
 
 

H2020-FETHPC-2014: GA 671633 

 

 

 

 

NLAFET Working Note 22 
 

Design and implementation of a parallel 
Markowitz threshold algorithm 

 
Timothy Davis, Iain S. Duff, and Stojce Nakov 

 

 

 

 

 

 

 

 
Febryary 2019 



NLAFET Working Note  

 

 
http://www.nlafet.eu/ 2/2 
 

Document information  
This preprint report is also published as Technical Report RAL-TR-2019-003., Science & 
Technology Facilities Council, UK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements This project has received funding from the European Union’s 
Horizon 2020 research and innovation programme under the grant agreement number 
671633. 

http://www.nlafet.eu/


Design and implementation of a parallel Markowitz
threshold algorithm

Timothy Davis1, Iain S. Duff2, and Stojce Nakov2

ABSTRACT

We develop a novel algorithm for the parallel factorization of an unsymmetric sparse matrix
using a Markowitz threshold algorithm. We implement this algorithm using OpenMP and
show its performance on a set of standard sparse matrix test problems.

Keywords: Sparse unsymmetric matrices, Luby’s algorithm, OpenMP, multicore, parallel
pivot selection, sparse factorization

AMS(MOS) subject classifications: 65F30, 65F50

1Texas A & M University, College Station , Texas, USA. davis@tamu.edu
2Scientific Computing Department, STFC Rutherford Appleton Laboratory, Harwell Campus,
Oxfordshire, OX11 0QX, UK.

NLAFET Working Note 22. Also published as RAL Technical Report RAL-TR-2019-003.

This work is supported by the NLAFET Project funded by the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement 671633. Davis was supported by
the National Science Foundation (CNS-1514406).

February 20, 2019



Contents
1 Introduction 1

2 Related Work 2

3 Markowitz threshold pivoting 3

4 Parallel implementation of Markowitz/threshold pivoting 4

5 Design of an unsymmetric “Luby’s" algorithm 6

6 Implementation details 9
6.1 Implementation of the unsymmetric Luby’s algorithm . . . . . . . . . . . . 10
6.2 Schur complement update . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 Performance and comparison with other codes 13

8 Conclusions 18

i



1 Introduction
We develop a novel algorithm for the parallel factorization of an unsymmetric sparse matrix
using a Markowitz threshold algorithm.

We wish to solve the system of linear equations

Ax = b, (1.1)

where A is a sparse matrix of dimensions n × n. An entry in row i and column j is
designated by aij. The right-hand side vector b and the solution vector x are of length n.
In this paper, we consider the vectors x and b as dense. The method that we use for solving
equation (1.1) is a direct method. That is we form an LU factorization of a permutation
of the matrix A, where L is a sparse lower triangular matrix and U is a sparse unit upper
triangular matrix. The permutation is chosen to maintain sparsity in the matrices L and
U while also producing a numerically stable factorization.

We are particularly targeting equations with a highly unsymmetric matrix that we
define as a matrix whose structure is not well approximated by the structure of |A|+ |A|T .
Various authors have defined a measure of the asymmetry of a matrix, and here we use
that defined in [27] which is the proportion of off-diagonal entries for which there is a
corresponding entry in the transpose, viz.

si(A) = numberi 6=j{aij ∗ aji 6= 0}
nz{A}

,

where si is called the symmetry index and nz{A} is the number of off-diagonal entries in
the matrix A. A matrix with a symmetric structure will thus have a symmetry index of
1.0. We define 0/0 to have the value 1.0 so that a diagonal matrix will be symmetric. A
triangular matrix will have symmetry index zero. Our experiments suggest that matrices
with symmetry indices of less than 0.9 can be considered highly unsymmetric and these
are the main target of our current work.

There are many applications that give rise to such matrices, for example, econometric
modelling, chemical engineering, power systems, and linear programming although the
latter has developed a large cohort of software where special techniques are used to update
the factors for sequences of very related matrices.

In contrast to the case of nearly symmetric matrices, there is very little software for
this class of matrices and almost no work on parallel algorithms. Available codes for this
case include MA48 and HSL_MA48 [25], UMFPACK [16], LUSOL [49], and KLU [18].

Our new algorithms and code are designed for execution on shared memory multicore
nodes. To obtain an efficient implementation on such architectures is already a challenge
because of the low arithmetic intensity and the complexity of the underlying algorithms
and data management necessitating the design of our own memory allocation routines.

Section 2 gives an overview of related work. We discuss the Markowitz threshold
algorithm in Section 3 and its parallel implementation in Section 4. We then discuss
our pivot search based on Luby’s algorithm in Section 5 and the parallel updating of the
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matrix using these pivots in Section 6. We have written a code in C using OpenMP that
is available from GitHub1. We use the acronym ParSHUM for our code that stands for
Parallel Solver for Highly Unsymmetric Matrices. We discuss the performance of this
code in Section 7 before including a few concluding remarks in Section 8.

