square blocks of order nb and operations are performed on these blocks.

Figure 2.1 shows a simple assembly tree that consists of three supernodes where the dashed lines represent

the block partitioning of supernodes. Figure 2.2 represents the DAG associated with the factorization of

the tree in Figure 2.1.

nb

Figure 2.1: Simple assembly tree with three

supernodes partitioned into square blocks of order nb.

a

f

s s s

u
u u

s s

ff

s

f

s s

u u u

f s u f

a

a

a a

a

Figure 2.2: DAG corresponding to the factorization

of the tree in Figure 2.1.

2

As shown in the DAG represented in Figure 2.2 there are several kernels involved in the factorization

of the supernodes:

1. tasks denoted f correspond to the computation of the Cholesky factor of a diagonal block,

2. tasks denoted s perform a triangular solve of a subdiagonal block using a factor computed with a

task f,

3. tasks denoted u perform an update of a block within a supernode corresponding to the previous

factorization of blocks, and

4. tasks denoted a represent the update between supernodes with respect to the factorization blocks

computed at a given node.

In our code, the DAG, such as that shown in Figure 2.2, replaces the elimination tree for expressing

the dependencies during the computation of the factors. Note that when exploiting the node and tree

parallelism separately, it is not possible to start factorizing a supernode before all of its descendant nodes

have been processed. However, when using the DAG, it is possible that some tasks in a given node become

ready for execution and can then be scheduled while its descendants are still being processed. Using this

DAG-based parallelism it is therefore possible to pipeline the processing of a given node with the processing

of its ancestors. This additional level of parallelism allowed by the use of a DAG-based algorithm is referred

to as inter-node parallelism.

The pseudo-code corresponding to the task-based Cholesky factorization is presented in Figure 2.3.

Note that this is the sequential algorithm that is used as a basis for the implementation of parallel code.

In this code we have the following kernels:

• alloc(snode): partitions the supernode snode into blocks and allocates the data structures.

• init(snode): initializes the blocks by copying the coefficients from the original matrix into them.

• factorize(bc kk): computes the Cholesky factor of the diagonal block bc kk.

• solve(bc kk, bc ik): performs the triangular solve of an off-diagonal block bc ik with the block

resulting from the factorization of the diagonal block bc kk in its column.

• update(bc ik, bc jk, bc ij): performs the update operation of a block bc ij within a supernode

using the blocks bc ik and bc jk from a previously processed column.

• update btw(snode, bc ik, bc jk, anode, bc ij): performs the update operation between the

factors computed in the blocks bc ik and bc jk in the supernode snode and the block bc ij located

in the ancestor supernode anode. In the pseudo-code, p and q represent the number of subdiagonal

blocks involved in the update of the ancestor node anode in the k-th column of snode. Arrays rmap

and cmap give respectively the row mapping and column mapping between the rows and columns in

snode and in anode.

In this algorithm, we perform the update using a right-looking scheme. Although left and right-

looking schemes can lead to different performance in serial mode, neither is considered better because

their behaviour depends on the characteristics of the architecture. In a parallel mode, this code is used

to create the task-graph corresponding to factorization and both left and right-looking schemes produce

the same DAG. Although these two schemes might influence the order in which tasks are submitted to

the runtime systems, in our approach these tasks are dynamically scheduled and prioritised depending on

their position in the DAG and so are therefore independent of the submission order.

3

1 forall nodes snode in post -order

! allocate data structures

3 call alloc(snode)

! initianlize node structure

5 call init(snode)

end do

7

forall nodes snode in post -order

9

! factorize node

11 do k=1..n in snode

call factorize(blk(k,k))

13

do i=k+1..m in snode

15 call solve(blk(k,k), blk(i,k))

end do

17

do j=k+1..n in snode

19 do i=k+1..m in snode

call update(blk(j,k), blk(i,k), blk(i,j))

21 end do

end do

23

forall ancestors(snode) anode

25 do j=k+1..p in snode

do i=j..q in snode

27 call update_btw(blk(j,k), blk(i,k), a_blk(rmap(i), cmap(j)))

end do

29 end do

end do

31

end do

33 end do

Figure 2.3: Pseudo-code for the sequential version of the task-based sparse Cholesky factorization.

3 Sequential Task Flow parallel programming model

In this work we exploit a Sequential Task Flow (STF) programming model for the implementation of

a parallel task-based Cholesky factorization on top of a runtime system. In this model the detection

of dependencies between tasks relies on a data analysis of input and output data in order to guarantee

the sequential consistency of operations during parallel execution. This analysis is often referred to as

superscalar analysis in deference to the dependency detection between instructions that are performed

in superscalar processors. In this context, the dependency graph is used to allow the parallel execution

of independent instructions and is referred to as instruction-level parallelism. The STF model is the

most commonly used paradigm for the parallelization of DAG-based algorithms. For example, several

dense linear algebra software packages such as PLASMA [2] and FLAME [16] use this model in their

implementation. One reason for its popularity is its ease of use: the parallel code is very similar to the

sequential one. Essentially, for a given sequential algorithm, the function calls (i.e. the execution of tasks

in the case of a DAG-based algorithm) are replaced by the asynchronous submission of the task to a

runtime system for scheduling. Depending on the data access provided (read, write, or read/write), the

4

runtime system automatically detects the dependencies between the tasks. The sequential consistency is

then ensured by the fact that the order of submission of tasks corresponds to the sequential order.

1 for (i = 1; i < N; i++) {

x[i] = f(x[i]);

3 y[i] = g(x[i], y[i-1]);

}

Figure 3.1: Simple example of a sequential code.

for (i = 1; i < N; i++) {

2 submit(f, x[i]:RW);

submit(g, x[i]:R, y[i-1]:R, y[i]:W);

4 }

Figure 3.2: STF code corresponding to Figure 3.1

example.

f g

f g

f g

i-1

i

i+1

Figure 3.3: DAG corresponding to the sequential

code presented in Figure 3.1.

As an example, we consider the sequential code in Figure 3.1 for which the corresponding DAG is

shown in Figure 3.3. Based on a STF model, the parallel version of this code is illustrated in Figure 3.2.

