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The function arguments are reminiscent of the BLAS standard. PROPOSED SPECIFICATION
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ABSTRACT
We propose an API for Batched Basic Linear Algebra Subprograms (Batched BLAS). We 
focus on multiple independent BLAS operations on small matrices that are grouped 
together as a single routine. We aim to provide a more efficient and portable library for 
multi/manycore HPC systems. We achieve 2x speedups and 3x better energy efficiency 
compared to vendor implementations. We also demonstrate the need for Batched 
BLAS and its potential impact in multiple application domains.

DEFINITION

Numerous applications require 
Batched BLAS:

• Structural mechanics

• Astrophysics

• Direct sparse solvers

• High-order FEM simulations

Batched BLAS: multiple independent BLAS operations on small 
matrices grouped together as a single routine
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BATCHED BLAS PERFORMANCE
Batched Level 2 BLAS DGEMV Example Batched DAXPY Example Batched Level 3 BLAS DGEMM Example 

Nuclear network simulation 
(XNet benchmark)

• 150 x 150 matrices

• batch_count = 100+

• Titan Supercomputer at ORNL

• 3x faster than MKL

• 2x faster than MA48 
factorization (HSL)

Astrophysical thermonuclear networks coupled to 
hydrodynamical simulations in explosive burning 
scenarios

• 7x faster using Batched BLAS

APPLICATIONS OF BATCHED BLAS
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SPEEDUP OF THE SOLVER
FOR MATRIX SIZE 150

AMD Opteron 6274 16-core CPUs
NVIDIA Tesla K20X GPU

dgemv_batch( 
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TECHNOLOGIES REFERENCESADVANTAGES
• More efficient and portable implementations

• HPC Numerical library for modern architectures

• Better hardware utilization and energy efficiency

• Encourages, as well as simplifies, community efforts to 
build higher-level algorithms on top of Batched BLAS

Some of the technologies we may wish to utilize include:

OpenMP

• Multicore

• Accelerators

CUDA

• Fused Kernels

• Multiple Streams

OpenCL
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• batch_count = 10 to 800+


