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Cholesky solver using a sequential task flow model

Sébastien Cayrols†, Iain Duff† and Florent Lopez†

ABSTRACT
We describe the parallelization of the solve phase in the sparse Cholesky solver SpLLT
[Duff, Hogg, and Lopez. Numerical Algebra, Control and Optimization. Volume 8, 235-
237, 2018] when using a sequential task flow (STF) model. In the context of direct methods,
the solution of a sparse linear system is achieved through three main phases: the analyse,
the factorization and the solve phases. In the last two phases which involve numerical
computation, the factorization corresponds to the most computationally costly phase, and
it is therefore crucial to parallelize this phase in order to reduce the time-to-solution
on modern architectures. As a consequence, the solve phase is often not as optimized
as the factorization in state-of-the-art solvers and opportunities for parallelism are often
not exploited in this phase. However, in some applications, the time spent in the solve
phase is comparable or even greater than the time for the factorization and the user could
dramatically benefit from a faster solve routine. This is the case, for example, for a CG
solver using a block Jacobi preconditioner. The diagonal blocks are factorized once only
but their factors are used to solve subsystems at each CG iteration.

In this study we design and implement a parallel version of a task-based solve routine
for an OpenMP version of the SpLLT solver. We show that we can obtain good scalability
on a multicore architecture enabling a dramatic reduction of the overall time-to-solution
in some applications.
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1 Introduction
In this study, we are solving the linear system

Ax = b, (1.1)

where A is a large sparse symmetric positive-definite matrix. In order to do this, we use
a direct method where the solution process consists of three main steps: the analyse, the
factorization and the solve phases. We use a Cholesky factorization given by

P T AP = LLT , (1.2)

where L is a sparse lower triangular matrix, and P is a permutation matrix needed to
preserve the sparsity. Since L is triangular, the solution can be obtained using a forward
substitution step

Ly = Pb, (1.3)

followed by a backward substitution step

LT z = y, (1.4)

so that x = P T z is the solution to the system in equation (1.1). Note that, although the
factor L has a sparse structure, it is usually denser than A because of fill-in. The purpose
of the analyse phase is to determine precisely the structure of L and to find a pivot order
for limiting the fill-in. The returned permutation matrix P reduces the storage for the
factor as well as the number of floating-point operations for factorization and solution.

In this paper we concentrate on the steps in equations (1.3) and (1.4). Most work
on sparse solvers concentrates on the factorization in equation (1.2) because that is the
most costly step of the solution process. As a consequence, the solve phase is often not as
optimized as the factorization in state-of-the-art solvers and opportunities for parallelism
are often not exploited in this phase. However, in some applications, the time spent in the
solve phase is comparable or even greater than the time for the factorization and the user
could dramatically benefit from a faster solve routine. This is the case, for example, for
a CG solver using a block Jacobi preconditioner. The diagonal blocks are factorized once
only but their factors are used to solve subsystems at each CG iteration.

The goal of a modern task-based runtime system is to provide an abstraction level
such that the low-level hardware details are hidden. There exists different task-based
programming models such as parametrized Task Graph (PTG), or sequential Task Flow
(STF). The first explicitly uses the dependencies between tasks whereas the second relies
on an explicit data access mode. The sparse Cholesky solver SpLLT [8] has been developed
with the STF programming model using the runtime system StarPU [2]. Although there
are more overheads to using StarPU than OpenMP [5], SpLLT is very competitive with the
OpenMP based state-of-the-art HSL_MA87 code while offering more flexibility and more
maintainability because of the runtime system used. In this paper, we consider the solve
phase of SpLLT. In Section 2, we discuss the solve phase for dense systems, since we will
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use similar kernels in our sparse solve phase. We then describe the sparse solve algorithm
in Section 3 before considering how to implement this in parallel in Section 4. We present
our experimental results in Section 5 where we illustrate the scalability both with respect
to the number of cores and the number of right-hand sides. We also compare our code
with other state-of-the-art codes. Finally, we present some conclusions in Section 6.

2 DAG-based dense forward and backward
substitutions

In this section, we discuss in detail the forward and backward substitutions for the case of
dense matrices. For the sake of clarity and without loss of generality, we do not include the
permutation matrix in this section. When performing these operations we first partition
the lower triangular dense factor L ∈ Rn×n into blocks as:

L =


L11

L21 L22
... . . .

Lk1 . . . Lkk

 , (2.1)

where Lii ∈ Rnb×nb are lower triangular matrices for 1 ≤ i < k, and Lkk is also a square
lower triangular matrix but with dimension n− (k − 1)nb ≤ nb.

We first discuss the forward substitution in Section 2.1 before considering the backward
substitution in Section 2.2.

2.1 Forward substitution
Consider first the forward substitution in equation (1.3) that we present in Algorithm 1.

Algorithm 1 forwardSolve(L, b, nb)
Input: L ∈ Rn×n partitioned as in equation (2.1),

b the right-hand side,
nb the block size

Output: y the solution of the system Ly = b

1: k = d(n/nb)e
2: for i = 1 to k do
3: Solve Liiyi = bi

4: for j = i + 1 to k do
5: Update bj = bj − Ljiyi

6: end for
7: end for

Algorithm 1 shows that the forward substitution requires two computational kernels.
The first kernel at line 3 corresponds to the classical triangular solve, that is referred to
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hereafter as the solve kernel, denoted by dtrsv in the BLAS [3]. We note that the solve
kernel is different from the abovementioned solve phase and is indeed just part of this
phase. The second kernel at line 5 is the update of the right-hand side by performing a
matrix-vector product, that is referred to hereafter as the update kernel, dgemv in BLAS
parlance.

From Algorithm 1, we note that the update follows the solution of part of the right-
hand side, and triggers the solution of another part of b. That is there is a dependency
between the update and the solve. We can generate a directed acyclic graph (DAG) to
show the dependencies in Algorithm 1. To illustrate this, we consider the case k = 4 and
present the associated DAG in Figure 2.1(b).

L33

L43

y1

y2

y3

y4

b1

b2

b3

b4

L31

L41

L11

L21

L b

=

y

L22

L32

L42 L44

(a) Partitioned matrix

S

S

S

S

U U U

UU

U

(b) Associated DAG

Figure 2.1: DAG associated with the forward solve on a partitioned L, as presented in Algorithm
1, with k = 4. The nodes labelled S correspond to a call to the solve kernel (line 3), and the
nodes labelled U correspond to a call to the update kernel (line 5).

The DAG starts by solving the equation L11y1 = b1, represented by the top node
S. Once, y1 is computed, an update of b can be performed. The updates to b2, b3 and
b4 correspond to different parts of b, and they can all be performed in any order. The
update of b3 using y1 and the update of b3 using y2 have to be completed before solving
L33y3 = b3. However, as the destination space is the same for both updates, these two
operations cannot be performed at the same time. We see from the DAG in Figure 2.1(b)
that some parallelism can be exploited in the updates to the right-hand side.

