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Abstract

The reduction of a general dense and square matrix to Hessenberg form is a well
known first step in many standard eigenvalue solvers. Although parallel algorithms exist,
the Hessenberg reduction is still one of the bottlenecks in state-of-the-art software for
the distributed QR algorithm. We propose a new NUMA-aware algorithm that fits the
context of the QR algorithm and evaluate the tunability of its algorithmic parameters.
The proposed algorithm can be faster than LAPACK and ScaLAPACK for small problem
sizes. In addition, evaluating the algorithmic parameters shows that there is potential for
auto-tuning some of the parameters.

Keywords: Hessenberg reduction, parallel cache assignment, NUMA-aware algorithm,
shared-memory algorithm, tunable parameters, off-line tuning.

1 Introduction
The work presented is motivated by a bottleneck in a distributed parallel multi-shift QR
algorithm for solving large-scale dense matrix eigenvalue problems [7]. On the critical path
of the QR algorithm, we find an expensive procedure known as Aggressive Early Deflation
(AED) [1]. The purpose of AED is two-fold. First, to detect and deflate converged eigenvalues.
Second, to generate shifts for subsequent QR iterations. The AED procedure operates on a
square sub-matrix located at the bottom right corner of the matrix. There are three main
steps in AED. First, recursively apply the QR algorithm. Second, reorder the eigenvalues to
detect converged eigenvalues. Third, to restore the sub-matrix to Hessenberg form. Future
work will investigate the first two steps since the full potential of the present work is realized
only when all three steps are parallelized in a similarly aggressive manner.

What distinguishes Hessenberg reduction in the particular context of AED compared
to the general case? A key feature is that the problem size is relatively small. Since the
computation sits on the critical path of the overall computation its performance is critical.
The number of cores available is too large relative to the problem size for ordinary algorithms
and implementations to perform well.

The work presented here uses only cores contained in one shared-memory node of a larger
distributed system. This enables efficient use of fine-grained parallelization and auto-tuning
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techniques. The aim is to present a new implementation of multi-threaded Hessenberg reduc-
tion with a large degree of flexibility and locality of memory references. This means that the
implementation has tunable parameters that can be tweaked to tune its performance. The
goal is to distinguish those parameters that have an impact on the performance and need
tuning from those that either have no impact or are trivial to set optimally.

A node in a distributed memory system commonly has a shared-memory architecture with
Non-Uniform Memory Access (NUMA). Hessenberg reduction, as will be explained later, is a
partially memory-bound computation with approximately 20% of the arithmetic operations
accounted for by matrix–vector multiplications. High performance is obtained only when
the cost of memory accesses is minimized. Therefore, our implementation makes use of
the Parallel Cache Assignment (PCA) technique recently proposed by Castaldo and Whaley
[2, 3, 4, 8] for one-sided factorizations and unblocked Hessenberg reduction. This technique
leads to two benefits. First, the implementation becomes NUMA-aware in the sense that it
leads to mostly local memory references. Second, the implementation can efficiently utilize
the aggregate capacity of a parallel cache hierarchy if the problem is small enough to fit in
cache.

The rest of the paper is organized as follows. Section 2 surveys published algorithms for
Hessenberg reduction and recalls the PCA technique. Section 3 describes our multi-threaded
implementation of blocked Hessenberg reduction using the PCA technique. Section 4 iden-
tifies algorithmic parameters. Section 5 summarizes experimental results showing measured
performance and the impact of individual tuning of each parameter. Section 6 presents a
simple off-line tuning mechanism and shows its impact on the new implementation. Section 7
concludes and highlights future work.

2 Background

2.1 Unblocked Hessenberg Reduction

Hessenberg reduction is an orthogonal similarity transformation that transforms a given
square matrix A to an upper Hessenberg matrix H = QTAQ, where Q is an orthogonal
matrix. The textbook algorithm [6] for Hessenberg reduction uses Householder reflections to
zero out—reduce—the columns one by one from left to right. Specifically, let A(0) = A denote
the initial state of the input. The first column of A(0) is reduced by a similarity transforma-
tion to obtain A(1). The second column of A(1) is reduced to obtain A(2). And so on for a
total of n − 2 iterations. The output H = A(n−2) is in upper Hessenberg form. In practice,
the computation is organized in such a way that the sequence of matrices overwrite the initial
matrix.

Consider an arbitrary iteration transforming A(k−1) into A(k). The step consists of con-
structing a Householder reflection Q(k) = I − τ (k)v(k)v(k)T and applying it to A(k−1) by the
similarity transformation A(k) ← Q(k)T

A(k−1)Q(k). The reflection is constructed from the
kth column such that the kth column of A(k) has only zeros below the first sub-diagonal.
After n− 2 iterations, the matrix A has been transformed into the matrix H by a similarity
transformation of the form H ← QTAQ, where Q = Q(1)Q(2) · · ·Q(n−2).
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2.2 Blocked Hessenberg Reduction

The textbook Hessenberg reduction algorithm described above involves mainly memory-bound
matrix–vector multiplications hidden inside the structured application of a Householder re-
flection to both sides of A. With the advent of CPU caches, it was soon realized that a
cache-blocked variant of the textbook algorithm that expresses most of the arithmetic in
terms of compute-bound matrix–matrix multiplications would perform much better on ma-
chines with memory hierarchies [5]. This first cache-blocked variant expresses approximately
70% of the arithmetic in terms of matrix–matrix multiplications. An improvement of the
algorithm was later developed that increased this ratio to 80% [11].

k − 1 b

n

n

A1,1

A2,1

A1,2 A1,3

A2,2 A2,3

A

b

Y1

Y2

Y

V2

V1

b

b

k

V

Figure 1: Partitioning of matrices A, Y , and V after reducing the first k − 1 columns. Here,
b is the panel width.