2 Related Work
In contrast to the case of nearly symmetric matrices, there is very little software for this
class of matrices and no viable parallel algorithms. Currently available codes for this case
include MA48 and HSL_MA48 [25], UMFPACK [16], LUSOL [49], and KLU [18].

Prior work on parallel sparse LU factorization methods primarily focuses on matrices
with mostly symmetric nonzero pattern, or they restrict the pivoting in some way. There
has been far less work on more general factorization schemes and, to our knowledge, no
available software. We give a brief summary of what has been done, first on left-looking
algorithms then on right-looking.

The left-looking method selects the column ordering prior to factorization [34]. This
allows the column elimination tree to be determined a priori. In the column elimination
tree [32,33], nodes on independent branches form independent sets of pivots; George and Ng
exploited this property to create a parallel factorization method [30]. Parallel left-looking
variants either do not use pivoting during numerical factorization at all [48] or they only
allow for partial pivoting, which does not enable further parallelism to be found via the
pivot strategy. Examples of the latter approach include SuperLU_MT [20] and NICSLU [13].

Many parallel right-looking methods are based on the idea of finding independent sets
of pivots prior to factorization, with no pivoting during factorization [12, 35, 36, 40, 41, 43,
46,47,50,51,53]. These methods are suitable for matrices where numerical pivoting is not
required, such as sparse Cholesky factorization or the LU factorization of matrices that
are diagonally dominant or nearly so.

In contrast, the PSolve method [15] finds pairs of rows, in parallel during numerical
factorization, where the leftmost nonzero in both rows falls in the same column. One row
eliminates a single entry in the other, using pairwise pivoting.

Several prior methods find independent set of pivots during numerical factorization
[1, 3, 19, 38, 52]; these methods are the most closely related to the method presented in
this paper. No software developed from these methods is available. In these methods,
a set of pivots is found such that they form a diagonal matrix in the upper left corner
when permuted to the diagonal. Alaghband and Jordan [1, 3] use a dense binary matrix
to find compatible pivots, which are constrained to the diagonal; the method was then
extended to allow for sequential unsymmetric pivoting [2]. Davis and Yew [19] used a
non-deterministic parallel Markowitz search, where each thread searches independently.
Candidate pivots are added to the pivot set in a critical section, which limits parallelism.

1https://github.com/NLAFET/ParSHUM
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Van der Stappen and Bisseling [52] and Koster and Bisseling [38] found independent sets
of pivots in a distributed memory setting (a mesh of processors).

An entirely different approach for a parallel right-looking method is to partition the
matrix into independent blocks and to factorize the blocks in parallel. Duff [23] permutes
the matrix into bordered block triangular form, and then factorizes each independent block
with MA28. Geschiere and Wijshoff [31] and Gallivan et al. [28, 29] do this in MCSPARSE.
The diagonal blocks are factorized in parallel, followed by the factorization of the border,
which is a set of rows that connect the blocks. Duff and Scott [26] use a similar strategy
in MP48, a parallel extension of MA48. They partition the matrix into a singly bordered
block diagonal form and then use MA48 simultaneously on each block.

The many variations of the parallel multifrontal sparse LU method (including for
example MA41 and MUMPS) all assume a symmetric nonzero pattern of the matrix
[4–10, 14, 21, 22, 37, 39, 42]. These methods do not attempt to discover parallelism via
independent sets of pivots found during numerical factorization. If numerical pivoting
does occur during factorization, parallelism is reduced rather than enhanced.

3 Markowitz threshold pivoting
We first note how important it is to order a sparse matrix before or during numerical
factorization. To demonstrate this, we show a table from [24] where both the benefits of
using sparsity and of ordering the matrix for factorization are clearly seen. There is a
substantial reduction in both operations and storage for the factorization by using sparse
data structures and another significant gain if a good ordering strategy is used.

Treating matrix as dense sparse
unordered ordered

Operations to factorize matrix (×109) 31 251 17.6 3.6
Storage for LU factors (×106) 1 300 33.4 5.3

Table 3.1: Operations for Gaussian elimination on onetone1, which has order 36 057 and
341 088 entries.

Right-looking sequential algorithms for Gaussian elimination choose one pivot at a time
and update the trailing matrix (called the active matrix) before choosing the next pivot.
In our discussions and notation in this section and the next one, we describe the situation
at the beginning when the active matrix is the original matrix but the pivot selection is
performed similarly for the successive active matrices.

We define by fill-in an entry that is zero in A but is nonzero in the corresponding
entry of the factors. We note that we want our algorithm to reduce the fill-in since more
fill-in has a direct adverse impact on storage and consequent extra cost in system solution.
Clearly, for each pivot in Gaussian elimination the maximum fill-in that can be caused by
using this pivot is the product of the number of other entries in the pivot row with the
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number of other entries in the pivot column. Thus if there are cj entries in column j and
ri entries in row i, then we define the Markowitz count [45] for a potential pivot in row i,
column j as

Markij = (ri − 1)× (cj − 1). (3.1)

We choose candidate entries with low or minimum Markowitz count to reduce the amount
of fill-in. Of course such a candidate would be unacceptable if its numerical value was zero
or very small relative to other entries. We therefore introduce a threshold of acceptability
for a pivot and only consider entries aij that satisfy

|aij| ≥ u ·max
k
|akj|, k = 1, . . . , n (3.2)

where u is a threshold parameter 0 < u ≤ 1.0. That is to say we only consider entries that
are at least u times as large as the largest entry in modulus of all entries in the column.
We call such entries eligible entries. If u were equal to 1.0 then we would be using partial
pivoting that is the most common algorithm for dense matrices.