In the sequential code, the two functions f and g manipulate arrays x and y. The STF code is obtain by

submitting the tasks that consist of a kernel function (f or g in this example) together with data which

are associated with a data access which can be R when the data is read, W when the data is written, and

RW when the data is read and modified.

While easy to use, this model has several drawbacks that may affect performance and scalability.

The tasks are issued and submitted to the runtime system sequentially. If the time to execute a task

is small compared to the time needed for building and submitting a task, the parallel execution might

be constrained by the time spent in the submission loop. To avoid this a recursive model could be used

where intermediate tasks submit other tasks, enabling the parallelization of task submission. This could

be implemented, for example, by using callback functions to trigger the submission of tasks that are

executed on task completion. Another issue arising with the STF model comes from the fact that the

whole DAG is unrolled during the parallel execution and every task in the DAG is stored in order to

track task dependencies. In the case where the DAG is extremely large, handling and storing the DAG

might represent a large overhead in terms of computational cost and memory. Although the recursive

model allows us to mitigate the problem, it doesn’t remove it, and it may be necessary to consider a

different model such as the Parametrized Task Graph (PTG) model introduced in [9]. In this model,

task dependencies are explicitly encoded with the dataflow of each task so that the whole DAG can be

expressed in a compact format.

4 Runtime systems

The popularity of task-based algorithms persuaded the OpenMP board to introduce the task construct in

Version 3.0 of its API. Then, motivated by the popularity of the STF model, the OpenMP board decided

to include the depend construct in Version 4.0 allowing users to express dependencies between tasks in a

similar way to the STF model presented in Section 3. In this work we use an OpenMP implementation of

our Cholesky solver and show advantages of using this in terms of performance, scalability and productivity.

However, because many features are still unavailable in the OpenMP standard, we also developed a version

based on the StarPU runtime system. As shown in the next section, both implementations of our solver

rely on a STF model, but the StarPU-based implementation can benefit from a wider range of features

5

that are available with StarPU. For example, although we focus on shared-memory architectures in this

paper, the StarPU version can be extended to a distributed-memory version whereas OpenMP can’t be

used on such architectures. In addition, OpenMP, unlike StarPU, does not give users any control over the

scheduling of tasks. Every implementation of OpenMP provides a default scheduler which does not take

into account the application. This can be very limiting especially when the application is executed in a

heterogeneous context such as a GPU-accelerated multicore architecture.

#pragma omp parallel

2 {

#pragma omp master

4 {

for (i = 1; i < N; i++) {

6 #pragma omp task depend(inout:x[i:1])

x[i] = f(x[i:1]);

8 #pragma omp task depend(in:x[i], y[i -1:1]) depend(out:y[i:1])

y[i] = g(x[i:1], y[i -1:1]);

10 }

#pragma omp taskwait

12 }

}

Figure 4.1: Simple example of a parallel version of the sequential code in Figure 3.1 using a STF model

with OpenMP.

We present in Figure 4.1 an example of a parallel implementation for the sequential code in Figure 3.1

using OpenMP. In this example we first create the parallel section using the omp construct parallel and

then we put the master thread in charge of the task submission using the master construct. As previously

explained, tasks are created with the task construct and data access is given to the runtime system using

the depend construct. In the OpenMP standard, read-only data access is indicated by the parameter in,

write-only by the parameter out and read-write by the parameter inout. Finally the task submission loop

finishes with the taskwait clause indicating that the master thread should wait for the completion of the

tasks previously submitted.

Similarly to the OpenMP example given in Figure 4.1 and in order to introduce the features provided

by the StarPU API, we show in Figure 4.2 an example of a StarPU-based implementation for the simple

example presented in Figure 3.1. The task submission is done through the starpu insert task function

that takes as input a codelet and a set of handles. A codelet corresponds to the description of a task and

includes a list of computational resources where the task can be executed as well as the corresponding

computational kernels. In our example the codelet g cl in line 10 describes a task that can be executed on

a CPU and a CUDA device (STARPU CPU | STARPU CUDA) respectively with the kernels g cpu func and

g cuda func. The data handles, declared in line 21 in our example, represent a piece of data that is accessed

in the task and can be read (STARPU R), written (STARPU W), or read and written (STARPU RW). In order to

be used, a data handle must be registered to the runtime system by providing information such as a pointer

to the data, its size and type. This information allows StarPU to automatically perform the data transfer

between the memory nodes during the execution. For example, when data needs to be accessed on a GPU

device, the runtime system automatically transfers it to the device memory node. As a result, StarPU is

capable of ensuring data consistency over multiple nodes. When all the tasks have been submitted to the

runtime system, we wait for their completion by calling the routine starpu task wait for all.

Both OpenMP and StarPU implementations rely on a dynamic scheduler for scheduling the ready

tasks during the execution. In this model, a task is put in the scheduler as soon as it becomes ready

for execution, which is when all of its dependencies are satisfied. Workers try to retrieve a task from the

scheduler when they become idle. This dynamic scheduling strategy is illustrated in Figure 4.3 where

6

1 /* Codelet definition for kernel f */

struct starpu_codelet f_cl =

3 {

.where = STARPU_CPU ,

5 .cpu_funcs = { f_cpu_func },

.nbuffers = 1

7 };

9 /* Codelet definition for kernel g */

struct starpu_codelet g_cl =

11 {

.where = STARPU_CPU | STARPU_CUDA ,

13 .cpu_funcs = { g_cpu_func },

.cuda_funcs = { g_cuda_func },

15 .nbuffers = 3

};

17

starpu_init (); /* initialization of StarPU */

19

/* declaration of data handles */

21 starpu_data_handle_t x_handle[N], y_handle[N];

23 for (i = 0; i < N; i++) {

starpu_variable_data_register (& x_handle[i], STARPU_MAIN_RAM ,

25 (uintptr_t) &x[i], sizeof(double));

starpu_variable_data_register (& y_handle[i], STARPU_MAIN_RAM ,

27 (uintptr_t) &y[i], sizeof(double));

}

29

/* tasks submission */

31 for (i = 1; i < N; i++) {

33 starpu_insert_task (&f_cl ,

STARPU_RW , x_handle[i],

35 0);

37 starpu_insert_task (&g_cl ,

STARPU_R , x_handle[i],

39 STARPU_R , y_handle[i-1],

STARPU_W , y_handle[i],

41 0);