The blocked Hessenberg reduction algorithm (Algorithm 1) revolves around block itera-
tions, each of which reduces a bunch of adjacent columns called a panel. After having reduced
the first k − 1 columns, the matrix A is partitioned as in Figure 1.

The purpose of a block iteration is to reduce the panel A2,2 to upper triangular form by
constructing and applying an orthogonal similarity transformation of the form

A← (I − V TV T )TA(I − V TV T ),

where I − V TV T is a compact WY representation [12] of the b Householder reflections that
collectively reduce the panel. The algorithm is complicated by the fact that the reflections
cannot be constructed without also partially applying them. In practice, therefore, the trans-
formation is applied in the form

A← (I − V TV T )T (A− Y V T ), (1)

where the intermediate matrix Y is defined as

Y = AV T. (2)

Both V and Y are partitioned alongside A as illustrated in Figure 1.
Each block iteration consists of two distinct phases. In the first phase, the panel A2,2

is reduced and fully updated. This gives rise to a set of Householder reflections, which are
accumulated into a compact WY representation defined by V and T . The first phase also
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Algorithm 1: Sequential blocked Hessenberg reduction [11]
// Outer loop over panels

1 for k ← 1 : b : n− 2 do
// Determine panel width

2 b̂← min{b, n− k − 1};
// Initialize intermediate matrices

3 V ← 0n−k×0;
4 T ← 00×0;
5 Y ← 0n×0;

// Phase 1: Inner loop
6 for j ← 1 : b̂ do
7 Partition A, V , and Y as in Figure 1 with b = j − 1;

// Update column j of A22 from the right
8 A2,2(:, j)← A2,2(:, j)− Y2V2(1, :)T ;

// Update column j of A22 from the left
9 A2,2(:, j)← A2,2(:, j)− V TTV TA2,2(:, j);

10 Construct a Householder reflection (vj , τj) that reduces column j of A2,2;
// Augment Y

11 Y ←
[
Y1 0
Y2 τjA2,2:3(:, j + 1 : n)vj − Y2V

T vj

]
;

// Augment T

12 T ←
[
T −τTV T vj

0 τj

]
;

// Augment V

13 V ←
[
V vj

]
;

// Phase 2: Delayed updates
14 Partition A, V , and Y as in Figure 1 with b = b̂;

// Update A2,3 from the right
15 A2,3 ← A2,3 − Y2V

T
2 ;

// Update A2,3 from the left
16 A2,3 ← A2,3 − V TTV TA2,3;

// Compute the top block of Y
17 Y1 ← A1,2:3(:, 2 : n)V T ;

// Update A1,2:3 from the right
18 A1,2:3(:, 2 : n)← A1,2:3(:, 2 : n)− Y1V

T ;
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generates the lower block of Y (see Figure 1). The incremental construction of Y and T
requires matrix–vector multiplications involving the blocks A2,2 and A2,3, but only A2,2 is
modified in the process. This is the most expensive part and which makes the first phase
memory-bound.

In the second phase, the upper block of Y is computed from (2), and A1,2, A1,3 and
A2,3, are updated according to (1). The computations are in the form of matrix–matrix
multiplications, which make the second phase compute-bound. We refer to the original sources
[5, 11] for details omitted from this brief description.

Two stage algorithms for the Hessenberg reduction also exist [9]. These algorithms require
large problems, a very unbalanced computer, and they are not NUMA-aware. Hence, they
are not suitable to use in the context of AED.

2.3 PCA: Parallel Cache Assignment

Multicore processors and, more generally, shared-memory systems based on multicore proces-
sors, have parallel cache hierarchies. That is, several disjoint caches on the same level of the
hierarchy, each one associated with a distinct subset of the cores. In such systems, the ag-
gregate cache capacity—especially at higher cache levels—might be able to store all the data
necessary to solve a problem of a significant size. Castaldo and Whaley recently proposed a
technique called Parallel Cache Assignment (PCA) and applied it in a series of articles to the
panel factorizations of one-sided factorizations [2, 4] as well as to the unblocked Hessenberg
reduction algorithm [3]. They argued that PCA is able to—for sufficiently small problems
at least—turn an otherwise memory-bound computation into a cache-bound or possibly even
compute-bound computation by more effectively using the parallel caches to transform the
majority of memory accesses into cache hits.

The main idea that defines PCA is to imagine sibling caches as though they are local
memories in a distributed memory system and assign to each core a subset of the data.
An interleaved distribution of the data over the NUMA nodes will reduce the bandwidth
congestion. The main benefit is the effective use of the caches when the problem fits in cache.

There are two parts to PCA: one mandatory and one optional. The mandatory part of
PCA is to partition the data and assign each part to a different thread and then distribute the
work in accordance with the owner-computes rule. This results in natural locality of reference
since each thread will repeatedly operate on its own subset of the data. The optional part is to
explicitly copy the distributed data assigned to a thread into memory allocated local to that
thread. This results in better utilization of caches and memory buses as well as fewer false
sharing incidents. An implementation that fulfill both parts of PCA becomes NUMA-aware
and can therefore benefit even for problems that do not fit in the cache.