To continue with the factorization we must first update the trailing matrix using the
outer product of the pivot row and column, updating the numerical entries and normally
introducing fill-in. This is clearly a right-looking algorithm. For selecting the next pivot
we then perform the Markowitz threshold algorithm on this trailing or active matrix of
order one less than the previous one, and we continue in this way until all n pivots have
been chosen. The algorithm is simple but the data structures to implement it efficiently,
even in serial mode, are not. We consider the details of the data structures that we use in
the next section.

4 Parallel implementation of Markowitz/threshold
pivoting

For our parallel implementation, we use essentially the same pivoting strategy, that is a
Markowitz threshold algorithm using the same terminology as the previous section. As
is common in the design of a parallel code, we will obtain much of our parallelism using
blocking. We find a block of pivots at each step rather than a single pivot as described in
the previous section.

In our implementation, we find a set of independent pivots that can be used in parallel.
We illustrate this in Figure 4.1 where the independent pivots have been permuted to the
top left-hand corner of the matrix. We then use these as a block pivot to update in parallel
the active matrix. We repeat these two steps on the updated Schur complement (that is the
updated active matrix) and continue doing this until either the Schur complement becomes
denser than a preset value or the number of pivots found is less than a preset value. In
fact, when we conducted the experiments that we describe in Section 7, we found that
the number of pivots chosen at each stage was not, as might be expected, monotonically
decreasing but the selection of a low number of pivots might be followed by a much larger
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number of independent pivots. We thus monitor the number at each stage and do not
switch unless the last few steps (the actual number is a parameter) have yielded only a
very few pivots (another parameter). We then switch to using a dense factorization routine
on the remaining Schur complement. In our present implementation on multicore machines
we use GETRF from PLASMA [11].

0

X
X

X
X

X
X

X

0

Figure 4.1: Block of independent pivots.

In sequential codes like MA48 [25], we select the eligible pivot which has the minimum
Markowitz count, as defined in equation (3.1). Because we want to get large blocks
of independent pivots, we relax this by accepting eligible pivots within a factor of the
minimum, that is an entry (i, j) can be chosen as a pivot if its Markowitz count satisfies
the condition

Markij ≤ αMark ×BestMark (4.1)

where the Markowitz factor αMark is greater than or equal to one and BestMark is the
lowest Markowitz count among all eligible entries.

We have developed a completely new pivot selection algorithm based on Luby’s
algorithm [44] for obtaining a maximal independent set of nodes in undirected graphs.
One of our main contributions is to extend this algorithm to deal with directed graphs
corresponding to unsymmetric matrices.

It is very important to first remove singletons. A singleton is an entry aij having no
other entries in either its row i or column j. An entry aij is a row singleton if it is the only
entry in its row and is a column singleton if it is the only entry in its column. Clearly,
choosing a singleton as pivot will incur no fill-in.

There are two reasons for identifying and choosing singleton pivots before continuing
with the main pivot selection phase. If these pivots are not handled properly, they can
cause the unsymmetric-Luby’s search phase to find a very small pivot set. That is to say
an entry aij can be a column singleton, meaning that entries akj are all zero for k 6= i but
there can be many entries aik that are nonzero. This is fine as a pivot choice as there would
be no fill-in but the presence of the dense row will greatly reduce the number of pivots that
are independent and could be chosen at this stage. For example, if the row of the column
singleton were completely dense then it would not be possible to choose any independent
pivots after the choice of the column singleton. The other issue is that a singleton would
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have zero Markowitz count. Thus the condition (4.1) would mean that we can only choose
singletons in this pass of the algorithm.

Singletons can occur both in the original input matrix and also in the active submatrix
as the factorization progresses. We thus precede the unsymmetric-Luby’s pivot search
algorithm (described in the next section) with a phase for selecting singletons. This phase
finds all the singleton pivots and eliminates them. No update of the Schur complement
is required for singleton pivots, except for the removal of entries. In this case, the set of
independent pivots may not form a diagonal submatrix, but they would still be independent
since singletons have no effect on the Schur complement. We improve the performance by
allowing singletons and Luby’s-selected pivots to be used in the same pass in the update
of the active matrix.

We discuss the implementation of our algorithm in the following two sections. We give
details for the unsymmetric Luby’s-style pivot search in Section 5 and a detailed description
of how we update the active submatrix via a Schur complement computation on both the
column-form (pattern and values) and row-form (just the pattern) in Section 6.2. The two
steps in these sections repeat until the matrix is factorized, or until the pivot sets become
too small, or until the density of the active submatrix becomes too high. If the matrix is
not factorized we complete the factorization using the dense factorization code GETRF from
PLASMA [11].