2.2 Backward substitution
Once the forward substitution has returned the vector y, the solve phase performs a
backward substitution to solve equation (1.4). In this equation, we use the transpose
of L to compute the solution vector x. However, this substitution does not really differ
from the previous one, only the loop order is changed, as shown in Algorithm 2. Similarly
to the forward substitution, this algorithm requires two computational kernels, the solve
kernel and the update kernel, which give the same DAG as in Figure 2.1(b).

3



Algorithm 2 backwardSolve(L, y, nb)
Input: L ∈ Rn×n partitioned as in equation (2.1),

y the vector returned by Algorithm 1,
nb the block size

Output: x the solution of the system LT x = y, and so of Ax = b

1: k = d(n/nb)e
2: for i = k to 1 do
3: Solve LT

iixi = yi

4: for j = i− 1 to 1 do
5: Update yj = yj − LT

ijxi

6: end for
7: end for

3 DAG-based solve in sparse case
In this section, we extend the algorithms presented in Section 2 to the sparse case. We
now consider A as a sparse matrix of dimension n× n. The first step for solving equation
(1.1) in SpLLT is the analysis of the pattern of the matrix A in order to reduce the fill-in
in L during the factorization. This approach to solving sparse systems is well documented
and we refer the reader to [7] for the details. This step can use an ordering algorithm
such as AMD [1] or Metis [12]. The analysis then generates a tree representation for the
factorization process. We first present the internal representation of the L factor in SpLLT
and then discuss the design and implementation of the forward and backward substitutions.

3.1 Internal representation of the L factor
At the root node of the tree, that part of the L factor is held as a dense lower triangular
matrix, and we will partition it as in equation (2.1). For the other tree nodes, the L factor
is stored as a dense trapezoidal matrix, L̃, that can be written as a square lower triangular
matrix L̃1 stacked over a rectangular matrix L̃2 viz.

L̃ =
(

L̃1

L̃2

)
. (3.1)

In the parlance of tree-based factorizations, the block L̃1 corresponds to variables that are
fully summed, that is to say variables that are appearing for the last time and do not
appear at any ancestor nodes in the tree, so the corresponding unknowns can be solved as
in Algorithm 1. The entries in L̃2 are then used to perform updates to the variables that
will later be fully summed at the parent or ancestor nodes of the tree. We can use these
dependencies to generate a DAG for the whole solve phase that allows us to use inter-level
parallelism. That is, a task at a node can be processed before some of the tasks for its
children as long as the task has all its dependencies satisfied. We emphasize in passing
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two properties of the tree. Firstly, the rows within a block in L̃2 may match rows of more
than one block in the parent. Secondly, one row in the fully summed part of a node can
be shared with more than one child node.

We illustrate this in Figure 3.1 where the factor L consists of three nodes. The parts of
the DAG associated with the leaves of the tree are very similar to the DAG shown in Figure
2.1. We label the blocks from the leaves to the root. If there are rows in common between
blocks blk7 and blk15 then there will be a dependency between y2 and y7. Moreover, we
observe that there is at least one row present in all three nodes, so that the solve using the
corresponding block in the parent node requires the updates from both the children. Note
that the first solve task in the root node has no dependency with its children. The resulting
inter-node parallelism means that the solve of the corresponding part of the solution vector,
y5, can be executed before the tasks at the child nodes complete.

y1

y2

y3

y4

y6

y7

y8

y5

blk2

blk3

blk4

blk5

blk6

blk7

blk1

blk9

blk10

blk11

blk12

blk8

blk13

blk14

blk15

blk16

blk17

blk18

blk19

blk20

blk21 blk22

(a) Partitioned L matrix
S

U U U

S

U U

S

U U

S

U

S

U U U

S

U U

S

U

S

(b) Associated DAG

Figure 3.1: Tree representation of the sparse triangular factor L and its associated DAG for
the forward solve. The matrix corresponding to each node is partitioned into blocks of size nb,
as in equation (2.1). The nodes labelled S correspond to a call to the solve kernel (line 3), and
the nodes labelled U correspond to a call to the update kernel (line 5).

For efficient implementation of the forward substitution, we must modify Algorithm 1
to take account of three elements. Firstly, the L factor is spread over the nodes of the tree.
Secondly, the shape of the L̃ associated with each node of the tree is trapezoidal, except
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for the root. Thirdly, L̃2 is composed of rows that have discontinuous indices in L so that
indirect addressing is required.

3.2 Dense kernels and data movement
Our construction of the tree representation of the factor L is such that the rows of a node
may not correspond to contiguous entries in b. However, the computational kernels do not
handle indirect addressing. This leads to data movement between the global vector and
a local vector so that the data are contiguous in the local vector. Thus a local vector is
associated with each node of the tree and is split into two parts : the part associated with
L̃1 consists of a contiguous portion of the global solution vector whereas the second part
is a workspace. One way in which we avoid indirect addressing is to use the right-hand
side vector permuted according to the pivot ordering. That is to say that, for the forward
substitution, we work from the vector Pb in equation (1.3). Thus the part of the vector
corresponding to the triangular block L̃1 will be contiguous in the global vector and so we
can work directly on this when solving for the fully summed variables. We believe this to
be a novel feature for the sparse solve phase. We do not actually permute the right-hand
side prior to the forward substitution but only when the entries of the right-hand side are
needed by the solve kernel.

3.2.1 Forward solve and forward update kernels

We illustrate the two parts of L̃ and the movement or equivalence of global and local vectors
in Figure 3.2. As mentioned earlier, the part of ỹ corresponding to L̃1 is identical to the
appropriate part of the global vector so no indirect addressing is required. The remaining
part of ỹ is a workspace local to the node. This workspace is related to the global vector
through indirect addressing corresponding to row indices in the blocks of L̃2. The first part
of the local vector is set with the appropriate entries of Pb. In addition, both parts of the
local vector may require a gather operation with workspaces of the children of the node.
That is, when a row of L̃ is present in a child of the node and the associated block in the
child is processed, there is an update of the local vector of L̃ using some entries from the
child workspace. In Figure 3.2 we show in the dark shaded areas the solution for the fully
summed variables that involve the block L̃1 with the blocks yi and yi+1 computed in-place.
Since L̃2 is composed of rows whose indices in y are discontinuous, indirect addressing is
required in order to map these components into the contiguous local vector. These are
then used for computing the matrix vector product L̃3j ỹj, with j = 1, 2, and the resulting
vector is subsequently scattered directly into the parent local vector. This is also a novel
feature of the code.
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ỹ

Figure 3.2: Data movement required by the computation of L̃31ỹ1 and L̃32ỹ2, during the forward
solve of a node L̃.