How does PCA relate to LAPACK and ScaLAPACK? The difficulty of enforcing a data
distribution between calls to the BLAS implies that the LAPACK library cannot fulfill even
the mandatory part of PCA. The ScaLAPACK library, on the other hand, naturally enforces
data distribution and the owner-computes rule and thus fulfills both parts of PCA. One point
of view is to interpret PCA as an attempt to get some benefits of the ScaLAPACK approach
without giving up the benefits of a multi-threaded approach.
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3 Applying PCA to blocked Hessenberg reduction
Algorithm 1 consists of two nested loops (outer and inner loops). The inner loop implements
the first phase while the remainder of the outer loop implements the second phase.

The parallelizations of the two phases of each outer loop iteration of Algorithm 1 are
described separately in Sections 3.1 and 3.2. The first phase is memory-bound and the aim
is to apply PCA to optimize the memory accesses. The second phase is compute-bound and
the aim is to balance the load and avoid synchronization and communication.

3.1 Parallelization of the first phase

Since the first phase is memory-bound, the aim is to optimize the data locality using the PCA
technique. The data and work will be distributed such that each thread primarily works on
data that it owns. Partition A, V , and Y as in Figure 1. The first phase consists of five major
steps for each column a = A2,2(:, j) of the panel:

1. update a from the right (line 8),

2. update a from the left (line 9),

3. reduce a (line 10),

4. augment Y (line 11), and

5. augment T (line 12).

These steps depend on each other and must therefore be performed in order.
The optimal parallelization strategy depend on the context. Two strategies are considered:

full parallelization and partial parallelization. In the full parallelization strategy, all steps
that involve at least one matrix dimension larger than b̂ = min{b, n− k− 1} are parallelized.
This strategy exposes more parallelism at the cost of more overhead. Therefore, it may be
appropriate for large problems. To avoid this extra synchronization overhead, the partial
strategy only parallelizes the most expensive computational step, namely the matrix–vector
multiplication in Step 4.

Below, we elaborate on each step.

Step 1. The column is updated from the right by the operation

a← a − Y2V
T

2 . (3)

This is a tall-and-skinny matrix–vector multiplication and is parallelized in the full strategy
by partitioning Y2 into row blocks as illustrated in Figure 2.

Step 2. The column is updated from the left by the sequence of operations

w← V T a, (4)
w← T T w, (5)
a← a − Vw. (6)
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Figure 2: The shapes of matrices and vectors in the most expensive operations of the first
phase of an outer loop iteration of Algorithm 1 for both the full and the partial parallelization
strategies. Numbers inside the matrices show the distribution of work over threads. Numbers
in the right-hand side margin refer to equations.
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This is a short-and-fat matrix–vector multiplication, followed by a small triangular matrix–
vector multiplication, and finally a tall-and-skinny matrix–vector multiplication. In the full
parallelization strategy, both a and V are partitioned into row blocks, see Figure 2. The
computation of (5) is sequential.

Step 3. A Householder reflector (vj , τj) is constructed to reduce a below, but not including,
element aj . This involves taking the norm of and scaling a vector; both done sequentially.

Step 4. The matrix Y is augmented with another column through the operations

y← A2,2:3(:, j + 1 : n)vj , (7)
t← V T

2 vj , (8)
y← y− Y2t, (9)
y← τjy, (10)

Y ←
[
Y1 0
Y2 y

]
. (11)

This step, in particular the matrix–vector multiplication in (7), typically accounts for the bulk
of the memory references and arithmetic operations and is therefore a key to an effective par-
allelization strategy. In both parallelization strategies, the computation of (7) is parallelized
by partitioning y and A2,2:3(:, j + 1 : n) into row blocks. This is the only operation paral-
lelized in the partial strategy. The remaining operations are a short-and-fat matrix–vector
multiplication, a tall-and-skinny matrix–vector multiplication, and finally a vector scaling. In
the full parallelization strategy, the vectors vj and y as well as the matrices V and Y2 are
partitioned into row blocks. See Figure 2 for illustrations.

Step 5. The matrix T is augmented with a new row and column through the operations

t← −τT t, (12)

T ←
[
T t
0 τ

]
. (13)

This is a small triangular matrix–vector multiplication and is done sequentially. Note that t
was computed in (8) during Step 4.

Application of parallel cache assignment. The bulk of the data accesses in the first
phase are due to the block of A involved in (7), which makes that operation a prime target for
the PCA technique. Prior to entering the first phase, the block A2,2:3(:, 2 : n) is partitioned
into block rows and each block is assigned to a thread. This is the mandatory part of PCA.
Then, optionally, we copy the part into memory local to that thread. Inside the first phase
and in each iteration, each thread computes its part of y involved in (7) using a local buffer,
then the global y is updated.

3.2 Parallelization of the second phase

Consider an arbitrary iteration of the outer loop and partition the matrices A, V , and Y as
in Figure 1. The second phase consists of four major steps:
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1. update A2,3 from the right (line 15),

2. update A2,3 from the left (line 16),

3. compute Y1 (line 17), and

4. update A1,2:3 from the right (line 18).

The aim of this section is to describe an effective parallelization strategy for these steps. A
good strategy has few synchronization points, good load balance, cache locality, and compu-
tationally efficient tasks. Figure 3 details the partitioning scheme of the matrices.