5 Design of an unsymmetric “Luby’s" algorithm
Our new algorithm for finding a set of independent pivots uses an extension of Luby’s
algorithm [44] for finding a Maximal Independent Set (MIS) of nodes in an undirected
graph. In our case there are two major differences from the original Luby’s algorithm:
instead of applying the algorithm on an undirected graph, we adapt it for directed graphs
and rather than searching for a set of independent nodes we are searching for a set of edges
representing independent pivots.

A pseudo-code for Luby’s algorithm for undirected graphs is given in Algorithm 1. The
main idea behind the algorithm is to assign random scores to each node (line 6) and then
select the nodes that have the highest score among all of their neighbours (line 7). This
will guarantee that the nodes are independent. These nodes are added to the independent
set I (line 8). Together with their neighbours they are removed from the original graph
(lines 9-10). Performing this will ensure that the nodes that are left for the next iteration
will not be dependent on any of the nodes that are already in I. This process is repeated
on the reduced graph G′ until it becomes empty.

We now extend this algorithm to directed graphs. The reason for this is that an
unsymmetric matrix is represented as a directed graph. For a n×nmatrix A, the associated
graph has n nodes and for each nonzero entry in the matrix, aij, an edge exists from node
i to node j. We first introduce the following terms:

• SRC(ε1, ε2, . . .), the source nodes for the edges ε1, ε2, . . .
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Algorithm 1 Luby’s algorithm.
1: Input G = (V,E) an undirected graph
2: Output I ⊆ G, a MIS
3: I ← ∅
4: G′ = (V ′, E ′)← G = (V,E)
5: while G′ 6= ∅ do
6: assign random score to each node in V ′

7: I ′ ← nodes having highest score among their neighbours

8: I ← I ∪ I ′
9: Y ← I ′ ∪N(I ′)
10: G′ = (V ′, E ′) is the induced subgraph on V ′ − Y
11: end while

• DST (ε1, ε2, . . .), the destination nodes for the edges ε1, ε2, . . .

• IN(ν1, ν2 . . .), the incoming edges to nodes ν1, ν2 . . .

• OUT (ν1, ν2 . . .), the outgoing edges from nodes ν1, ν2 . . .

From a matrix point of view, the SRC() andDST () terms, for a given list of nonzero entries
(edges) ε1, ε1, . . . represent its row and column indices respectively, while the OUT () and
IN() terms for a given list of indices (nodes) ν1, ν2 . . . return their rows and columns
respectively. With these notations, a set of edges representing independent pivots I, as
presented in Figure 4.1, is defined as:

{ ∀ε ∈ I|@ε′ ∈ I, ε′ 6= ε and
( ε′ ∈ IN(DST (OUT (SRC(ε)))) or ε′ ∈ OUT (SRC(IN(DST (ε)))) ) }

(5.1)

Figure 5.1: Independent set condition

The first part of equation (5.1) is illustrated in Figure 5.1, for a single edge in the
independent set, ε = (i, j) ∈ I. The central point in the figure is the edge ε. Consider
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the first part of (5.1), for this edge. The SRC(ε) for the edge ε is the node (or row)
i, and OUT (i) is then the set of edges (i, x) ∈ A; that is, the nonzeros in row i. The
set DST (OUT (SRC(ε))) is the set of all column indices x for these nonzeros in row i.
Finally, IN(DST (OUT (SRC(ε)))) is the set of all edges in any of these columns x. No
edge ε′ in this final set can appear in the independent set I (unless it is the same edge
as ε itself). The second part of Equation (5.1) is similar; it states the transpose of the
condition illustrated in Figure 5.1.

Our extension of Luby’s algorithm is presented in Algorithm 2, where for a given
directed graph G, we calculate a set of edges I satisfying the condition in equation (5.1).
For each node, we pick one of the incoming edges and assign a score to it (line 6). These

Algorithm 2 Unsymmetric Luby’s algorithm for pivot search algorithm.
1: Input G = (V,E) a directed graph
2: Output I ⊆ E

3: I ← ∅
4: G′ = (V ′, E ′)← G = (V,E)
5: while E ′ 6= ∅ do
6: I ′′ = {∀ν ∈ V ′, IN(ν) 6= ∅, choose an edge ε |

ε‘ ∈ IN(ν) and assign score to ε}
7: I ′ ← I ′′

8: for all ε ∈ I ′′ do
9: for all ε′ ∈ IN(DST (OUT (SRC(ε)))) do
10: if (ε′ ∈ I ′′) and (ε 6= ε′) then
11: if SCORE(ε) > SCORE(ε′) then
12: remove ε′ from I ′