3.2.2 Backward solve and backward update kernels

The backward substitution shares the same data locality issues as for the forward
substitution. Consider the same node as in Figure 3.2 with its associated dense lower
trapezoidal matrix L̃. In order to update the solution vector z = Px from equation (1.4)
with L̃T

2 , the backward update kernel has first to gather the corresponding components of
z into a local vector, denoted by z̃ in Figure 3.3. Then, the update of z is performed by
the computation of (L̃31)T z̃3 and (L̃32)T z̃3. Each triangular solve computes part of Px.
That is, the result of the triangular solve is then permuted to obtain the solution vector x.
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Figure 3.3: Data movement required by the computation of (L̃31)T z̃3 and (L̃32)T z̃3, during
backward solve of a node L̃.

3.3 Sequential sparse forward solve algorithm
Moving from the dense forward solve in algorithm 1 to the sparse case requires several
changes. Firstly, as shown in Figure 3.1, the L factor is now a tree, where the nodes
are associated with trapezoidal matrices, and has inter-node dependencies. Secondly, as
shown in Figures 3.2 and 3.3, processing L̃2 leads to indirect addressing. We present the
sequential sparse solve in Algorithm 3. This algorithm takes as input the same parameters
as Algorithm 1, except that the representation of the factor L is a list of nodes of the tree.
The forward substitution operates over the nodes from the leaves to the root of the tree.
For each node, we have the associated dense matrix L̃, as written in equation (3.1), and a
local vector ỹ. We start by forming the part of ỹ associated with L̃1. That is, we gather the
corresponding components of Pb with the contributions of the children of the node. This
operation overwrites the content so that we avoid resetting the local vector. Then, L̃1 is
processed as in Algorithm 1. An additional loop is introduced in Algorithm 3 to process L̃2.
This step is done so that the result of the first update of each ỹj, with j ∈ {i + 1, . . . , l},
overwrites its content. Finally, we sum the contribution from the children to the local
vector.
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Algorithm 3 forwardSolve(L, b, nb)
Input: L ∈ Rn×n stored as a tree,

b the right-hand side,
nb the block size

Output: y the solution of the system Ly = b

1: Let N be the ordered list of nodes of the tree from the bottom to the top
2: for node ∈ N do
3: Let L̃ be the dense trapezoidal matrix associated with the current node, and let it be

partitioned as in equation (3.1)
4: Let L̃ have dimensions m× n, m ≥ n

5: Let ỹ be the local solution vector associated with the current node
6: k = dn/nbe
7: l = dm/nbe
8: /* Form the local vector associated with L̃1 */
9: for i = 1 to k do
10: Initialize ỹi using the permuted right-hand side and the appropriate components

computed by the child nodes
11: end for
12: /* Solve using L̃1 as in Algorithm 1 */
13: for i = 1 to k do
14: Solve L̃iiỹi = ỹi so that the result is stored in-place
15: for j = i + 1 to k do
16: Update ỹj = ỹj − L̃jiỹi

17: end for
18: end for
19: /* Additional loops to process L̃2 */
20: for j = k + 1 to l do
21: Compute ỹj = L̃j1ỹ1
22: end for
23: for i = 2 to k do
24: for j = i + 1 to l do
25: Update ỹj = ỹj − L̃jiỹi

26: end for
27: end for
28: /* Gather entries into the local vector associated with L̃2 */
29: for i = k + 1 to l do
30: Gather the appropriate components computed by the child nodes into ỹi

31: end for
32: end for

The backward substitution algorithm is very similar but, in this case, we use the L
factor starting with the root node and working down the tree to the leaf nodes.
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4 Parallel implementation of the solve phase
In this section, we give details of the parallel implementation of the solve phase of
SpLLT. Our task-based algorithms described in Section 3 can use a runtime system to
provide an abstraction layer for their implementation. The runtime system also provides
maintainability, flexibility and robustness. We have therefore modified both the forward
and backward algorithms from Section 3 using a Sequential Task Flow (STF) programming
model as in the SpLLT factorization. The STF programming model is based on sequential
consistency so that it is trivial to implement. It also allows an implicit detection of the
dependencies between tasks using the access mode for the data of the task. In the context
of runtime systems, a worker is defined as an entity that executes one task at a time, and
a task is ready to be executed when its dependencies are satisfied. We use the runtime
system of OpenMP that implements the STF model. Based on the representation of the
factor L, we first show how to determine the data dependencies of the tasks in the solve
phase and then show how the tasks are managed by the OpenMP runtime system.

4.1 Data dependencies of a task
From the DAG as presented in Figure 3.1(b), we associate a task with a computational
kernel that takes as input a block within a node of the tree and the related part of the
input and output vector. The sparse aspect requires an additional task that handles the
indirect addressing. This task forms the local vector by adding the contributions of the
children. The submission of the tasks related to the forward substitution is presented in
Listing 1. The computational operations within a node in Algorithm 3 are now considered
as tasks that are submitted to the runtime system. We provide in addition the access mode
to the data in each task to enable the runtime system to detect the dependencies between
tasks.

1 ! Process of node node
2 !Form the local vector associated with L̃1
3 do i = 1, k
4 dep_i = getForwardDependencies(L, node , indices (ỹi))
5 Submit(Initialize , ỹi:W, dep_i:R, Pb:R)
6 end do
7 ! Process L̃1 as in Algorithm 1
8 do i = 1, k
9 Submit(Solve ,ỹi:RW, L̃ii:R)

10 do j = i + 1, k
11 Submit(Update ,ỹj:RW, L̃ji:R, ỹi:R)
12 end do
13 end do
14 ! Additional loops to process L̃2
15 do j = k+ 1, l
16 Submit(Compute , ỹj:W, L̃j1:R, ỹ1:R)
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17 end do
18 do i = 2, k
19 do j = i + 1, l
20 Submit(Update , ỹj:RW, L̃ji:R, ỹi:R)
21 end do
22 end do
23 ! Gather the local vector associated with L̃2
24 do i = k+ 1, l
25 dep_i = getForwardDependencies(L, node , indices (ỹi))
26 Submit(Gather , ỹi:RW, dep_i:R)
27 end do

Listing 1: Task-based implementation of Algorithm 3.

The data accessed local to a node, in lines 9, 11, 16 and 20, is similar to the dense case
in Algorithm 1 and is independent of the pattern of the matrix. However, the sparse aspect
requires gathering entries from a set of local vectors that share rows with the local vector,
ỹi, of the node. We refer, hereafter, to this set as the data dependencies for ỹi, denoted
by depi. Once the data dependencies are computed in line 4, a task is submitted in line
5 that overwrites ỹi with the appropriate part of Pb added to the contributions coming
from the vectors in depi. On the other hand, in line 26, the submitted task modifies ỹi by
gathering the contributions coming from the vectors in depi obtained in line 25.