Step 1. The update of A2,3 from the right is achieved by the matrix outer product

A2,3 ← A2,3 − Y2V
T

2 . (14)

Any data decomposition of A2,3 leads to independent tasks and each element costs the same to
update. In particular, one-dimensional block row/column decomposition or two-dimensional
block decomposition are suitable candidates. As will be explained later, the block column
distribution, as illustrated in Figure 3, is preferred.

Step 2. The update of A2,3 from the left is achieved by the following sequence of operations:

W ← V TA2,3, (15)
W ← T TW, (16)

A2,3 ← A2,3 − VW. (17)

In (15), distributing W row-wise leads to a maximum of b̂ tasks and each thread needs to
access the entire A2,3 block. On the other hand, distributing W column-wise leads in general
to many more tasks and each thread only needs to access a part of A2,3. Hence, a block
column distribution of W , and consequently also of A2,3, is preferred (see Figure 3). This
choice implies that a matching distribution of A2,3 in Step 1 should be used to avoid some
of the synchronization between Steps 1 and 2. Applying the same distribution of W also to
(16) and of A2,3 also to (17) likewise avoids some synchronization. These distributions are
illustrated in Figure 3.

Step 3. Computing the top block Y1 of Y is achieved by the following sequence of operations:

Y1 ← A1,2:3(:, 2 : n)V, (18)
Y1 ← Y1T. (19)

The shape of Y1 is tall and skinny, which favors a block row distribution as illustrated in
Figure 3. This means that each thread only needs to access a part of A1,2:3(:, 2 : n), while a
block column distribution, on the other hand, would require each thread to access the entire
block.
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Figure 3: Illustration of the decomposition of the major steps involved in the second phase
of an outer loop iteration of Algorithm 1. Numbers inside the matrices show the distribution
of work over threads. Numbers in the right-hand side margin refer to equations.
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Step 4. The update of A1,2:3(:, 2 : n) from the right is achieved by the matrix outer product

A1,2:3(:, 2 : n)← A1,2:3(:, 2 : n)− Y1V
T . (20)

The shape of the output gradually changes from short-and-fat to tall-and-skinny as the algo-
rithm progresses. The preferred distribution scheme is different in these two extremes. After
experiments we found that block row distribution is preferred as illustrated in Figure 3.

3.3 Synchronization

The parallelization of the first phase is comparatively fine-grained even for the partial paral-
lelization strategy. Barrier synchronization based on operating system synchronization prim-
itives can incur a latency cost per synchronization measured in milliseconds. This is much
too expensive for the relatively small problems we are targeting. Hence, we rely instead on
synchronization based on shared memory and spin loops (busy-waiting; repeatedly check to
see if a condition is true). The barrier primitive we use is based on a binary tree algorithm
[10, Section 3] and uses only shared memory reads and writes.

4 Algorithmic Parameters
For sufficiently large problems, the key to performance is to use a panel width large enough
to obtain good performance on the matrix–matrix multiplications in the second phase and to
ensure that the large matrix–vector multiplication in (7) in the first phase becomes efficient.
The other aspects of the computation can be more or less neglected. But in our context
(AED in the multi-shift QR algorithm) we are targeting comparatively small problems solved
using relatively many threads. More aspects of the computation become important since
asymptotic arguments such as the one above no longer apply.

The key to portable performance is to make the implementation flexible by identifying
many algorithmic parameters that can be used to tweak the performance. The aim of this
section is to describe various algorithmic parameters in the blocked Hessenberg reduction
algorithm with PCA, described in Section 3.

4.1 Parallelization strategy for the first phase

The first phase can be parallelized using either the full or the partial parallelization strategy,
as elaborated in Section 3.1. The parallelization strategy can be set for each iteration of the
outer loop independently.

4.2 Copying strategy for the PCA technique

Explicitly copying the data to a locally allocated memory area better exploits the NUMA
architecture but the copying itself adds overhead. Whether to explicitly copy or not is an
algorithmic parameter that can be set once per iteration of the outer loop.

4.3 Thread count

Using all available threads (cores) in the first phase may be sub-optimal, especially in the
last iterations when the submatrix operations are relatively small. The thread count can in
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principle be allowed to vary per iteration of the inner loop, but due to the use of parallel
cache assignment it seems more appropriate to limit changes in the thread count to once per
iteration of the outer loop.

Similarly, the computations in the second phase may also sometimes run faster by using
fewer threads than the number of cores. The parallel overhead of the synchronization and
communication may outweigh the benefits of using more cores. The number of threads to use
can be set independently in each iteration of the outer loop.

With the possibility to set the number of threads independently for the two phases, we
have four strategies to differentiate between:

S1: vary in both phases but keep the counts equal,

S2: vary only in the first phase and use the maximum in the second phase,

S3: vary only in the second phase and use the maximum in the first phase,

S4: vary in both phases independently.

The choice of strategy is an algorithmic parameter. There is also the related question of how
to assign the threads to cores when the thread count is not equal to the core count. The
thread affinity scheme is yet another algorithmic parameter and we consider two options. In
the packed scheme, the threads are packed into as few NUMA domains as possible. In the
distributed scheme, the threads are instead spread out over the NUMA domains as evenly as
possible.

4.4 Panel width

The panel width b in Algorithm 1 can be set to any value in the range 1 . . . n−2. When b = 1,
the algorithm reduces to an unblocked algorithm. The overhead of using the compact WY
representation grows like nb2, which means that very large values of b are also inappropriate.
Allowing the panel width to be set per execution is more flexible than fixing the panel width
once and for all.