13: else
14: remove ε from I ′

15: end if
16: end if
17: end for
18: end for
19: I ← I ∪ I ′
20: Ydst ← {∀ε ∈ I ′, OUT (SRC(IN(DST (ε))))}
21: Ysrc ← {∀ε ∈ I ′, IN(DST (OUT (SRC(ε))))}
22: Y ← Ysrc ∪ Ydst

23: E ′ ← E ′ − Y
24: end while

edges will be called the chosen edges. Instead of relying on a random score as in Luby’s
algorithm, we assign a score that will be presented in the next section. By doing this
operation per node we ensure that no two edges will have the same destination node. Next,
for each chosen node, among all the incoming edges to nodes that can be reached from the
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source node of the chosen edge, we check if there is another chosen edge among them. If
this is the case, the edge with the lower score is removed from the set of independent pivots
I ′ calculated at this iteration. By doing this, the first condition part of equation (5.1) is
satisfied for all the nodes in I ′. Next, we need to make sure that there are no chosen edges
among all the outgoing edges from nodes for which there is an edge that have the same
destination node as our chosen edge. But if an edge like this exists, by the check that is
done on the first condition of equation (5.1), one of the two will be removed. Thus, once
the loop over all chosen edges (line 8) is performed, all the edges that are still in I ′ are
independent pivots satisfying the two conditions from equation (5.1). Next, the edges that
are in I ′ are added to the final set of independent pivots I and all the edges that satisfy
the two conditions are removed from E ′. The process is repeated until E ′ becomes empty.

In the next section we present implementation details for our extension of Luby’s
algorithm the Schur update of the trailing matrix.

6 Implementation details
Our algorithm can be divided in two main phases: finding a set of independent pivots
and the Schur complement update on the trailing matrix. During the first phase, we rely
on our unsymmetric Luby’s pivot search algorithm (see Algorithm 2) which finds a set
of pivots that are structurally independent, forming a diagonal submatrix when they are
permuted to the diagonal. A parallel Schur complement update to the active matrix is
then performed. The entire process repeats until the matrix is factorized, or until too
few pivots are selected or the matrix reaches a prescribed density, at which point a dense
matrix factorization algorithm is used.

In our implementation, the active matrix is held in two forms: as a set of sparse column
vectors and as set of sparse row vectors. The column-form holds the pattern and the
numerical values, while only the pattern is stored by rows. Since the active matrix grows
because of the fill-in, every row and column is given extra space at the beginning of the
factorization to accommodate some fill-in before needing to be reallocated. Additionally,
instead of calling the memory manipulation functions provided by the system, we rely on a
dynamic memory allocator that we wrote specifically for this algorithm and data structure.
Both of the factors, L and U , are stored as a set of sparse column vectors. Additionally we
use nine integer arrays and one real array. During the unsymmetric Luby’s algorithm, a real
array is used for storing the randomised score and one additional array is used for flagging,
two integer arrays are used for storing the row and column permutation, two for the inverse
permutations, two arrays that store the remaining rows and columns in the active matrix
and two arrays for the computing the logical sum of the rows and columns of the set of
pivots. Furthermore, we have three arrays of size n per thread, two integer and one real
array. Their use will be explained in the following. We now present implementation details
for the unsymmetric Luby’s algorithm.
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6.1 Implementation of the unsymmetric Luby’s algorithm
As we explained in Section 4, we search for singletons in the active matrix. This is done
by checking if a row or a column exists with only just one entry. If this is the case, these
entries are flagged as pivots and are treated together with the set of independent pivots
found by the unsymmetric Luby’s algorithm. During this phase, the two arrays that hold
the rows and columns in the active matrix are updated, removing the pivots found in the
previous iteration. Algorithm 2 is then performed on the active matrix without considering
the singleton rows and columns.

Following the pivoting strategy presented in Section 3, we want to consider only entries
that meet some requirements. We restrict our choice, as indicated in Section 3, to eligible
entries that are numerically acceptable in the sense of inequality (3.2). Additionally, the
entries that we are considering as pivots should have a Markowitz count that is no higher
than a given multiple of the minimum Markowitz count (see condition (4.1)). Line 6 from
Algorithm 2 will be performed only on eligible entries, while the rest is performed on the
entire matrix. As mentioned above, two arrays of size n are needed for the implementation
of this algorithm: one used for flagging columns and another for storing the randomised
score. The pivot search algorithm can be divided into two phases: the initialisation phase
and the search phase. The initialisation phase is done just once for each successive active
matrix, while the search phase can be repeated until all the entries are discarded.

Initialisation During this phase, a first pass by columns on the active matrix is done
in parallel and the numerically ineligible entries are discarded. Discarded entries are
kept in the Schur complement but simply excluded as pivot candidates. This is done
by partitioning each column into two sets: eligible entries that would be numerically
acceptable as pivots, and ineligible entries that are too small. At the same time, the
minimum Markowitz count over all currently eligible entries is calculated. For working on
subsequent Schur complements, we only have to perform the partitioning of columns that
have been changed by the previous update. We identify these at the end of the search
phase and thus perform the partitioning. The partitioning on all the columns is done only
during the first pivot search. For each column, a potential pivot, with the lowest Markowitz
cost, will be chosen from its eligible entries, if it satisfies the Markowitz condition (4.1).
These columns are flagged using the flagging array and only these columns are considered
for the remainder of the algorithm.