We show how depi is computed in Algorithm 4. As in lines 4 and 25 of Listing 1, the
initial parameters are the row indices of ỹi and the node that owns it. This algorithm
creates dep by visiting the children of the node in line 3. For each child node of node, the
part of the local vector that shares at least one row index with ỹi is considered as a data
dependency. Note that, in practice, we compute this list once before the solve, and we use
the list during the forward and backward substitutions. This saves computations when the
solve phase is done multiple times.

Algorithm 4 getForwardDependencies(L, node, Iblk)
Input: L ∈ Rn×n stored as a tree,

node is a node in L,
I is a set of row indices in L.

Output: dep is a set of vectors that share indices with I in L

1: dep← ∅
2: Let C be the list of the children of node

3: for child ∈ C do
4: Let Ichild be the row indices of the node child in L

5: I∩ ← Ichild ∩ I
6: Let dep_child be the set of vectors in node child that contains the indices in I∩
7: dep← dep ∪ dep_child

8: end for
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The submission of the tasks for the backward substitution is similar to the forward
substitution, except for the computations of the data dependencies, where the role of child
nodes is replaced by the ancestor nodes.

4.2 Management of the tasks
Our implementation uses the runtime system OpenMP, Release 4.5. This release offers a
runtime system that schedules the execution of tasks with dependencies. There are several
ways to describe the dependencies. One simple way is to provide the address of the data
that are being accessed through a read, write or read/write mode as in Listing 1. Thus,
the dependencies have to be known at compilation time by OpenMP. However, the set dep

returned by Algorithm 4 has a variable length and its length cannot be predicted prior to
the execution of the code.

To handle a variable length of dependencies in OpenMP, we use a k-ary tree combined
with synchronisation tasks to control the scheduling of the task. A synchronisation task is
a task submitted to the runtime system that does nothing, like a no-op instruction, except
to release a dependency for further use. The purpose of using a k-ary tree is to reduce the
number of tasks from N = |dep| to c, an acceptable number of dependencies, given that
we have to statically define each possibility in our code. To do this, we define a chunk, i.e.
a subset of unsatisfied dependencies, equal to c. The k-ary tree is processed as follows. At
the first level of the k-ary tree, the dependencies in dep are considered to be unsatisfied and
are split into dN/ce chunks. For each chunk, a synchronisation task is submitted to the
runtime system. This synchronisation task is scheduled when all dependencies in the chunk
are satisfied. It then releases the first dependency of the chunk for the next level by flagging
it as unsatisfied. Thus, the k-ary reduction leads to at most c unsatisfied dependencies,
as presented in Figure 4.1. In this example, the size of the chunk is 5, and N = 35. A
white square represents an unsatisfied dependency, and a grey rectangle represents a set
of satisfied dependencies. The first dependency of each chunk is still unsatisfied between
two levels. A task is finally submitted to the runtime system with a list of dependencies
composed of the remaining unsatisfied dependencies of dep.

Along with this k-ary tree, we use a case statement over the number of unsatisfied
dependencies in dep, where each case corresponds to the submission of a (synchronisation)
task having i dependencies (0 ≤ i ≤ c), where c is 10 by default.

Satisfied dependency
Unsatisfied dependency

c = 5

dep list @ lvl = 1

dep list @ lvl = 2

dep list @ lvl = 3

Figure 4.1: Content of the set dep at each level of the k-ary tree, with a chunk size c = 5. Each
white square represents a dependency in dep, and each grey rectangle is composed of dependencies
already satisfied.
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4.3 The pruning strategy
The nodes of the tree of the L factor may be so small that the time spent in submitting
and scheduling the task is larger than the runtime of the kernel. We use the same pruning
strategy as described in [4] to address this problem. This pruning strategy consists of
going through the tree from the root to the leaves to select nodes that have a similar
arithmetic intensity. By arithmetic intensity we mean the number of operations performed
by the kernels in the node and in all its descendants. The tree is therefore split into
subtrees, where each has a selected node as its root. Each subtree then becomes a super
task submitted to the runtime system and is processed by a single worker. The number
of tasks submitted to the runtime system is therefore drastically reduced, as well as the
number of the dependencies. Although the pruning decreases the tree-level parallelism,
it leads to better data locality. Note that the number of subtrees is generally not equal
to the number of workers even though the number of subtrees depends on the number of
workers.

5 Experimental results
In order to assess the performance of the solve phase of our SpLLT code, we ran tests
on a set of 37 SPD matrices, presented in Table A.1. These matrices come from the
Suitesparse matrix collection [6] and are those used in [8, 11]. They correspond to a wide
range of different applications including CFD, circuit simulation, FEM, and gas reservoir
modelling. The dimensions of the matrices range from 36× 103 to 1.5× 106. We focus our
experiments on parallel efficiency both when the number of right-hand sides increases, and
when the number of workers increases. We also compare the performance of the SpLLT
solve phase with the solve phase of other sparse direct solvers.

We perform the tests on a multicore machine which has two Intel Xeon E5-2695, v3
CPUs, that is 2 NUMA nodes composed of 14 cores each, with a total 128GB of memory.
Each core has a theoretical peak of 36.8G flop/s for a frequency of 2.3GHz, so the peak of
the multicore node is 1.03 TFlop/s in double precision. The code is compiled with GNU
6.2 and MKL 17.0.2, and linked to Metis 5.1.0 and SPRAL. We have done preliminary
tests to study the reproducibility of the execution times of the machine by solving equation
(1.1) ten times and increasing the number of workers. We show, in Figure 5.1, the range
in the times for the solve phase on four of our test problems by horizontal bars. We note
that this range can be noticeable when there are few workers but this variability decreases
markedly when the number of workers increases.
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Figure 5.1: Reproducibility of execution times.

We first study the impact of pruning in Section 5.1, of synchronisation tasks in Section
5.2, and of block size in Section 5.3. In Sections 5.4 and 5.5, we then compare the solve
phase of SpLLT with Intel MKL PARDISO 17.0.2 [13] and PaStiX [10] by increasing the
number of right-hand sides (nrhs) in 5.4 and the number of workers (nworker) in 5.5.