The panel width as used in Algorithm 1 is constant for the whole execution. Another
possibility is to set the panel width independently for each iteration of the outer loop. Such
a variable panel width adds even more flexibility.

5 Computational experiments
The aim of this section is both to compare the performance of the implementation relative to
established implementations and to evaluate if the tunable parameters identified in Section 4
have any significant impact on performance. The experiments were performed on one node
of the distributed memory system Abisko at the High-Performance Computing Center North
(HPC2N) at Umeå University. During the course of the experiments, no other jobs were
running on the same node. One node consists of four AMD Opteron 6238 processors with a
total of 48 cores. Each processor contains two chips with six cores each. Each chip has its
own memory controller, which means that the node has eight NUMA domains.

To match the architecture, the experiments were performed using p ∈ {6, 12, . . . , 48}
threads. Unless otherwise stated, successive threads were bound to cores in the same domain.
Specifically, when using p = 6 threads, cores in the same domain (chip) are used even though
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all 48 cores of the node have been reserved. In addition, memory is only allocated from
domains to which a thread is also bound.

The PathScale (5.0.0) compiler is used together with the following libraries: OpenMPI
(1.8.1), OpenBLAS (0.2.13), LAPACK (3.5.0), and ScaLAPACK (2.0.2). The default param-
eter values specified in Table 1 were used in the experiments unless otherwise stated. It is
worth mentioning that the allocation of the local buffers used in the copying strategy is made
once before the timing of the computation. This gives a fair comparison with LAPACK and
ScaLAPACK.

Table 1: Default algorithmic parameter values.

Parameter Default
Panel width 50
Number of threads Maximum
Parallelization strategy Partial parallelization
Copying strategy Copy
Affinity scheme Packed
Grid shape (ScaLAPACK) Square if possible.

Otherwise more columns.
Block size (ScaLAPACK) 50× 50

All data points reported in this section is the median of 100 trials, unless otherwise stated.
The Hessenberg reduction cost roughly 10

3 n
3 flops [6], which means that the performance in

GFLOPS is calculated as:

(Performance) =
10
3 n

3

(Execution time in seconds) ∗ 109 . (21)

5.1 Performance comparisons

The purpose of this section is to show the performance of the PCA variant and compare it
with both LAPACK and ScaLAPACK over a range of problem sizes.

5.1.1 The performance of the PCA variant

Figure 4 shows the performance of the PCA variant on different numbers of cores. Different
matrices of size n × n are tested where n ∈ {100, 300, . . . , 3900}. Each graph has a point
where the performance saturates. For small problems, using the maximum number of cores
is not optimal.

5.1.2 Comparing the PCA variant with LAPACK

Figure 5 compares the PCA variant with the DGEHRD routine in LAPACK. The PCA variant
is faster than DGEHRD for all cases except some problems when six cores are used. When
only six cores are used there is no NUMA effect (all cores belong to the same domain) and
hence the two implementations are virtually equivalent. Using more than six cores makes the
NUMA effect noticeable. Increasing the number of cores also increases the speed-up of the
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Figure 4: Performance of the PCA variant.

PCA variant over DGEHRD. Interestingly, increasing the problem size decreases the speed-up
when more than 30 cores are used. One reason could be that the PCA variant is able to use
the parallel caches more effectively and that this effect is greater than the NUMA effect that
dominates for larger problems.

5.1.3 Comparing the PCA variant with ScaLAPACK

Figure 6 compares the PCA variant with the PDGEHRD routine in ScaLAPACK. The PCA
variant performs better for small problems, but the opposite is true for large problems solved
using many cores. We speculate that this is due to the PCA variant with its fast synchroniza-
tion and communication is able to better parallelize tiny problems, whereas PDGEHRD better
exploits the NUMA architecture since it is NUMA-aware in both phases and not only in the
first phase as is the case for the PCA variant.

5.2 Evaluation of the tuning potential

Before researching run-time auto-tuning techniques, it is useful to determine if and if so how
much can be gained by tuning each parameter separately. This will help discriminate between
parameters that have little or no impact from those that have a large impact.

In this section, we systematically evaluate the tuning potential of each individual pa-
rameter while keeping all others at their default setting. The aim is to determine for each
parameter whether (a) there exists a case for which tuning the parameter has a significant
effect or (b) the parameter is likely to have no or little effect in all cases. Note that there
is fundamental difference between the two cases. The first case is akin to an existence proof
and thus merely requires the discovery of an example. The second case, however, is akin to
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Figure 5: Comparison between the PCA variant and DGEHRD in LAPACK.
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Figure 6: Comparison between the PCA variant and PDGEHRD in ScaLAPACK.
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showing non-existence of an example and is therefore intractable; we can hope only to make
a plausible case.

5.2.1 Tuning potential for the first phase parallelization strategy

As mentioned in Section 3.1, there are two strategies to parallelize the first phase. Recall
that the parameter can be set independently for each iteration of the outer loop. Partial
parallelization is expected to be faster for small matrices due to its lower parallelization
overhead. Conversely, the full parallelization is expected to be faster for large matrices due
to its larger degree of parallelism. The “size of the problem” here refers to the size of the
block that is accessed by the first phase, which shrinks from one iteration to the next.