}

43 /* wait for all submitted tasks to be executed */

starpu_task_wait_for_all ();

45

starpu_shutdown (); /* shutdown StarPU */

Figure 4.2: Simple example of a parallel version of the sequential code in Figure 3.1 using a STF model

with StarPU.

the scheduler is placed between the runtime core where the DAG is built and the workers which can,

for example, be CPUs and GPUs. The scheduler is responsible for storing the ready tasks in scheduling

queues and distributing them to idle workers. Although OpenMP Version 4.0 doesn’t provide any features

7

t1

t2

t3

Runtime core

Ready

Scheduler

Submit
CPU1

CPU2

GPU1

workers

t1t2

t4

Figure 4.3: Illustration of the dynamic scheduling strategy of tasks in the runtime system.

to control the scheduling policy, Version 4.5 allows users to provide a priority along with a submitted task

so critical tasks are scheduled sooner. StarPU not only supports the use of task priorities but also makes

it possible to use different scheduling strategies and to implement a new one if necessary.

5 Parallelization of a task-based Cholesky factorization using an

STF programming model

In this section we describe the implementation of our DAG-based Cholesky solver using the STF

programming parallel model presented in Section 3. We developed two different versions of our code;

first that using OpenMP, and secondly that using the StarPU runtime system.

A pseudo-code for our solver is shown in Figure 5.1. Following the sequential algorithm shown in

Figure 2.3, it consists in a bottom-up traversal of the assembly tree where at each node the tasks for the

factorization and update operations are submitted to the runtime system. The kernels used in the tasks

are the same as those presented in Section 2. Note that the task submission is done using a right-looking

scheme meaning that every node in the tree must be allocated and partitioned before the submission of

the numerical tasks. In addition, the alloc task is executed sequentially because we need to allocate the

data structures and partition the supernodes in order to submit the numerical tasks.

As explained in Section 3, when using the STF model to submit a task, we need to provide the

access mode along with the data so that the runtime system can ensure the sequential consistency of the

parallel algorithm. For this reason, in the submission of factorize tasks, the diagonal block blk(k,k) is

associated with a read-write access mode indicating that the kernel will read and modify this block when

computing the Cholesky factor of the block. Similarly, because the solve operations need the diagonal

block to compute the subdiagonal blocks of the factors, we have to indicate that the diagonal block is

read when submitting the solve by associating it with a read-only access mode. With this information,

the runtime detects the dependencies between the factorize and solve tasks and allows the parallel

execution of the solve tasks within a block-column.

In order to ensure that the supernode is initialized before the factorization starts, we use a symbolic

handle called snode and pass it to the init tasks using a write access mode. Then we also pass it to

the factorize tasks in read access mode. Because all the subsequent factorization tasks in a supernode

depend on the first factorize task, we thus guarantee that the numerical task cannot start before the

supernode is initialized. For the same reason, the update btw task takes the anode handle as input with

read access mode because it modifies a block in an ancestor node and the task should not be executed

before the node is initialized. The specific nature of this symbolic handle is that it represents a set of

blocks instead of a single block.

One issue arises with the dependency detection of the update tasks that are applied to a given block.

This task takes as input two blocks Lik and Ljk and performs the operation

Lij = Lij − LikL
T
jk

8

forall nodes snode in post -order

2 ! allocate data structures

call alloc(snode)

4 ! initianlize node structure

call submit(init , snode:W)

6 end do

8 forall nodes snode in post -order

10 ! factorize node

do k=1..n in snode

12 call submit(factorize , snode:R, blk(k,k):RW)

14 do i=k+1..m in snode

call submit(solve , blk(k,k):R, blk(i,k):RW)

16 end do

18 do j=k+1..n in snode

do i=k+1..m in snode

20 call submit(update , blk(j,k):R, blk(i,k):R, blk(i,j):RW)

end do

22 end do

24 forall ancestors(snode) anode

do j=k+1..p(anode) in snode

26 do i=k+1..q(anode) in snode

call submit(update_btw , anode:R, blk(j,k):R, blk(i,k):R,

28 a_blk(rmap(i), cmap(j)):RW)

end do

30 end do

end do

32

end do

34 end do

Figure 5.1: Pseudo-code for the sparse Cholesky factorization using a STF model presented in Section 3.

on a third block Lij . These update operations are commutative in infinite precision arithmetic. However,

when two update tasks are performed on the same block, the runtime system detects that these tasks

modify the same data and will ensure that the order of execution follows the order of submission. With

StarPU it is possible to use the STARPU COMMUTE flag to avoid this unnecessary dependency that potentially

limits the parallelism. This flag indicates that operations performed by a kernel are commutative. The

OpenMP standard still does not provide such a functionality.

The STF code that is presented in Figure 5.1 is independent of the runtime system used for the

implementation. In practice only the implementation of the submit routines are specific to the runtime

system. This illustrates the fact that the expression of the algorithm is strictly separated from the task

scheduling and data management. An example of the implementation of this submit routine in the StarPU

version is given in Figure 5.2, and its equivalent in the OpenMP version is given in Figure 5.3. In this

example we show the submission of the solve tasks. In the OpenMP version, blocks are identified using

data pointers and these pointers are associated with a data access when submitting a task. It is thus

necessary to allocate the blocks before being able to submit the tasks that use these blocks. In the case of

StarPU, blocks are associated with a handle that is set up in the alloc routine. Tasks are then associated

9

with this handle instead of using a pointer as is done by OpenMP. There are several advantages associated

with the use of a handle. For example, StarPU is capable of detecting when data are written for the first

time and will perform the allocations using the information contained in the handle. We don’t use this

feature for the allocation of blocks, but we use it for the management of scratch memory needed by the

update btw task. We do not include this in the pseudo-code for the sake of clarity.

struct starpu_codelet cl_solve_block = {

2 .where = STARPU_CPU ,

.cpu_funcs = {spllt_solve_block , NULL},

4 };

6 starpu_task_insert (& cl_solve_block ,

STARPU_R , blk_kk_handle ,

8 STARPU_RW , blk_ik_handle ,

STARPU_PRIORITY , prio ,

10 0);

Figure 5.2: Submission routine used for the solve

tasks in the StarPU code.