5.1 Impact of pruning on the performance
As discussed in Section 4.3, we use a pruning mechanism to reduce the impact of small
nodes on the solve time. Table 5.1 presents the times to solve the system with one right-
hand side. The number of workers ranges from 1 to 28, and the number of subtrees
generated by the pruning increases when the number of workers increases. The set of
matrices presented in Table 5.1 is a subset of the matrices in Table A.1 which perform a high
number of flops during the factorization. We see that pruning improves the performance
in all cases. The effect is less marked when the number of workers is low but we observe
that pruning reduces the time by up to a factor of 6 for boneS10 with 28 workers. In the
following we always activate this feature, unless we explicitly state otherwise.
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#worker
Matrices 1 2 4 14 28
boneS10 # Subtree 1 11 25 60 178
boneS10 no pruning 1.26 0.80 0.55 0.32 0.60
boneS10 with pruning 1.14 0.79 0.38 0.15 0.10
StocF-1465 # Subtree 29105 29108 29115 29177 29189
StocF-1465 no pruning 3.03 2.54 1.46 0.82 1.51
StocF-1465 with pruning 2.83 2.41 1.27 0.66 0.75
Fault_639 # Subtree 1 5 18 43 88
Fault_639 no pruning 4.02 2.23 1.07 0.43 0.55
Fault_639 with pruning 2.48 2.05 0.99 0.40 0.33
Hook_1498 # Subtree 1 11 19 82 111
Hook_1498 no pruning 5.01 3.62 1.87 0.96 1.39
Hook_1498 with pruning 4.92 3.43 1.71 0.58 0.43
Emilia_923 # Subtree 1 6 21 67 99
Emilia_923 no pruning 5.10 2.85 1.59 0.65 0.83
Emilia_923 with pruning 4.66 2.77 1.49 0.61 0.47
Serena # Subtree 1 5 11 37 110
Serena no pruning 6.42 4.88 2.72 1.12 1.35
Serena with pruning 6.13 4.56 2.41 0.96 0.76

Table 5.1: The solve time (secs) and number of subtrees when pruning is either enabled or
disabled.

5.2 Impact of the number of synchronisation tasks on the
performance

As discussed in Section 4.2, tasks have a variable number of dependencies that we handle
through a k-ary tree. In this section, we give details of the effect of the synchronisation
tasks on the solve time. We consider the case of one right-hand side and 64 right-hand
sides. Table 5.2 presents the results on the same subset of matrices as in Table 5.1. We
first focus on the case of one right-hand side where the pruning is disabled. We observe
that the time to solve is the highest when c is equal to two. Moreover, the number of
synchronisation tasks is divided by at least three when increasing the chunk size from
two to three. After some point, the number of synchronisation tasks is low enough that
reducing it further does not noticeably improve the execution time. When pruning is used,
we observe that the number of synchronisation tasks is divided by at least a factor of four
for a chunk size of two. This means that the sensitivity of the times on the chunk size is
much reduced when pruning is used. Likewise, when we solve for 64 right-hand sides, the
extra work required means that the number of synchronisation tasks has little impact on
the time, with or without pruning. The arithmetic intensity in the kernels is much larger
than the overhead of scheduling and executing synchronisation tasks. In the following, we
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use a chunk size of 10 that we consider large enough to avoid noticeable impact on the
results due to the synchronisation tasks.

Chunk size
Matrix pruning nrhs 2 3 4 5 6 7 8 9 10
boneS10 # synchronisations 38048 11750 1768 80 4 0 0 0 0

1 0.79 0.60 0.65 0.58 0.53 0.51 0.53 0.58 0.55no 64 0.59 0.59 0.59 0.59 0.58 0.58 0.57 0.59 0.58
# synchronisations 3822 1330 454 128 36 4 4 0 0

1 0.12 0.11 0.11 0.11 0.11 0.11 0.10 0.11 0.11yes 64 0.45 0.44 0.49 0.46 0.49 0.47 0.50 0.46 0.48
StocF-1465 # synchronisations 111357 37026 8436 210 36 6 4 0 0

1 2.21 1.70 1.89 1.62 1.68 1.59 1.51 1.62 1.57no 64 1.97 2.01 1.87 2.03 2.01 2.00 2.04 2.08 2.07
# synchronisations 11544 3558 1257 336 267 220 200 177 169

1 0.72 0.74 0.73 0.76 0.79 0.73 0.74 0.84 0.72yes 64 1.78 1.71 1.77 1.74 1.73 1.75 1.82 1.82 1.68
Fault_639 # synchronisations 75675 24751 5804 278 54 6 0 0 0

1 0.94 0.70 0.59 0.55 0.49 0.60 0.49 0.59 0.55no 64 1.15 1.16 1.19 1.14 1.13 1.16 1.19 1.14 1.18
# synchronisations 17021 4296 1531 416 290 217 190 172 166

1 0.34 0.33 0.34 0.33 0.33 0.34 0.33 0.35 0.32yes 64 1.07 1.12 1.03 1.06 1.06 1.06 1.05 1.12 1.04
Hook_1498 # synchronisations 157924 46416 10999 699 102 26 6 2 2

1 2.21 1.54 1.56 1.40 1.36 1.26 1.29 1.49 1.28no 64 1.97 1.90 1.89 1.92 1.85 1.91 1.87 1.88 1.89
# synchronisations 20128 4306 1611 404 265 226 196 177 165

1 0.45 0.46 0.44 0.44 0.45 0.44 0.44 0.46 0.43yes 64 1.60 1.69 1.66 1.62 1.62 1.65 1.66 1.63 1.70
Emilia_923 # synchronisations 109177 35937 8369 341 77 22 8 4 2

1 1.49 1.00 0.84 0.73 0.70 0.80 0.82 0.80 0.78no 64 1.80 1.65 1.58 1.72 1.61 1.72 1.63 1.77 1.71
# synchronisations 21420 5252 1871 550 382 307 258 231 210

1 0.46 0.46 0.44 0.46 0.45 0.45 0.47 0.46 0.45yes 64 1.66 1.57 1.43 1.67 1.56 1.59 1.44 1.45 1.42
Serena # synchronisations 186918 52156 12392 640 162 55 28 22 18

1 2.63 1.65 1.31 1.32 1.27 1.28 1.31 1.36 1.41no 64 2.70 2.69 2.72 2.67 2.67 2.71 2.68 2.57 2.72
# synchronisations 47629 8668 3083 639 456 356 300 272 246

1 0.78 0.76 0.74 0.72 0.76 0.76 0.75 0.75 0.75yes 64 2.34 2.36 2.47 2.41 2.35 2.35 2.39 2.32 2.40

Table 5.2: Time and number of synchronisation tasks for our SpLLT solve with respect to the
chunk size. Number of workers is 28.

5.3 Impact of the block size on the performance
In this section, we study the impact of the block size on the time to solve the system and
show our results in Table 5.3. We consider matrices that require a large number of flops

16



during the factorization so that the block size should be greater than 256. We set the
number of workers to 28, and nrhs to 128. For all these matrices the optimal block size for
the solve phase is lower than the optimal block size for the factorization. This leads us to
conclude that we should use a different block size, depending on nrhs and the application.
For example, in a code like preconditioned CG, the overall performance may depend on
the time spent in applying the preconditioner. In that case, an efficient factorization is
not as important as an optimal solve. We use a default block size of 256 in the following
experiments to obtain a fair comparison with other solvers.

block size
Matrices 128 256 512 1024 2048
boneS10 Factor time 1.17 1.06 1.03 1.54 2.33

Solve time 0.84 0.85 0.96 1.10 1.18
nd24k 46.70 13.60 6.04 6.73 8.73

1.73 2.23 3.21 3.36 4.49
StocF-1465 32.70 8.97 8.15 8.10 10.70

2.87 3.05 3.15 3.48 3.79
Fault_639 49.90 17.80 13.60 13.90 16.50

1.96 1.94 2.76 3.82 4.84
Hook_1498 68.20 20.30 16.60 17.10 22.10

3.02 3.08 3.52 4.03 5.00
Emilia_923 112.00 40.70 21.30 22.80 23.90

3.08 2.76 3.39 3.81 4.94
Serena 222.00 83.00 52.10 49.70 51.30

4.51 4.43 5.27 6.51 8.88

Table 5.3: The effect of different block sizes on both the factorize and solve phases. nrhs is
equal to 128. The number of workers is 28.