Main loop The search phase is divided into the following six steps. Each step is
performed fully in parallel and a synchronisation is needed between each of the six steps.
No atomic operations and no other critical sections are used.

• Step 1: The columns that have been flagged during the initialisation phase are split
into subsets and each thread handles the columns within a subset. To each potential
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pivot a score is assigned equal to:

tmp = rand(0, 1)

scoreij = tmp× (1− Markij

αMark ×BestMark

) + (1− tmp)× aij

maxi

(6.1)

where maxi corresponds to the largest absolute value in column i and rand(0, 1)
returns a random value between zero and one. The potential pivots are a superset of
the final chosen pivots, but they may form an incompatible set. By incompatible we
mean that they do not satisfy the conditions in equation (5.1). In fact they could
even have the same row index. Steps 2 and 3 of this search phase prune this set of
potential pivots to find a set of valid chosen pivots.

• Step 2: Each thread examines each of its potential pivots and discards those that are
incompatible with other potential pivots. In Algorithm 2, this operation corresponds
to the loop in line 8. A thread may discard both its own potential pivots and those
of another thread. Let ai1,j1 be a potential pivot. The thread that owns this pivot
examines the column indices j of all nonzero entries in row i1. If ai1,j is nonzero and
column j contains a potential pivot then we have two pivots that are incompatible
(line 10): one in column j and one in column j1. The one with the lower score is
then flagged using the flagging array (line 11).

• Step 3: All threads now re-examine their own potential pivots. If the column j1 of a
potential pivot ai1,j1 has not been flagged in Step 2, then it becomes a chosen pivot.
Each thread makes a local list of its chosen pivots. We assume that we have p threads
and that thread t (1 ≤ t ≤ p) has found kt chosen pivots.

• Step 4: We construct a global list of the rows and columns of the chosen pivots,
by first computing the cumulative sum of k1, k2, . . . , kp. If p is large, this can be
done in parallel in O(log p) time. If p is small then a single thread can compute the
cumulative sum in O(p) time. This provides each thread with its positions in the
global list of pivots for Step 5.

• Step 5: Each thread copies its set of chosen pivots into the global list of pivots and
updates the array with the inverse permutations.

• Step 6: At the synchronisation barrier between Steps 5 and 6, we can redistribute
work among the threads to give an equal amount of work to each thread. Next we
need to discard all the entries that are compatible with the chosen pivots (lines 20
to 23). For that we compute the logical sum of all column indices in the pivotal
rows and the logical sum of all row indices in the pivotal columns. As described
above, we use two auxiliary array of length n in order to do this. We discard all
remaining potential pivots for which their column index is in the logical sum that we
have calculated for the columns or if their row indices are in the logical sum that
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we have calculated for the rows. Finally, the arrays holding the permutations and
inverse permutations are updated including the chosen pivots.

This process is repeated until there are no more eligible entries. However, in our
experiments we have found that a single pass provides the best overall performance.
Therefore, we perform only one iteration.

The logical sum for the pivotal rows and columns of the final set will determine what
rows and columns are active during the Schur update. Therefore, we extract all the rows
and columns that are not pivots but that have been marked. This information is then used
during the Schur complement update.

6.2 Schur complement update
Updating the column-form All pivotal columns are removed from the column-form
of the active submatrix and placed in L. Once this is done, the update of the column-form
and the row-form of the active matrix is performed concurrently.

The update of each column in the list constructed in Step 6 of the Luby’s pivot search
is independent of any other column, and no locks are needed unless memory reallocation
is required. We discuss the operations for column j in this list. First, column j is scanned
and any pivotal rows (identified by an O(1) test on the inverse row permutation array) are
removed and placed in the jth column of U . Next, the updates from each of the pivots
corresponding to these rows in U are found and are applied to column j. We make this
update more efficient and avoid potential multiple memory reallocations by using three
temporary vectors of length n per thread (one with values, one with row indices, and the
other with pointers into these arrays) to accumulate the updated column vector so that the
resultant vector is only updated once, with possible memory reallocation, if the updates
cause column j to exceed its current allocated space. Additionally this allows the allocator
to be independent of the previous state of the column, reducing this operation to only the
manipulation of pointers. Since the memory allocation is done inside a critical section, this
decreases the time spent in the critical section. Finally, the partitioning of each column
into eligible and ineligible entries is performed.