!$omp task firstprivate(m, n)

2 !$omp & depend(in:bc_kk%c) &

!$omp & depend(inout:bc_ik%c)

4

call spllt_solve_block(m, n, bc_kk%c, bc_ik%c)

6

!$omp end task

8

10

Figure 5.3: Submission routine used for the solve

tasks in the OpenMP code.

Note that the efficiency of these submission routines may be critical to the performance of the execution

and, as shown in our tests, the submission of tasks in the DAG may be sometimes a limiting factor for the

performance. This happens when there is a large number of tasks and the task granularity is small. In

such cases, especially when the number of resources increases, the unrolling of the DAG may be too slow to

feed all the resources and it therefore bounds the execution time. In that respect, the partition parameter

nb may influence the performance because a small value for this parameter increases the number of tasks

in the DAG and therefore the overhead associated with task submission and task management.

As mentioned in Section 4, although StarPU provides a complete API for designing new scheduling

policies, it also provides a number of common scheduling strategies. In our experiment we choose the

LWS (Locality Work Stealing) scheduler which takes into account data locality and priority and provides

good results on multicore architectures. In the scheduler, tasks are prioritized according to a priority

value provided by the user. In our case, the priority depends on the position of the task in the DAG. For

example, the factorize tasks are given the highest priority because they lie on the critical path. With

OpenMP, although setting priorities is in the 4.5 standard, we do not have a compiler for this version so

that we cannot choose either the scheduler or give priorities to the tasks.

6 Strategy of parallelization and task scheduling in MA87

We use the HSL solver HSL MA87 as a benchmark reference when studying the performance of our code.

In this section, we briefly introduce the strategy used by this reference solver for the parallelization of

a DAG-based sparse Cholesky factorization. The representation of the DAG in HSL MA87 is similar to

that used in the PTG model in that the DAG is implicitly represented and progressively unrolled during

execution following the output dependencies of completed tasks. However, the scheduler is hand-coded

and is designed specifically for the solver relying on knowledge of the algorithm. This is implemented

within OpenMP but was coded using a version of OpenMP without the tasking capabilities of version 4.0

of the standard.

During the analysis phase, every block is associated with a counter representing the number of tasks

that manipulate the associated data. The factorization starts by processing blocks associated with a

counter equal to zero and when a given thread finishes the execution of a task, it performs two operations:

it decreases the counter associated with blocks involved in the computation and puts into the scheduler

the tasks that become ready for execution as a result of the completion of the current task.

Thus the strategy used by HSL MA87 has much in common with the PTG model in that it follows the

data-flow associated with a task to submit subsequent tasks to the scheduler. This approach offers several

10

advantages over the STF model and can impact the performance as we will show in our experimental

results in Section 7. First, unlike the STF model where one single master thread is involved in unrolling,

every thread is responsible for submitting tasks to the scheduler which means that the DAG is built in

parallel and the cost for setting up the DAG is shared between all resources. In addition, the only tasks

that are instantiated are either the tasks being executed or the tasks ready for execution that are stored in

the scheduler. Instead, in our solver, every task in the DAG is instantiated and submitted to the runtime

system and stored in memory which produces a higher memory footprint for representing the DAG.

The scheduling strategy used in HSL MA87 is similar to the LWS scheduler presented in the previous

section where the scheduler tries to enforce data reuse and takes into account task priorities which depend

on their position in the DAG.

7 Experimental results

In this study, the tests were made on a multicore machine equipped with two Intel(R) Xeon(R) E5-2695 v3

CPUs with fourteen cores each (twenty eight cores in total). Each core, clocked at 2.3 GHz and equipped

with AVX2, has a peak of 36.8 Gflop/s corresponding to a total peak of 1.03 Tflop/s in real, double

precision arithmetic. The code is compiled with the GNU compiler (gcc and gfortran), the BLAS and

LAPACK routines are provided by the Intel MKL v11.3 library and we used the version 1.3 of the StarPU

runtime system.

 0

 100

 200

 300

 400

 500

 600

 5 10 15 20 25 30 35

G
F
l
o
p
/
s

Matrix #

Factorization GFlop/s - 28 cores

MA87
SpLLT-STF (OpenMP)
SpLLT-STF (StarPU)

Figure 7.1: Performance results for both OpenMP and StarPU versions of the SpLLT and HSL MA87

solvers on 28 cores for the test matrices presented in Table A.

In our experiments we use a set of matrices taken from the University of Florida Matrix Collection [10].

From this collection, we selected a set of symmetric positive-definite matrices with a wide range of

applications and sparsity structures. They are listed in Table A along with their orders and number

of entries. In this table, we also indicate the number of entries in the factor L and the flop count for

the factorization when using the nested-dissection ordering MeTiS [17]. Note that, in this table, matrix

11

Name MA87 spLLT

MA87 OpenMP (gnu) StarPU

nb factor. (s) nb factor. (s) nb factor. (s)