5.4 Strong scaling on the number of right-hand sides
In this section, we focus on the effect of the number of right-hand sides on the time to
solve the system. We fix the number of workers to 28, the block size to 256, and we vary
the number of right-hand sides from 1 to 128 in powers of 2.

We first compare, in Table 5.5, SpLLT with PARDISO, PaStiX and HSL_MA87 when
solving for one or two right-hand sides. These results show that PARDISO is the slowest
for all the matrices in Table A.1. SpLLT is the fastest to solve the system, up to 8 times
faster than PARDISO for one right-hand side and up to over a factor of 10 on two right-
hand sides. There are only five problems for which SpLLT is not the fastest of all four
codes for both one and two right-hand sides. In two cases, the difference from the fastest
code is marginal. The only matrices for which SpLLT is significantly slower are the two
matrices nd12k and nd24k and the matrix StocF-1465. In the case of the first two, the
assembly tree has long chains that are not combined by pruning so the runtime overhead
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for many small tasks causes the poor performance. If we force more node amalgamation
in the analyse phase, the number of long chains decreases significantly, pruning is more
effective, and we are much more competitive. The StocF-1465 matrix is very reducible
with many 1 × 1 blocks. Again our pruning has little effect and we are penalized by the
number of small tasks. We recommend that reducibility is respected in the solution process
and elimination techniques are only used on irreducible blocks. We see that on one of the
matrices, Emilia_923, where PaStiX is faster than SpLLT for one right-hand side (43.70
v 44.70 secs) SpLLT is faster for two right-hand sides (47.70 v 58.6 secs). The solve time
for SpLLT on two systems is always lower than solving one system twice.

We investigate this for more right-hand sides. In Table 5.6 we give the time for SpLLT,
PARDISO, PaStiX and HSL_MA87, for all matrices of Table A.1 when solving for 16
and 128 right-hand sides. When nrhs increases, PaStiX and HSL_MA87 become less
competitive compared to SpLLT. We show the ratio of the time for solving several right-
hand sides to the time to solve one right-hand side in Table 5.4. These results show that
the power of level 3 BLAS means that there is often very little overhead for solving two
right-hand sides over one and the extra cost when solving for 16 or 128 right-hand sides is
remarkably low.

Matrix Time 1rhs T2/T1 T16/T1 T128/T1
(10−2s)

boneS10 10.10 1.23 1.82 8.52
nd12k 12.90 1.08 1.76 8.60
nd24k 22.40 1.41 2.04 9.87
Flan_1565 38.90 1.12 1.61 7.02
bone010 28.70 1.11 1.59 6.52
StocF-1465 76.60 1.14 1.33 3.72
audikw_1 35.50 1.09 1.59 6.54
Fault_639 33.10 1.15 1.61 5.74
Hook_1498 43.60 1.23 1.59 7.32
Emilia_923 44.70 1.07 1.51 6.51
Geo_1438 64.70 1.11 1.62 6.24
Serena 75.80 1.06 1.54 5.84

Table 5.4: Ratio of timenrhs/time1rhs.
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nrhs 1 2
SpLLT PARDISO MA87 PaStiX SpLLT PARDISO MA87 PaStiX

Matrices
thermal2 5.83 21.70 16.20 13.20 7.63 107.00 26.90 15.70
gearbox 1.84 10.30 2.79 3.38 2.20 17.10 4.24 4.36
m_t1 1.64 7.93 2.17 2.20 1.89 10.10 3.63 2.78
pwtk 2.48 12.00 4.01 3.37 2.77 20.30 6.86 4.14
pkustk13 1.90 6.56 2.13 2.43 1.98 10.50 3.41 2.75
crankseg_1 1.61 6.92 2.02 1.90 1.97 9.52 2.85 2.33
cfd2 2.01 8.66 2.85 3.12 2.55 15.30 3.91 3.66
thread 2.30 6.27 1.63 1.81 2.23 6.82 2.38 2.16
shipsec8 2.37 8.31 2.69 2.68 2.80 11.10 3.97 3.86
shipsec1 2.43 8.93 2.69 3.07 2.68 16.10 4.26 3.82
crankseg_2 2.08 8.67 2.36 2.51 2.60 10.70 3.18 2.78
fcondp2 2.86 12.80 3.93 3.87 3.22 21.30 6.45 4.69
af_shell3 4.25 27.30 8.32 8.15 5.09 39.20 13.20 9.33
troll 3.10 18.60 4.03 3.75 3.85 24.40 7.60 4.48
G3_circuit 8.89 34.90 25.70 17.40 9.98 163.00 35.40 19.50
bmwcra_1 2.56 15.10 3.27 3.78 2.95 19.90 4.87 4.61
halfb 3.29 15.90 5.26 4.31 3.70 26.70 7.15 5.87
2cubes_sphere 2.63 8.53 3.03 2.83 3.11 14.80 4.31 3.69
ldoor 6.92 42.10 14.60 13.30 8.26 69.10 24.30 14.00
ship_003 3.18 10.60 3.52 3.29 3.82 16.10 4.86 4.31
fullb 3.91 16.40 4.53 4.40 4.40 20.80 6.74 5.68
inline_1 6.35 40.90 9.73 11.40 7.55 57.00 16.90 12.00
pkustk14 4.83 23.30 5.67 4.94 7.56 29.50 6.12 6.23
apache2 7.99 28.70 13.40 12.90 10.20 96.10 20.20 15.50
F1 5.92 33.40 9.72 8.62 6.92 48.70 11.40 11.10
boneS10 10.10 61.30 16.80 17.10 12.40 105.00 28.40 20.60
nd12k 12.90 19.40 4.55 5.12 13.90 28.90 5.90 5.11
nd24k 22.40 54.60 10.90 10.70 31.50 84.80 13.30 17.50
Flan_1565 38.90 290.00 54.70 46.90 43.40 369.00 72.60 65.30
bone010 28.70 209.00 33.80 50.10 31.80 264.00 47.90 61.20
StocF-1465 76.60 223.00 45.00 51.80 87.00 354.00 66.00 61.20
audikw_1 35.50 215.00 36.70 47.80 38.60 268.00 55.50 53.70
Fault_639 33.10 226.00 33.30 45.30 38.10 253.00 45.40 42.20
Hook_1498 43.60 298.00 59.00 91.70 53.70 393.00 80.10 96.80
Emilia_923 44.70 358.00 50.80 43.70 47.70 345.00 63.60 58.60
Geo_1438 64.70 481.00 76.60 93.90 71.50 504.00 103.00 107.00
Serena 75.80 485.00 86.30 130.00 80.70 630.00 114.00 113.00