Since the parallelization overhead is a key argument in the above reasoning, an example
is likely to be found by maximizing the number of threads. In addition, it is important to
vary the problem size sufficiently to capture both “small” and “large” problems. This leads
us to run an experiment with p = 48 and n = 4000.
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Figure 7: Comparison of the full and partial parallelization strategies.

Figure 7 shows the execution times per iteration of the outer loop for both of the paral-
lelization strategies. Note that for the first 20 or so iterations the full parallelization strategy
is faster, while the opposite is true for the remaining iterations. We conclude that there is a
good potential for tuning the parallelization strategy parameter.

5.2.2 Tuning potential for the first phase copying strategy

Recall from Section 2.3 that the PCA technique consists of a mandatory part (data decompo-
sition) and an optional part (data distribution over NUMA domains). Evaluating the tuning
potential of the optional part is the aim of this section. Explicitly copying the data transforms
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the algorithm from NUMA-oblivious to NUMA-aware. When the block accessed by the first
phase is large it will overflow the cache and emphasize the difference in performance between
NUMA-aware and NUMA-oblivious implementations.

Since the NUMA effect is a key argument in the above reasoning, we are likely to find an
example where the parameter has an impact by keeping the problem large and maximizing the
number of NUMA domains. This leads us to run an experiment with p = 48 and n = 4000.
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Figure 8: Comparison of the copying strategies.

Figure 8 compares the two copying strategies by showing the execution times per iteration
of the outer loop. In the first 20 iterations or so, explicitly copying the data gives, as expected,
much better performance. Towards the end, however, the difference between the two strategies
is negligible. We conclude that copying could be enabled by default and never tuned without
loosing significant performance. In other words, this parameter is not a good target for tuning.

5.2.3 Tuning potential for the thread count

As mentioned in Section 4, the number of threads used in the two phases can potentially
affect the performance. In addition, the thread affinity plays a role when not all cores are
used. Varying the thread count affects both the cache behavior and the parallel overhead.
Following a similar line of reasoning as before, the problem(s) considered should be large
enough and use many NUMA domains. Unlike previously studied parameters, however, the
size of the problem (for the second phase) also includes the size of the original matrix. Hence,
two experiments are considered: one small (n = 1000) and one large (n = 4000).

Also unlike previous parameters, sweeping over the range is not feasible since the parame-
ter is actually a family of related parameters (one per iteration). Instead of sweeping over the
parameter settings, we find a single specific parameter configuration by solving a simplified
optimization problem with data obtained from a limited set of measurements. The underlying
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assumption is that the configuration so obtained is a reasonable approximation of an optimal
configuration. The actual performance using the derived parameter configuration is measured
and used to judge the tuning potential of the thread count parameter.

The problem of finding optimal thread count settings becomes much simpler by assuming
that the optimal number of threads to use in a particular iteration and phase does not depend
on any of the other thread counts. To find the optimal configuration it suffices to know the
execution time of each iteration and phase for each thread count. These data can be rapidly
obtained by repeating the same execution with different fixed thread counts. Measuring the
time required for each phase and iteration results in two tables: T1 for the first phase and
T2 for the second phase (not explicitly showed). The rows correspond to thread counts and
the columns correspond to iterations. Each cell thus contains the execution time for the
corresponding thread count and iteration. Using these tables, the optimal thread count for
a particular phase and iteration is determined by searching for the table row that contains
the minimum of the column that corresponds to the iteration. The difference between the
four strategies (see Section 4.3) is which table to consult. Specifically, strategy S1 consults
the table T1 +T2, strategy S2 the table T1, strategy S3 the table T2, and strategy S4 consults
both tables independently.

This exercise yields thread counts that should produce optimal results under the given
assumption. However, in practice the assumption does not hold exactly. The choices are
not truly independent. Therefore, another set of experiments (one per strategy) is performed
where the thread counts vary as previously determined. This whole process is performed
once for each of the two thread affinity schemes. The thread counts are chosen from the set
{6, 12, . . . , 48}.
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Figure 9: Comparison of the four strategies for varying the thread count using the packed
affinity scheme.

Figures 9 and 10 compare the four strategies and both affinity schemes on all 48 cores.
Any strategy gives a speed-up for the small problem. For the large problem, on the other
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Figure 10: Comparison of the four strategies for varying the thread count using the distributed
scheme.

hand, the performance is roughly unaffected for the first iterations and a speed-up is observed
only in the last iterations for some of the strategies. In particular, strategy S2 (varying only
in the first phase) does not give any speed-up (it actually slows down). Generally, the best
performance for both affinity schemes are obtained by varying the thread count in both phases
independently. This is natural since it is the most general approach and includes all others
as special cases. In conclusion, the thread count for each iteration and phase is a target for
tuning.

5.2.4 Panel width

The width of the panel (b) plays a key role in shaping the performance since it determines the
distribution of work over different types of operations. The panel width can either be kept
fixed for the whole execution or be varied from one iteration to the next.

We first evaluate the tuning potential of keeping the panel width fixed. To find if panel
width depends on the problem size we used n = {500, 1000, . . . , 4000} and to test the distri-
bution effect we used p = 48.

Figure 11 shows the performance of the PCA variant for different problem sizes and panel
widths. The performance is sensitive to the choice of panel width and more so when the
problem is large. We conclude that the panel width is a prime target for tuning.