Updating the row-form A list with all active rows exists once Step 6 is performed and
each thread treats independently a subset of that list. Entries in pivotal columns in any
given row i are removed from the row and the updates from these pivots are applied one
at a time, but with their pattern only, so no numerical values are computed. Similarly
as in the column-form update, we use two extra temporary vectors of size n (one with
column indices, and the other with pointers into this array). If row i exceeds its space,
new memory is allocated to hold the row.
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7 Performance and comparison with other codes
In this section we present results obtained from the ParSHUM package. All the tests in
this section were performed on a system called Kebnekaise, which is located in the High
Performance Computing Center North (HPC2N) at Umeå University2. Each compute
node contains 28 Intel Xeon E5-2690v4 cores organised into 2 NUMA islands with 14 cores
in each. The nodes are connected with a FDR Infiniband Network. Each CPU core has
32 KB L1 data cache, 32 KB L1 instruction cache and 256 KB L2 cache. Moreover, for
every NUMA island there is 35 MB of shared L3 cache. The total amount of RAM per
compute node is 128 GB. In our experiments, we use only one NUMA node, so all the tests
presented below are executed on fourteen cores.

All the libraries used in these runs were compiled with GCC V7.3.0. PLASMA V3.0.0 is
used for the dense factorization. PLASMA uses the Intel MKL 2019.0.117 Library for the
BLAS operations. The matrices lung2, twotone, hvdc2, mac_econ_fwd500, rajat21mc2depi
and pre2 are from the SuiteSparse Matrix Collection [17]3, the three matrices InnerLoop1,
Jacobian_unbalancedLdf and Newton_Iteration1 are from the Power Systems application
supplied by Bernd Klöss of DigSILENT GmbH and the last two matrices nug30 and
esc32a are basis matrices for a quadratic assignment problems from QAPLIB4. The main
attributes of the matrices used in this study are given in Table 7.1.

Matrix n nz si

(103) (106)
nug30 53 0.24 0.00
esc32a 64 0.31 0.00
lung2 109 0.49 0.57
twotone 120 1.22 0.26
hvdc2 190 1.35 0.99
InnerLoop1 197 0.75 0.44
Jacobian_unbalancedLdf 203 2.41 0.80
mac_econ_fwd500 206 1.27 0.07
rajat21 411 1.89 0.76
Newton_Iteration1 427 2.38 0.14
mc2depi 525 2.10 0.00
pre2 659 5.96 0.36

Table 7.1: Statistics for the matrices that are used in this study.

For a given matrix A, ParSHUM factorizes the matrix as:

PAQ = LU,

2See https://www.hpc2n.umu.se/resources/hardware/kebnekaise.
3Formerly called the University of Florida Sparse Matrix Collection.
4http://anjos.mgi.polymtl.ca/qaplib/inst.html
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where P and Q are row and column permutation matrices respectively, and L and U are
lower and upper triangular matrices respectively. We define the fill-in factor as the number
of entries (nz) in the L and U factors divided by the number of entries in A viz:

nz{L}+ nz{U}
nz{A}

.

First we investigate the numerical stability of our algorithm by calculating the backward
error as:

‖b− Ax‖2
‖b‖2 + ‖A‖∞‖x‖2

.

In Figure 7.1 we present the impact on the backward error of the threshold parameter u in
equation (3.2) for selecting pivots. When a low threshold is used, pivots with smaller values
are accepted resulting in an increase of the backward error. This is more noticeable for the
mc2depi and hvdc2 matrices (see Figure 7.1). However, when the threshold is increased,
we obtain a backward error of at most 10−13 for all the matrices.
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Figure 7.1: The impact of the threshold parameter, u, on the backward error for ParSHUM.

Another parameter in our algorithm is the Markowitz threshold. By relaxing this
parameter, we allow pivots with higher Markowitz count to be chosen as pivot. These
pivots could potentially increase the fill-in in the factors. We observe the effect of this
parameter on the fill-in for each matrix in Figure 7.2. When the Markowitz threshold is
increased, each matrix tends to have increased fill-in.

In order to get good performance for our algorithm, we need to find the best
combination of three main parameters: a good threshold parameter so that we get a
numerically correct solution; a small enough Markowitz tolerance so that the fill-in is
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Figure 7.2: The impact of the Markowitz threshold on the fill-in factor for ParSHUM. The
results for nug30, esc32a, mac_econ_fwd500, mc2depi and pre2 are not shown here because
their high values dominate the graph. However, they follow a similar behaviour to the
other matrices.

reasonable but a relatively large number of pivots are obtained at each stage; and the
Schur density for determining when to switch to the dense code. We have done extensive
testing and for each matrix we have calculated the best combination of parameters in
terms of execution time for all three solvers (the Markowitz threshold does not make sense
for the MA48 and UMFPACK solvers, and the density switch does not make sense for the
UMFPACK solver since it already does its numerical factorization via a sequence of dense
rectangular frontal matrices). The parameters are presented in Table 7.2. All the tests
from now on use these optimal values, and we note that all our results have a backward
error of at most 10−12 (10−16 with the exception of mc2depi).

Next, we investigate the parallel behaviour of our algorithm. In Figure 7.3, we present
the execution time for two matrices, mc2depi and twotone when the number of threads
is increased. The fill-in factor for the mc2depi and twotone matrices is 302 and 7.37
respectively. The parallel behaviour of our algorithm is mainly limited by the granularity
of the data on which it operates and the amount of available parallelism. For matrices
with a large fill-in factor, these two limitations are less important because the algorithm
will operate on row and columns of larger size which will lead to more efficient execution.
Additionally more parallelism is available. For instance, for the mc2depi matrix a speed-up
of 11.1 is achieved when 14 threads are used. On the other hand, for the twotone matrix
a speed-up of 4.7 is obtained mainly due to lower granularity and limited parallelism.