1 Schmid/thermal2 1024 0.391 1024 1.742 512 2.215

2 Rothberg/gearbox 256 0.253 384 0.236 512 0.339

3 DNVS/m t1 256 0.206 256 0.208 1024 0.298

4 Boeing/pwtk 768 0.249 768 0.262 768 0.396

5 Chen/pkustk13 256 0.218 256 0.242 384 0.344

6 GHS psdef/crankseg 1 256 0.233 256 0.234 384 0.281

7 Rothberg/cfd2 256 0.242 256 0.256 384 0.386

8 DNVS/thread 256 0.236 256 0.223 384 0.222

9 DNVS/shipsec8 256 0.253 256 0.234 384 0.380

10 DNVS/shipsec1 256 0.245 256 0.270 384 0.398

11 GHS psdef/crankseg 2 256 0.267 256 0.268 384 0.326

12 DNVS/fcondp2 256 0.294 384 0.347 384 0.479

13 Schenk AFE/af shell3 256 0.437 512 0.550 512 0.906

14 DNVS/troll 256 0.381 384 0.434 512 0.599

15 AMD/G3 circuit 256 0.607 768 2.534 768 3.561

16 GHS psdef/bmwcra 1 256 0.339 256 0.356 512 0.466

17 DNVS/halfb 256 0.370 256 0.442 384 0.631

18 Um/2cubes sphere 256 0.321 384 0.451 512 0.634

19 GHS psdef/ldoor 256 0.620 512 1.058 768 1.726

20 DNVS/ship 003 256 0.361 384 0.457 512 0.554

21 DNVS/fullb 256 0.445 256 0.469 384 0.651

22 GHS psdef/inline 1 256 0.659 384 0.711 768 0.995

23 Chen/pkustk14 256 0.557 256 0.576 512 0.768

24 GHS psdef/apache2 256 0.710 768 1.448 512 2.053

25 Koutsovasilis/F1 384 0.776 384 0.829 768 0.981

26 Oberwolfach/boneS10 256 1.102 256 1.185 768 1.702

27 ND/nd12k 384 1.452 384 1.479 768 1.611

28 JGD Trefethen/Trefethen 20000 768 4.233 512 3.700 768 3.843

29 ND/nd24k 384 5.350 512 5.570 768 5.485

30 Janna/Flan 1565 384 7.722 512 7.921 768 8.419

31 Oberwolfach/bone010 384 7.117 768 7.350 768 7.525

32 Janna/StocF-1465 768 8.337 768 9.455 768 9.869

33 GHS psdef/audikw 1 384 10.419 768 10.630 768 10.680

34 Janna/Fault 639 384 14.392 768 14.350 768 14.260

35 Janna/Hook 1498 512 17.019 384 16.860 768 16.960

36 Janna/Emilia 923 768 23.221 384 22.620 768 23.060

37 Janna/Geo 1438 768 29.654 768 29.250 1024 29.380

38 Janna/Serena 768 52.830 384 51.170 768 51.900

Table 7.1: Factorization times (seconds) obtained with MA87 and SpLLT with both OpenMP and StarPU

versions. The factorizations were run with the block sizes nb=(256, 384, 512, 768, 1024) on 28 cores

and nemin=32.

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20 25 30 35

G
F
l
o
p
/
s

Matrix #

Relative performance with MA87 - 28 cores

SpLLT-STF (OpenMP)
SpLLT-STF (StarPU)

Figure 7.2: Performance results obtained with SpLLT, OpenMP and StarPU relative to the performance

obtained with HSL MA87.

characteristics are obtained without node amalgamation. This means that the number of entries in L

as well as the operation count is minimized. However, in our experiments we use node amalgamation to

obtain better efficiency of operations at the cost of an increase in the operation count and the number of

entries in L. Node amalgamation is controlled by a parameter nemin used during the analysis phase. The

elimination tree is traversed using a post-order and, when a node is visited, it is merged with its parents

if the column count in both nodes is lower than nemin or if the merging generates no additional fill-in

in L. In our experiments, we use the analysis routine HSL MC78 and set the nemin value to 32. This

corresponds to a good trade-off between sparsity and efficiency of floating-point computation.

The choice for the parameter nb in the parallel execution is not trivial as it impacts several aspects

of the execution. Although a small value for this parameter increases the number of tasks in the DAG

and thus the parallelism, it also reduces the performance of the Level 3 BLAS routines used in the tasks.

The optimal value for this parameter is thus a trade-off between a sufficient amount of parallelism to feed

the resources and good kernel efficiency. In addition, as we have seen in Section 5, the parameter nb

influences the overhead for managing the tasks because when the number of tasks in the DAG increases,

it also increases the time for handling the DAG including the task submission, dependency detection and

scheduling. Finally, the optimal value for nb depends on a large number of parameters such as processing

unit capabilities and number of resources and cannot be easily determined without a precise performance

model for the application which is extremely difficult to establish. Instead we empirically determine a

good nb value for each problem by running multiple tests on a range of values for nb. We used (256,

384, 512, 768, 1024) as the range in these experiments.

The best factorization times obtained with SpLLT and HSL MA87 for every problem listed in Table A

are reported in Table 7.1 along with the corresponding value of nb used in the run. The Gflop/s

rates corresponding to the best factorization times are presented in Figure 7.1. Additionally, Figure 7.2

illustrates the relative performance of the SpLLT codes compared to HSL MA87.

For matrices from #27 to #38, corresponding to the bigger problems of our test set, the performance

13

behaviour of the OpenMP and StarPU versions of SpLLT is very similar and comparable to that obtained

with our reference solver HSL MA87. On smaller problems, with factorization times generally smaller

than a second, it appears that the OpenMP version gives better results than the StarPU one, with results

competitive with HSL MA87 except on a few problems. Matrices # 1 and # 15, for example, give extremely

poor results with both versions of our code. We will explore reasons for this in the next section.

Name DAG stats SpLLT (StarPU)

task time / task task insert factor. time

avg. (ms) (s) (s)

1 Schmid/thermal2 166695 0.071 2.213 2.215

2 Rothberg/gearbox 19392 0.417 0.326 0.339

8 DNVS/thread 7481 0.746 0.155 0.222

13 Schenk AFE/af shell3 65195 0.250 0.906 0.906

15 AMD/G3 circuit 290235 0.154 3.558 3.561

19 GHS psdef/ldoor 126786 0.230 1.724 1.726

24 GHS psdef/apache2 163804 0.264 2.052 2.053

32 Janna/Flan 1565 226486 1.007 3.452 8.419

35 Janna/Hook 1498 639060 0.867 8.441 16.960

38 Janna/Serena 795367 1.857 10.920 51.900

Table 7.2: DAG information along with the times (seconds) spent by the master thread to submit all the

tasks to the runtime system on a subset of our test matrices.

