
Batched BLAS

A Standard for
Batched BLAS Routines

University of
Manchester

Rutherford Appleton
Laboratory

University of
Tennessee

Umeå
University

INRIA

The function arguments are reminiscent of the BLAS standard. PROPOSED SPECIFICATION
enum

integer

integer

double

double

integer

double

integer

double

double

integer

integer

enum

integer

*trans,

*m,

*n,

*alpha,

**arrayA,

*lda,

**x,

*incx,

*beta,

**y,

*incy,

batch_count,

batch_opts,

*info);

integer

double

double

integer

double

integer

integer

enum

integer

*n,

*alpha,

**x,

*incx,

**y,

*incy,

batch_count,

batch_opts,

*info);

daxpy_batch(enum

enum

integer

integer

integer

double

double

integer

double

integer

double

double

integer

integer

enum

integer

*transa,

*transb,

*m,

*n,

*k,

*alpha,

**arrayA,

*lda,

**arrayB,

*ldb,

*beta,

**arrayC,

*ldc,

batch_count,

batch_opts,

*info);

dgemm_batch(Batched Level 3
BLAS DGEMM
Calling Sequence

Batched Level 2
BLAS DGEMV
Calling Sequence

Batched Level 1
BLAS DAXPY
Calling Sequence

ABSTRACT
We propose an API for Batched Basic Linear Algebra Subprograms (Batched BLAS). We
focus on multiple independent BLAS operations on small matrices that are grouped
together as a single routine. We aim to provide a more efficient and portable library for
multi/manycore HPC systems. We achieve 2x speedups and 3x better energy efficiency
compared to vendor implementations. We also demonstrate the need for Batched
BLAS and its potential impact in multiple application domains.

DEFINITION

Numerous applications require
Batched BLAS:

• Structural mechanics

• Astrophysics

• Direct sparse solvers

• High-order FEM simulations

Batched BLAS: multiple independent BLAS operations on small
matrices grouped together as a single routine

C1

B1

A1

Batched BLAS

BATCHED BLAS PERFORMANCE
Batched Level 2 BLAS DGEMV Example Batched DAXPY Example Batched Level 3 BLAS DGEMM Example

Nuclear network simulation
(XNet benchmark)

• 150 x 150 matrices

• batch_count = 100+

• Titan Supercomputer at ORNL

• 3x faster than MKL

• 2x faster than MA48
factorization (HSL)

Astrophysical thermonuclear networks coupled to
hydrodynamical simulations in explosive burning
scenarios

• 7x faster using Batched BLAS

APPLICATIONS OF BATCHED BLAS

7x

Batched LAPACK DGETRF Example

4

3

2

1

SP
EE

DU
P

MKL MA48 MAGMA

SPEEDUP OF THE SOLVER
FOR MATRIX SIZE 150

AMD Opteron 6274 16-core CPUs
NVIDIA Tesla K20X GPU

dgemv_batch(

[1] A. Haidar, T. Dong, S. Tomov, P. Luszczek, and J. Dongarra, Framework for
Batched and GPU- resident Factorization Algorithms Applied to Block
Householder Transformations, ISC HPC, Springer LNCS, Frankfurt, Germany,
July 12-16, 2015.

[2] A. Haidar, S. Tomov, P. Luszczek, and J. Dongarra, MAGMA Embedded:
Towards a Dense Linear Algebra Library for Energy Efficient Extreme
Computing, 19th IEEE High Performance Extreme Computing Conference (HPEC
2015), Best Paper Award, IEEE, Waltham, MA, September, 2015.

[3] A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. Dongarra. Batched matrix
computations on hardware accelerators based on GPUs. International Journal
of High Performance Computing Applications, first published on February 9,
2015 as doi:10.1177/1094342014567546.

[4] J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N. Higham, J. Hogg, P.
Lara, M. Zounon, S. Relton, and S. Tomov, A Proposed API for Batched Basic
Linear Algebra Subprograms, UTK Computer Science Technical Report,
(available at https://bit.ly/batched-blas), March 2016.

TECHNOLOGIES REFERENCESADVANTAGES
• More efficient and portable implementations

• HPC Numerical library for modern architectures

• Better hardware utilization and energy efficiency

• Encourages, as well as simplifies, community efforts to
build higher-level algorithms on top of Batched BLAS

Some of the technologies we may wish to utilize include:

OpenMP

• Multicore

• Accelerators

CUDA

• Fused Kernels

• Multiple Streams

OpenCL

This material is based upon work supported in part by the European Union’s Horizon 2020 research and innovation
programme under the NLAFET grant agreement No 671633, the U.S. National Science Foundation under Grants No. CSR
1514286 and ACI-1339822, NVIDIA, and the U.S. Department of Energy.

ACKNOWLEDGMENTS

The specification is open for community discussion; we would welcome your comments: www.nlafet.eu

batched
batched

• batch_count = 10 to 800+