Table 5.5: Comparison of SpLLT, PARDISO and PaStiX, for one and two right-hand sides.
Times in 10−2 seconds. Number of workers is 28.
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nrhs 16 128
SpLLT PARDISO MA87 PaStiX SpLLT PARDISO MA87 PaStiX

Matrices
thermal2 11.60 179.00 215.00 68.80 55.50 289.00 1420.00 484.00
gearbox 3.63 14.40 22.80 7.17 14.70 28.50 178.00 69.00
m_t1 2.93 12.30 18.90 5.36 12.90 31.70 118.00 39.50
pwtk 4.32 20.00 32.40 8.39 18.50 55.20 307.00 92.60
pkustk13 3.55 18.00 15.20 4.80 15.40 40.40 135.00 40.10
crankseg_1 3.16 11.60 10.30 4.60 13.20 31.00 77.50 23.50
cfd2 3.95 19.20 22.80 6.91 15.80 54.20 147.00 56.60
thread 3.36 12.30 7.39 4.10 11.60 28.40 52.00 19.10
shipsec8 4.27 15.60 19.00 7.16 18.40 35.30 168.00 52.90
shipsec1 4.09 15.30 27.10 7.58 17.40 37.20 173.00 56.80
crankseg_2 4.01 15.00 12.00 5.15 15.50 46.40 102.00 25.50
fcondp2 5.40 21.70 30.60 10.60 23.00 51.60 237.00 73.60
af_shell3 9.06 44.30 73.00 22.80 36.20 102.00 584.00 215.00
troll 5.92 21.10 39.10 10.40 24.30 72.90 279.00 85.30
G3_circuit 17.40 249.00 228.00 102.00 74.70 371.00 1840.00 808.00
bmwcra_1 4.67 21.00 23.40 8.20 20.40 40.60 180.00 61.70
halfb 6.17 23.60 34.90 10.60 24.80 66.40 272.00 101.00
2cubes_sphere 4.98 22.80 18.10 7.23 21.80 51.30 133.00 49.30
ldoor 18.20 69.40 138.00 50.70 63.80 149.00 1340.00 491.00
ship_003 5.55 21.60 21.00 7.20 22.70 62.50 156.00 60.60
fullb 6.99 26.90 31.80 10.70 30.30 62.40 244.00 93.00
inline_1 13.60 65.90 75.40 31.80 54.40 192.00 603.00 208.00
pkustk14 9.95 32.30 32.20 10.70 39.20 85.90 188.00 79.90
apache2 14.50 122.00 132.00 49.10 66.20 250.00 855.00 406.00
F1 12.40 60.30 66.00 21.40 50.00 98.80 508.00 159.00
boneS10 18.40 115.00 165.00 72.80 86.10 197.00 1310.00 415.00
nd12k 22.70 42.00 13.90 8.90 111.00 112.00 75.50 34.10
nd24k 45.70 76.10 29.90 21.50 221.00 203.00 148.00 75.70
Flan_1565 62.60 383.00 284.00 138.00 273.00 663.00 2030.00 764.00
bone010 45.60 263.00 171.00 99.40 187.00 468.00 1480.00 545.00
StocF-1465 102.00 345.00 308.00 152.00 285.00 822.00 1910.00 710.00
audikw_1 56.40 322.00 204.00 117.00 232.00 835.00 1440.00 551.00
Fault_639 53.20 290.00 144.00 87.20 190.00 520.00 1020.00 428.00
Hook_1498 69.30 353.00 266.00 203.00 319.00 1030.00 1920.00 1040.00
Emilia_923 67.70 391.00 222.00 147.00 291.00 717.00 1520.00 878.00
Geo_1438 105.00 512.00 334.00 190.00 404.00 1130.00 2130.00 981.00
Serena 117.00 654.00 295.00 211.00 443.00 1380.00 2130.00 1080.00

Table 5.6: Comparison of SpLLT, PARDISO and PaStiX, when the number of right-hand sides
is 16 and 128. Times in 10−2 seconds. Number of workers is 28.
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Since HSL_MA87 does not scale with the number of right-hand sides, we compare the
time to solve for SpLLT with PARDISO and PaStiX on four problems that show different
behaviour in Figure 5.2.

In all cases and for all nrhs, SpLLT is the fastest solver sometimes by a considerable
amount. On two of the cases, PARDISO does better than PaStiX but the opposite is true
in the other two cases. PaStiX scales much worse than SpLLT as nrhs increases. The
scalability of PARDISO can vary considerably (see Emilia_923 and Serena). Since the
source code for PARDISO is not distributed, we do not know why this is the case. We
have similarly erratic scalability of several other matrices in our test set. In Figure 5.2(a),
SpLLT is six times faster than PARDISO for two right-hand sides, and these two curves
increase similarly when the number of right-hand sides increases. On the other hand, the
time to solve using PaStiX is close to SpLLT for two right-hand sides, but is eight times
slower on 128 right-hand sides. In all cases, SpLLT scales better than the other codes.
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Figure 5.2: Comparison of the time to solve the system with multiple right-hand sides using
SpLLT, PARDISO and PaStiX. The number of workers is set to 28, and the number of right-hand
sides increases from 2 to 128 in powers of 2.
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5.5 Strong scaling on the number of workers
In this section we study the impact of the number of workers on the time to solve a system
with 1 and 64 right-hand sides. The number of workers increases from 1 to 28, and the
block size is 256. We first consider one right-hand side and present some results in Figure
5.3. We use the same four matrices as in Section 5.4. The experiments show that for a
small number of workers, the time to solve using SpLLT is greater than both other solvers.
When the number of workers increases, the solid curve that represents SpLLT becomes
closer to the other curves. For 28 workers, SpLLT is the fastest solver.

Figure 5.4 shows the impact of increasing the number of workers when there are 64
right-hand sides. SpLLT is more competitive than for a small number of right-hand sides.
In fact, SpLLT outperforms PARDISO for all numbers of workers and is faster than PaStiX
when the number of workers increases. For more than nine workers, SpLLT is clearly the
fastest solver.
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Figure 5.3: Comparison of the time to solve the system with one right-hand side for SpLLT,
PARDISO and PaStiX.
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Figure 5.4: Comparison of the time to solve the system with 64 right-hand sides for SpLLT,
PARDISO and PaStiX.