In order to understand the behaviour of the STF-based implementations and to identify the main

limiting factors for performance on smaller problems, we gathered information on the DAG and measured

the time spent for submitting tasks during execution on a subset of our test matrices. These results are

shown in Table 7.2 where we put the number of tasks in the DAGs, the average time spent in tasks for each

problem and the task insert times. As expected, the DAG size generally gets bigger with the problem size

except for the two matrices # 1 and # 15 for which we noticed very low performance. Consequently these

matrices have the lowest granularity which causes relatively more time to be spent for task submission in

the runtime system. This behaviour occurs for the matrices # 1, # 2, # 13, # 15, # 19 and # 24 where

the time for submitting the DAG is close to or equal to the factorization time. This means that the DAG

unrolling is too slow for feeding the resources and is a constraint on the factorization time and therefore

limits the scalability of the code. On the matrices with a bigger granularity of tasks in the DAG, the task

submission time is no longer an issue. We see this on matrices # 8, # 32, # 35 and # 38 where our code

gives comparable results to HSL MA87. As explained in Section 6, in HSL MA87 the DAG is progressively

unrolled by all the threads, which means that the cost for the task submission is distributed among the

resources and therefore does not constrain the execution time. Finally, we see that, when using a STF

model, it is crucial for the runtime system to keep the overhead associated with the task management

as low as possible in order to achieve good performance. Although OpenMP seems to be less costly in

terms of overheads than StarPU on smaller problems, it should be noted that, as explained in Section 4,

the latter offers more features and flexibility than the former. For this reason StarPU appears to be more

adapted to handle large problems where tasks have a sufficiently large granularity in the DAG.

7.1 Performance analysis

In this section we present a detailed performance analysis on a subset of the test matrices. This performance

analysis, introduced in [1] and [19], allows us to identify the limiting factors for achieving performance

on our machine. The idea of the approach is to measure the time spent by workers in the different parts

of the execution such as: the time spent in tasks, denoted by tt(p) where p corresponds to the number of

14

0

0.2

0.4

0.6

0.8

1

1 3 7 8 13 15 20 25 28 30 35 38

Matrix #

Parallel efficiency

0

0.2

0.4

0.6

0.8

1

1 3 7 8 13 15 20 25 28 30 35 38

Matrix #

Task efficiency

0

0.2

0.4

0.6

0.8

1

1 3 7 8 13 15 20 25 28 30 35 38

Matrix #

Runtime efficiency

0

0.2

0.4

0.6

0.8

1

1 3 7 8 13 15 20 25 28 30 35 38

Matrix #

Pipeline efficiency

Figure 7.3: Efficiency analysis for a subset of the test matrices including the parallel efficiency (top-left), the

task efficiency (top-right), the runtime efficiency (bottom-left) and the pipeline efficiency (bottom-right).

workers, the time spent in the runtime system, denoted by tr(p), and the time spent idle denoted by ti(p).

In addition we define the parallel efficiency of the code as:

e(p) =
t(1)

t(p) × p

where t(p) corresponds to the factorization time when using p resources. Then, using the times previously

introduced and measured during the execution, we decompose the parallel efficiency as a product of

efficiencies as:

e(p) =
t̃t(1)

tt(p) + tr(p) + ti(p)
=

et

tt(1)

tt(p)
·

er

tt(p)

tt(p) + tr(p) + tc(p)
·

ep

tt(p) + tr(p)

tt(p) + tr(p) + ti(p)
,

where each efficiency corresponds to a specific identified effect that impacts the performance:

• et is the task efficiency which measures the impact of the loss of data locality in the kernels when

going from serial to parallel execution. It also measures the impact of data partitioning which

creates parallelism but decreases the granularity of operations and thus the efficiency of floating-

point computation.

• er is the runtime efficiency corresponding to the overhead induced by the runtime system for handling

the DAG and scheduling tasks on the machine.

• ep is the pipeline efficiency which measures the resource utilization during the parallel execution.

This quantity depends on the shape of the DAG and the quality of the task scheduling.

15

We show the results in Figure 7.3. Similarly to what we found in the previous section, the parallel

efficiency tends to increase when the problem size increases. By computing et, er and ep, we can identify

the limiting factors for the parallel efficiency. First, as expected, the pipeline efficiency is lower for smaller

matrices as their associated DAG generally contains less tasks and potentially less parallelism. In addition,

as explained in the previous section, the time spent by the master thread in the task submission limits

the parallelism in some cases. This explains, for example, why we obtain such a low pipeline efficiency on

matrices #1 and # 15. As for the pipeline efficiency, the task efficiency is lower on smaller matrices. This

is because when there is little parallelism in the DAG, there are few ready tasks in the scheduler and there

is thus a large amount of work-stealing between the workers in the scheduler and thus a large amount

of data movement. Moreover, the processors used in these experiments are equipped with Turbo Boost

technology that is capable of dynamically increasing the clock rate when the number of cores involved is

low. This is, for example, the case when running the solver in a serial mode and so, by accelerating the

execution of tasks in serial mode, this feature decreases the task efficiency when the number of resources

increases. Finally, we can see from the runtime efficiency that smaller problems perform worse on the

runtime system and are associated with a greater runtime overhead. This is the case for matrices # 1 and

15, for example.

Note that, in the case of the OpenMP version of our solver, it is not possible to perform such a detailed

analysis as OpenMP does not have the functionality for measuring the time spent in the runtime system.

7.2 Reducing the impact of DAG unrolling

In order to reduce the impact of the time spent in unrolling the DAG for the factorization of the STF

codes, we considered two different approaches: moving to a nested STF model and using tree pruning.

The idea of the nested STF model is to use tasks to submit other tasks in order to distribute the cost

for task submission. This is done by splitting the main submission loop presented in Figure 5.1 into the

two codes shown in Figures 7.4 and 7.5. The first code corresponds to the main submission loop which is

executed in serial by the master thread, and the latter corresponds to a task executed by a worker and

responsible for submitting the node factorization task. This approach differs from a pure STF model as

not all the tasks are submitted by the master thread and is similar to a recursive model that we refer to

as the nested STF model.

forall nodes snode in post -order

2 ! allocate data structures

call alloc(snode)

4 ! initianlize node structure

call submit(init , snode:W)

6 end do

8 forall nodes snode in post -order

10 call submit(insert_factorize_node , snode:R)

end do

Figure 7.4: Main submission routine executed by the master thread. This performs both the initialisation

and factorization tasks for the nodes in the assembly tree.