We next evaluate the tuning potential of the more general strategy where the panel width
is allowed to vary from one iteration to the next. From Figure 11 one can observe that the
panel width impacts performance and, moreover, the optimal width depends on the problem
size. Considering that the performance of one execution is determined by the performance of
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Figure 11: Illustration of the performance of the PCA variant on different problem sizes for
different fixed panel widths.

each iteration of the outer loop, it is reasonable to suspect that the optimal panel width per
iteration is not constant since the size of the block involved in an iteration changes over time.

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

b0 2b0 3b0

Figure 12: Illustration of a directed graph used to determine the optimal panel width config-
uration when the panel width is allowed to vary from one iteration to the next.

There is a huge number of possible configurations when the panel width can vary between
iterations. Too many to exhaustively search or even to obtain sufficiently dense samples.
Therefore, we take an alternate approach of trying to come up with an educated guess of
a good configuration. Specifically, we simplify the problem by assuming that the execution
time is the sum of smaller parts. Each part represents an outer loop iteration. The simplified
problem can be expressed as a graph problem in the following way. For a problem of size
n, construct a directed graph G = (V,E) where vertex vk ∈ {v0, v1, . . . , vn−2} represents the
state where k columns have been reduced. Clearly, the initial state is v0 and the final state
is vn−2. An edge from vk to vk+b captures the act of performing an outer loop iteration with
panel width b.

Under the given assumption, each edge has a well-defined weight given by the execution
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time of the corresponding iteration, and the edges along the shortest path from v0 to vn−2
define the optimal parameter configuration.

The question that remains to be answered is how to measure the weight of each edge.
For large n, the number of edges is very large. Instead of considering all edges, we restrict
ourselves to consider only edges of the form vk → vk+b where b ∈ {b0, 2b0, . . . ,mb0} for some
constants b0 and m. Figure 12 gives an example where b0 = 1 and m = 3.

For each problem size we used in the fixed panel width experiment we constructed a
directed graph with b0 = 10 and m = 10. It is worth mentioning that the data points
gathered to create the graphs are the median of 20 trials.

The impact of varying the panel width compared to using the optimal setting from Fig-
ure 11 is not significant, in all cases less than 4%. We conclude that a fixed panel width is
sufficiently flexible.

6 Off-line auto-tuning mechanism
This section presents a simple off-line automatic tuning mechanism and compares the per-
formance of the new algorithm after being tuned against other established implementations.
The goal is not to come up with the best off-line auto-tuning mechanism but rather to have
a rough idea how the algorithm performs after some tuning.

We conclude from Section 5.2 that the parameters in Table 2 are targets for tuning. The
panel width needs to be tuned once per reduction while the other parameters need to be
tuned for each iteration. This means the algorithm does not have only four parameters to
tune. Instead, it has four types of parameters. In a given reduction, there is one global
parameter of type panel width and three local parameters, one from each of the other three
types, for each iteration.

But how many different iterations are there for a given problem? We consider two itera-
tions different if they have different amount of computation or memory access patterns. The
amount of computation and memory access patterns in an iteration depend on the size of the
blocks in Figure 1. Three factors define the blocks sizes: the problem size n, the panel width
b and the width of the trailing matrix (the unreduced part of the matrix) l. Since n is fixed
during the reduction we identify an iteration using the pair (b, l). In general, the set of all
possible iterations for a problem of size n can be defined as the set which contains all pairs
(bi, lj), where 1 ≤ i ≤ n− 2 and 1 ≤ j ≤ i.

Table 2: List of the parameters to be tuned.

Nr. Parameter
1 Panel width
2 Parallelization strategy
3 Number of threads in the first phase
4 Number of threads in the second phase

To tune the parameters in a given reduction we used several rounds of univariate search
(also known as orthogonal search). Univariate search works by optimizing one variable at
a time, in this case through exhaustive search, while fixing the other variables. We used
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univariate search by optimizing one type of parameters at a time.
The tuning round starts by tuning the panel width, using exhaustive search as mentioned.

The panel width will be fixed to the size that gives the highest performance. By fixing the
panel width, say to b̂, we end up using a subset of all possible iterations, the ones associated
with panel width b̂. After that, we tune one type of parameters at a time. Exhaustive search
is used to tune all the parameters from one type together at the same time. This is done
by picking one value from the set of possible values for this type of parameters and test
all the iterations simultaneously. Repeat that for all the values in the set. Then, compare
the obtained results for each parameter independently and use the one that gives the best
iteration performance. For example, assume we are tuning the number of threads in the first
phase for a reduction of three iterations, where we can use any value from {1, 2, 3, 4, 5} as
a number of threads in each iteration. We start the tuning by testing all iterations at the
same time using one thread. Then we repeat the test but this time we use two threads in
each iteration. We repeat the test again for three, four and five threads. Now we have five
results for each parameter using five different number of threads. To find the best number
of threads to use in each iteration we compare the five results and choose the one with the
highest performance. This could be for example, use two threads in the first iteration, four
threads in the second iteration and 3 threads in the third iteration.

For parameters of type parallelization strategy, we do not change the strategy in each
iteration. We assume that the full parallelization strategy is the default strategy. Then, at
some iteration i, when there is not enough parallelism to use the full parallelization strategy,
we switch to the partial parallelization strategy. To find this iteration i, we start by testing the
full parallelization strategy for all iterations. We measure the performance at each iteration
in the test. Then, we repeat the test but using the partial parallelization strategy for all
iterations. And we also measure the performance at each iteration. Finally, we compare
the two collected performances of each iteration with an ascending order starting from the
first iteration. The switching iteration i is the first iteration where the performance of using
the partial parallelization strategy is better than the performance of the full parallelization
strategy. Notice that the panel width is fixed at this point so what we are searching for actually
is the associated trailing matrix width after which there will not be enough parallelism to use
the full parallelization strategy. This method is not the most robust way to do the tuning
but it is good enough for our purpose.