In Table 7.3 the best execution times and the fill-in factor for MA48, UMFPACK and
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Figure 7.3: Multi-threaded results for our algorithm. Results for the mc2depi matrix are
presented on the left and for the twotone matrix on the right.

ParSHUM are presented. We obtain the lowest execution times with ParSHUM for all the
matrices except the Jacobian_unbalancedLdf, mac_econ_fwd500 and mc2depi matrices for
which the UMFPACK solver yields the lowest execution time. The main reason for this is
the fill-in factor. Indeed, the ParSHUM solver tends to obtain a larger fill-in factor than the
other two solvers, but manages to obtain better performance due to its parallel execution
in comparison with the sequential execution of UMFPACK and MA48. For instance, the
same execution time is obtained for the hvdc2 matrix with ParSHUM and UMFPACK with
a fill-in factor that is more than three times larger for ParSHUM. On the other hand, for
the mac_econ_fwd500 matrix, the UMFPACK solver has a fill-in of 57.5 while a fill-in of
450 is obtained with the ParSHUM solver, resulting in a much higher execution time.

The exceptions are the nug30 and esc32a matrices, for which a considerably lower fill-in
is obtained with the ParSHUM solver, resulting in much lower execution time. For these
matrices, the switch to dense code for MA48 is done very early, when density of only one
percent is achieved for the nug30 matrix for instance. If the switch is done later, the sparse
part of the algorithm becomes too expensive for the MA48 solver. But since MA48 relies
on its own sequential dense factorization, the execution time is high. This is the main
reason for the overall higher execution times of MA48.
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ParSHUM MA48 UMFPACK
Matrix u αMark Φ u Φ u

nug30 10−6 2 0.1 10−2 0.01 10−1

esc32a 10−6 2 0.15 10−2 0.05 10−1

lung2 10−4 8 0.1 1.0 0.4 10−4

twotone 10−2 2 0.2 10−2 0.8 10−5

hvdc2 10−2 4 0.1 10−1 0.4 10−5

InnerLoop1 10−5 16 0.1 10−3 0.8 10−7

Jacobian_unbalancedLdf 10−8 4 0.1 10−3 0.8 10−1

mac_econ_fwd500 10−4 3 0.2 10−1 0.1 10−4

rajat21 10−9 16 0.1 10−5 0.2 10−2

Newton_Iteration1 10−6 16 0.1 10−2 0.8 10−4

mc2depi 10−1 2 0.1 10−1 0.1 10−1

pre2 10−4 2 0.1 10−3 0.2 10−7

Table 7.2: The parameters and their optimal values for the results in Figure 7.3 and
Table 7.3 are shown in columns 2-4 (ParSHUM), 5-6 (MA48) and 7 (UMFPACK). The
parameters u and αMark are defined in Sections 3 and Φ is the density at which the switch
to full code is made.

ParSHUM MA48 UMFPACK
Matrix time fill-in time fill-in time fill-in
nug30 0.71 142. 31.0 450. 48.15 463.
esc32a 0.46 70.9 7.54 154. 71.0 341.
lung2 0.04 1.48 0.37 2.55 0.10 1.44
twotone 0.35 7.37 4.00 18.8 0.49 5.45
hvdc2 0.38 6.91 0.42 1.82 0.38 2.06
InnerLoop1 0.13 2.71 0.22 1.99 0.30 2.48
Jacobian_unbalancedLdf 0.99 10.9 4.21 5.40 0.74 3.88
mac_econ_fwd500 33.5 450. 4137. 483. 4.62 57.5
rajat21 0.11 1.64 9.74 1.26 44.5 1.89
Newton_Iteration1 0.46 3.46 1.23 2.55 1.00 2.55
mc2depi 104. 302. 1816. 144. 4.36 38.6
pre2 13.0 57.0 124.1 44.8 25.8 32.3

Table 7.3: The execution time and the fill-in factor for ParSHUM, MA48 and UMFPACK
solvers. Best results (or results within 5% of the best) are highlighted in bold.
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8 Conclusions
We have presented a completely new approach for finding sets of independent pivots in
an unsymmetric matrix (that is, a directed graph), based on a novel extension of Luby’s
method for undirected graphs [44]. We have also developed a robust library code called
ParSHUM that implements a sparse factorization method based on this idea, as well as a
parallel Schur complement update. The package has been published as easily-accessible,
well-documented open source software (https://github.com/NLAFET/ParSHUM). The
performance results of our method show that it obtains excellent performance for highly
unsymmetric matrices. It is typically much faster than two widely-used packages on a
multicore system (MA48 and UMFPACK), even though it sometimes produces factorizations
with more fill-in.
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