The strategy however suffers from several limitations. In the case of OpenMP, nested tasks as well as

tasks that are submitted by other tasks belong to different execution contexts and, in the standard, it is not

possible to express dependencies between tasks that are not in the same context. In the strategy presented

above, it is therefore not possible to exploit inter-node parallelism which greatly reduces parallelism. In the

case of the StarPU version, it is possible to implement the proposed strategy and have the same fine-grained

parallelism as in the original code but our tests showed lower performance than the basic algorithm. The

reason for this is that, although we were able to reduce the time spent by the master thread in the main

16

1 ! factorize node

do k=1..n in snode

3 call submit(factorize , snode:R, blk(k,k):RW)

5 do i=k+1..m in snode

call submit(solve , blk(k,k):R, blk(i,k):RW)

7 end do

9 do j=k+1..n in snode

do i=k+1..m in snode

11 call submit(update , blk(j,k):R, blk(i,k):R, blk(i,j):RW)

end do

13 end do

15 forall ancestors(snode) anode

do j=k+1..p(anode) in snode

17 do i=k+1..q(anode) in snode

call submit(update_btw , anode:R, blk(j,k):R, blk(i,k):R,

19 a_blk(rmap(i), cmap(j)):RW)

end do

21 end do

end do

Figure 7.5: Kernel for the insert factorize node task in charge of submitting the factorization tasks for

a given node.

loop, the submission of factorization tasks in the insert factorize node becomes a significant overhead

because the runtime system cannot handle the concurrent submission of tasks efficiently.

Figure 7.6: Illustration of the tree pruning strategy used by SpLLT.

The second strategy that we investigated consists in a logical pruning of the assembly tree similar to

the strategy used by the qr mumps solver [1]. This technique consists in grouping the small nodes at the

bottom of the tree into subtrees that are processed in serial. Our algorithm, inspired by [11], is done

by traversing the nodes with a top-bottom tree traversal starting from the root node and balancing the

workload across the subtrees until we reach a desired load balance while preserving enough parallelism to

feed all the resources. The workload is represented by the amount of floating-point operations required

to process the subtree which is an approximation of the computational cost for processing a subtree. In

Figure 7.6 we illustrate the pruning of a simple elimination tree where the grey nodes belong to a subtree

rooted at the dark-grey nodes lying on the red dashed line. The advantage of such pruning is that it

reduces the number of tasks to be handled by the runtime system and thus the overhead associated with

17

 0

 100

 200

 300

 400

 500

 600

 5 10 15 20 25 30 35

G
F
l
o
p
/
s

Matrix #

Factorization GFlop/s - 28 cores

MA87
SpLLT-STF (StarPU)
SpLLT-STF (StarPU) \w pruning

Figure 7.7: Performance results for StarPU versions of the SpLLT and HSL MA87 solvers on 28 cores for

the test matrices presented in Table A. We also show the impact of tree pruning on the performance of

SpLLT.

this. In addition, the tasks that are removed from the DAG correspond to the smaller granularity tasks.

On the other hand, this algorithm decreases the amount of parallelism in the DAG which might become

too low on the smaller problems when the number of resources is large.

We have implemented this strategy in SpLLT using both StarPU and OpenMP. We compare the

StarPU version to the reference solver in Figure 7.7 and the OpenMP version to the reference solver in

Figure 7.8. As we see from these results, the tree pruning strategy does not necessarily have great impact

on performance, especially in the case of the StarPU version. Interestingly, for both matrices # 1 and #15

the performance results are greatly improved when exploiting subtrees especially for the OpenMP version

of SpLLT. Using subtrees generally increases performance when solving large problems where parallelism

is plentiful but limits it in the case of smaller problems and thus reduces the performance. Additionally,

when the number of tasks is large and the task granularity is small, the proposed strategy reduces time

spent by the master thread for DAG unrolling.

18

 0

 100

 200

 300

 400

 500

 600

 5 10 15 20 25 30 35

G
F
l
o
p
/
s

Matrix #

Factorization GFlop/s - 28 cores

MA87
SpLLT-STF (OpenMP)
SpLLT-STF (OpenMP) \w pruning

Figure 7.8: Performance results for OpenMP versions of the SpLLT and HSL MA87 solvers on 28 cores

for the test matrices presented in Table A. We also show the impact of tree pruning on the performance

of SpLLT.

8 Concluding remarks

This report has described in detail the development of a new Cholesky solver implemented with a runtime

system using a Sequential Task Flow model. As shown in our experimental results, our SpLLT solver

gives competitive results compared to the reference solver HSL MA87 on a large subset of our tested

matrices and especially the largest problems. We have seen that smaller problems present a difficult

challenge for the runtime systems, and we observe that when the task granularity in the DAG decreases

the efficiency of the runtime may decrease. Although the performance of the OpenMP version generally

lies within 10% of the performance achieved by HSL MA87, the StarPU version can perform poorly on

small problems with low-granularity tasks. This behaviour might be expected as the StarPU runtime

system offers more functionality than OpenMP and so incurs more overhead. It provides, for example,

features that allow us to extend the current version of our code to heterogeneous machines such as GPU-

based systems and distributed-memory architectures. We will show in later work that the StarPU version

of our code constitutes a good basis for the development of a Cholesky solver for heterogeneous and

distributed-memory architectures.

19

References

[1] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez, Implementing multifrontal sparse

solvers for multicore architectures with Sequential Task Flow runtime systems, Tech. Rep. IRI/RT–

2014-03–FR, IRIT, November 2014. Submitted to ACM Transactions On Mathematical Software.

[2] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,

P. Luszczek, and S. Tomov, Numerical linear algebra on emerging architectures: The PLASMA

and MAGMA projects, Journal of Physics: Conference Series, 180 (2009), p. 012037.

[3] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering algorithm,

SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[4] , Algorithm 837: Amd, an approximate minimum degree ordering algorithm, ACM Trans. Math.

Softw., 30 (2004), pp. 381–388.

[5] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, Starpu: a unified platform for

task scheduling on heterogeneous multicore architectures, Concurrency and Computation: Practice

and Experience, 23 (2011), pp. 187–198.

[6] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Hérault,

J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. Yarkhan, and

J. J. Dongarra, Distibuted Dense Numerical Linear Algebra Algorithms on massively parallel

architectures: DPLASMA, in Proceedings of the 25th IEEE International Symposium on Parallel

and Distributed Processing Workshops and Phd Forum (IPDPSW’11), PDSEC 2011, Anchorage,

United States, May 2011, pp. 1432–1441.

[7] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. J. Dongarra,

Parsec: Exploiting heterogeneity to enhance scalability, Computing in Science and Engineering, 15

(2013), pp. 36–45.