5.6 Application case : Enlarged Conjugate Gradient solver
In this section we present some results obtained with the Enlarged CG solver (ECG) [9].
Our runs in this section are on a different machine to our earlier results. We use the
Kebnekaise system at Umeå in Sweden1. Each compute node contains 28 Intel Xeon
E5-2690v4 cores organized into 2 NUMA islands with 14 cores in each. The nodes are
connected with a FDR Infiniband Network. The total amount of RAM per compute node
is 128 GB. ECG and SpLLT are compiled with Intel 18.0.1 and linked to Metis 5.1.0.

The ECG solver is a preconditioned conjugate gradient solver that augments the number
of working vectors to reduce the number of iterations as well as to obtain better parallelism
and to reduce the amount of communication. ECG uses a block Jacobi preconditioner.
Although each diagonal block is factorized only once, the solve of each associated local
system is performed at each iteration of ECG. Table 5.7 shows the time to solve the global
system with ECG using PARDISO or SpLLT on a subset of matrices from Table A.1. We
show results using from 16 to 256 MPI processes. We see little difference in solution times
for the shipsec1 problem but, on the two other problems that are ten times larger, we

1See https://www.hpc2n.umu.se/resources/hardware/kebnekaise.

23

https://www.hpc2n.umu.se/resources/hardware/kebnekaise.


observe that replacing PARDISO solver with the SpLLT solver leads to a speedup over a
factor of two. In all cases, solving the system with 16 MPI processes using SpLLT is faster
than using PARDISO with 32 MPI processes.

Problem PARDISO SpLLT
# MPI t (s) # iter t (s) # iter

shipsec1 16 3.58 204 2.66 204
32 2.90 290 2.28 290
64 1.96 361 1.59 362
128 1.21 447 1.16 447
256 1.19 544 1.01 544

Flan_1565 16 57.82 141 23.18 141
32 32.92 177 14.94 177
64 20.15 216 9.77 216
128 11.35 270 6.53 270
256 6.70 325 5.50 325

Hook_1498 16 32.10 87 12.68 87
32 16.04 101 7.84 101
64 9.85 128 5.53 128
128 6.05 154 4.00 154
256 3.46 183 2.55 183

Table 5.7: Time to solution using PARDISO and SpLLT. ECG is set with a tolerance of 10−5,
an enlarge factor of 12, and SpLLT has a block size of 256 with 14 workers.

6 Conclusions
We have designed, implemented, and tested new routines for the forward and backward
substitution steps in the parallel solution of sparse positive definite systems using a
Cholesky factorization. We have given details of how our design exploits parallelism while
keeping data movement low. We have developed a code that we have tested on a multicore
node and have targeted and achieved good scalability both with respect to the number of
cores and the number of right-hand sides. We have compared our code to other state-of-
the-art codes and shown that it is usually far superior sometimes outperforming the other
codes by a factor of over ten. We have shown that our code is strongly scalable both for
cores and right-hand sides.

Finally, we have tested our code within a real application and shown big gains over the
previous version that used another solver. We are continuing our work with the authors
of ECG at Inria and have seen even bigger gains on markedly larger problems than those
used in this paper. For example, on a matrix from a diffusion problem of order nearly five
million with over 34 million entries we reduce the solution time by a factor of nearly 3 on
16 MPI processes and by a factor of nearly two on 256 processes.
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Appendix A Test problems

# Name n nz(A) nz(L) Flops Application/Description
(103) (106) (106) (109)

1 Schmid/thermal2 1228 4.9 51.6 14.6 Unstructured thermal FEM
2 Rothberg/gearbox 154 4.6 37.1 20.6 Aircraft flap actuator
3 DNVS/m_t1 97.6 4.9 34.2 21.9 Tubular joint
4 Boeing/pwtk 218 5.9 48.6 22.4 Pressurised wind tunnel
5 Chen/pkustk13 94.9 3.4 30.4 25.9 Machine element
6 GHS_psdef/crankseg_1 52.8 5.3 33.4 32.3 Linear static analysis
7 Rothberg/cfd2 123 1.6 38.3 32.7 CFD pressure matrix
8 DNVS/thread 29.7 2.2 24.1 34.9 Threaded connector
9 DNVS/shipsec8 115 3.4 35.9 38.1 Ship section

10 DNVS/shipsec1 141 4.0 39.4 38.1 Ship section
11 GHS_psdef/crankseg_2 63.8 7.1 43.8 46.7 Linear static analysis
12 DNVS/fcondp2 202 5.7 52.0 48.2 Oil production platform
13 Schenk_AFE/af_shell3 505 9.0 93.6 52.2 Sheet metal forming
14 DNVS/troll 214 6.1 64.2 55.9 Structural analysis
15 AMD/G3_circuit 1586 4.6 97.8 57.0 Circuit simulation
16 GHS_psdef/bmwcra_1 149 5.4 69.8 60.8 Automotive crankshaft
17 DNVS/halfb 225 6.3 65.9 70.4 Half-breadth barge
18 Um/2cubes_sphere 102 0.9 45.0 74.9 Electromagnetics
19 GHS_psdef/ldoor 952 23.7 144.6 78.3 Large door
20 DNVS/ship_003 122 4.1 60.2 81.0 Ship structure
21 DNVS/fullb 199 6.0 74.5 100.2 Full-breadth barge
22 GHS_psdef/inline_1 504 18.7 172.9 144.4 Inline skater
23 Chen/pkustk14 152 7.5 106.8 146.4 Tall building
24 GHS_psdef/apache2 715 2.8 134.7 174.3 3D structural problem
25 Koutsovasilis/F1 344 13.6 173.7 218.8 AUDI engine crankshaft
26 Oberwolfach/boneS10 915 28.2 278.0 281.6 Bone micro-FEM
27 ND/nd12k 36.0 7.1 116.5 505.0 3D mesh problem
28 ND/nd24k 72.0 14.4 321.6 2054.4 3D mesh problem
29 Janna/Flan_1565 1565 59.5 1477.9 3859.8 3D mechanical problem
30 Oberwolfach/bone010 987 36.3 1076.4 3876.2 Bone micro-FEM
31 Janna/StocF-1465 1465 11.2 1126.1 4386.6 Underground aquifer
32 GHS_psdef/audikw_1 944 39.3 1242.3 5804.1 Automotive crankshaft
33 Janna/Fault_639 639 14.6 1144.7 8283.9 Gas reservoir
34 Janna/Hook_1498 1498 31.2 1532.9 8891.3 Steel hook
35 Janna/Emilia_923 923 21.0 1729.9 13661.1 Gas reservoir
36 Janna/Geo_1438 1438 32.3 2467.4 18058.1 Underground deformation
37 Janna/Serena 1391 33.0 2761.7 30048.9 Gas reservoir

Table A.1: Test matrices and their characteristics without node amalgamation. n is the matrix
order, nz(A) represents the number of entries in the matrix A, nz(L) represents the number of
entries in the factor L and Flops corresponds to the operation count for the matrix factorization.
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