[8] A. Buttari, Fine-grained multithreading for the multifrontal QR factorization of sparse matrices,

SIAM Journal on Scientific Computing, 35 (2013), pp. C323–C345.

[9] M. Cosnard and M. Loi, Automatic task graph generation techniques, in System Sciences, 1995.

Proceedings of the Twenty-Eighth Hawaii International Conference on, vol. 2, Jan 1995, pp. 113–122

vol.2.

[10] T. A. Davis and Y. Hu, The university of Florida sparse matrix collection, ACM Trans. Math.

Softw., 38 (2011), pp. 1:1–1:25.

[11] G. A. Geist and E. Ng, Task scheduling for parallel sparse cholesky factorization, Int. J. Parallel

Program., 18 (1990), pp. 291–314.

[12] A. George and J. W. H. Liu, An automatic nested dissection algorithm for irregular finite element

problems, SINUM, 15 (1978), pp. 1053–1069.

[13] P. Hénon, P. Ramet, and J. Roman, PaStiX: A High-Performance Parallel Direct Solver for

Sparse Symmetric Definite Systems, Parallel Computing, 28 (2002), pp. 301–321.

[14] J. D. Hogg, J. K. Reid, and J. A. Scott, Design of a multicore sparse cholesky factorization

using dags, SIAM Journal on Scientific Computing, 32 (2010), pp. 3627–3649.

[15] J. D. Hogg and J. A. Scott, A modern analyse phase for sparse tree-based direct methods, Tech.

Rep. RAL-TR-2010-031, STFC Rutherford Appleton Lab., 2010.

20

[16] F. D. Igual, E. Chan, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, R. A. van de Geijn, and

F. G. V. Zee, The flame approach: From dense linear algebra algorithms to high-performance multi-

accelerator implementations, J. Parallel Distrib. Comput., 72 (2012), pp. 1134–1143.

[17] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular

graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[18] J. W. H. Liu, Modification of the minimum-degree algorithm by multiple elimination, ACM Trans.

Math. Softw., 11 (1985), pp. 141–153.

[19] F. Lopez, Task-based multifrontal QR solver for heterogeneous architectures, thèse de doctorat,

Université Paul Sabatier, Toulouse, France, décembre 2015.

[20] W. F. Tinney and J. W. Walker, Direct solutions of sparse network equations by optimally ordered

triangular factorization, Proceedings of the IEEE, 55 (1967), pp. 1801–1809.

21

A Test problems

Name n nz(A) nz(L) Flops Application/Description

(103) (106) (106) (109)

1 Schmid/thermal2 1228 4.9 51.6 14.6 Unstructured thermal FEM

2 Rothberg/gearbox 154 4.6 37.1 20.6 Aircraft flap actuator

3 DNVS/m t1 97.6 4.9 34.2 21.9 Tubular joint

4 Boeing/pwtk 218 5.9 48.6 22.4 Pressurised wind tunnel

5 Chen/pkustk13 94.9 3.4 30.4 25.9 Machine element

6 GHS psdef/crankseg 1 52.8 5.3 33.4 32.3 Linear static analysis

7 Rothberg/cfd2 123 1.6 38.3 32.7 CFD pressure matrix

8 DNVS/thread 29.7 2.2 24.1 34.9 Threaded connector

9 DNVS/shipsec8 115 3.4 35.9 38.1 Ship section

10 DNVS/shipsec1 141 4.0 39.4 38.1 Ship section

11 GHS psdef/crankseg 2 63.8 7.1 43.8 46.7 Linear static analysis

12 DNVS/fcondp2 202 5.7 52.0 48.2 Oil production platform

13 Schenk AFE/af shell3 505 9.0 93.6 52.2 Sheet metal forming

14 DNVS/troll 214 6.1 64.2 55.9 Structural analysis

15 AMD/G3 circuit 1586 4.6 97.8 57.0 Circuit simulation

16 GHS psdef/bmwcra 1 149 5.4 69.8 60.8 Automotive crankshaft

17 DNVS/halfb 225 6.3 65.9 70.4 Half-breadth barge

18 Um/2cubes sphere 102 0.9 45.0 74.9 Electromagnetics

19 GHS psdef/ldoor 952 23.7 144.6 78.3 Large door

20 DNVS/ship 003 122 4.1 60.2 81.0 Ship structure

21 DNVS/fullb 199 6.0 74.5 100.2 Full-breadth barge

22 GHS psdef/inline 1 504 18.7 172.9 144.4 Inline skater

23 Chen/pkustk14 152 7.5 106.8 146.4 Tall building

24 GHS psdef/apache2 715 2.8 134.7 174.3 3D structural problem

25 Koutsovasilis/F1 344 13.6 173.7 218.8 AUDI engine crankshaft

26 Oberwolfach/boneS10 915 28.2 278.0 281.6 Bone micro-FEM

27 ND/nd12k 36.0 7.1 116.5 505.0 3D mesh problem

28 JGD Trefethen/Trefethen 20000 20.0 0.3 90.7 652.6 Integer matrix

29 ND/nd24k 72.0 14.4 321.6 2054.4 3D mesh problem

30 Janna/Flan 1565 1565 59.5 1477.9 3859.8 3D mechanical problem

31 Oberwolfach/bone010 987 36.3 1076.4 3876.2 Bone micro-FEM

32 Janna/StocF-1465 1465 11.2 1126.1 4386.6 Underground aquifer

33 GHS psdef/audikw 1 944 39.3 1242.3 5804.1 Automotive crankshaft

34 Janna/Fault 639 639 14.6 1144.7 8283.9 Gas reservoir

35 Janna/Hook 1498 1498 31.2 1532.9 8891.3 Steel hook

36 Janna/Emilia 923 923 21.0 1729.9 13661.1 Gas reservoir

37 Janna/Geo 1438 1438 32.3 2467.4 18058.1 Underground deformation

38 Janna/Serena 1391 33.0 2761.7 30048.9 Gas reservoir

Table A.1: Test matrices and their characteristics without node amalgamation. n is the matrix order,

nz(A) represent the number entries in the matrix A, nz(L) represent the number of entries the factor L

and Flops correspond to the operation count for the matrix factorization.

22