We perform several rounds of the univariate search to refine the tuning. The idea is to use
the tuned parameters in the last round as a starting point in the next round. So for example
when we tune the panel width in the new round we tune it using number of threads and
parallelization strategies from the last round. This way we accumulate the gained knowledge
and pass it from one round to the next.

As mentioned before, the new round starts by tuning the panel width. Changing the
panel width will result in using a different subset of iterations compared to the last run. So
we need a way to initialize the parameters of the new round iterations using the parameters
of the previous round iterations. We use a mapping function that maps each iteration in the
new round to an iteration in the previous round that is close to it in amount of computation
and memory access pattern.

The mapping function uses the starting column of the iterations to perform the mapping.
In a reduction of a matrix of order n where b is the panel width, iteration k ∈ {1, 2, . . . , d(n−
2)/be} starts at column (k − 1)b. The mapping is done such that the absolute difference
between the starting columns of the two mapped iterations is minimized. This method ensures
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that each new iteration is mapped to its most similar iteration from the previous round (in
amount of computation and memory access pattern). For example, let b1 be the panel width
used in Round 1 (the last round) and b2 be the panel width used in Round 2 (the new
round). For each iteration k2 ∈ {1, 2, . . . , d(n− 2)/b2e} in Round 2 we map it to an iteration
k1 ∈ {1, 2, . . . , d(n− 2)/b1e} from Round 1 that gives the minimum value of:

|(k2 − 1)b2 − (k1 − 1)b1|. (22)

Figure 13 shows the mapping between two rounds where we use b1 = 10 in Round 1 and
b2 = 7 in Round 2.
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Figure 13: Illustration of mapping the iterations of two different rounds

We performed 15 rounds of tuning on matrices of different sizes using different number
of allowed threads. Table 3 shows the change in the performance of the new algorithm for
six random cases during the first three rounds of tuning. The performance after tuning each
parameter type, following the order in Table 2, is presented. The results show that the per-
formance could decrease after tuning one type of parameters or even after a complete round.
But in general the performance improves with more tuning rounds. Figure 14 shows the speed
up of the best solution found for the new algorithm after tuning against the best solution
found for the DGEHRD function from LAPACK and the PDGEHRD function from ScaLAPACK.
In selecting the best performance after tuning we considered the performance at the end of
each tuning round only. The results show that the new algorithm outperforms LAPACK for
all the tested problems while it outperforms ScaLAPACK for the small size problems up to
order 1500.

The best way to judge the efficiency of a tuning algorithm is to compare its results against
the best found after exhaustive search. Unfortunately, exhaustive search is not feasible in our
case, which means we have no way of assessing the effectiveness of the tuning mechanism.

7 Conclusion
In this paper we presented a new parallel implementation of the blocked Hessenberg reduction.
The proposed algorithm is aimed to speedup the costly AED procedure which is in the critical
path of the distributed parallel multi-shift QR algorithm. The proposed implementation is
characterized by having a high degree of flexibility and a high level of locality of memory
references. The proposed solution outperforms LAPACK’s routine DGEHRD for most cases and
ScaLAPACK’s routine PDGEHRD for small problem sizes.
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Table 3: First three rounds of tuning different problems

GFLOPS
Matrix size n = 500 n = 1100 n = 1300 n = 2300 n = 3100 n = 3700

# cores p = 24 p = 36 p = 30 p = 48 p = 18 p = 42
w/o tuning 10.7236 31.1575 33.4703 56.3084 38.6603 73.7369

R
ou

nd
1 param 1 11.3570 31.2902 34.0326 55.7050 39.3838 75.7032

param 2 11.4936 31.1101 33.9934 55.5832 44.9821 77.3813
param 3 11.7467 31.3054 33.3981 55.2197 45.1992 78.0871
param 4 13.5506 32.5398 35.3458 57.3648 44.3091 78.1880

R
ou

nd
2 param 1 13.5479 32.4150 35.3175 58.3909 46.8890 82.3765

param 2 13.3568 32.0874 32.6908 51.1839 46.6522 82.9368
param 3 13.6299 32.5625 33.4370 51.8943 46.5636 82.7718
param 4 13.7256 33.0276 36.0002 57.8282 46.0662 83.4532

R
ou

nd
3 param 1 14.0032 33.0210 35.9560 57.0685 46.8001 85.8693

param 2 13.5132 31.7747 33.1033 54.4554 46.5290 75.7112
param 3 13.6769 31.2970 33.2005 55.2553 46.7058 75.9872
param 4 13.9985 32.6766 35.5517 57.2649 45.9611 82.6212
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Figure 14: Comparison between the tuned PCA variant and similar established implementa-
tions from LAPACK and ScaLAPACK
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Various algorithmic parameters of the proposed algorithm were evaluated to find which
ones have high impact on performance. It is found that the parallelization strategy for the
first phase, the thread count in each phase, and the panel width have significant impact on
performance. On the other hand, the copying strategy for the first phase can easily be set
optimally without tuning. In addition, the impact of varying the panel width in each outer
loop iteration was found to be insignificant and thus using fixed panel width per execution
is enough. More over, an off-line auto-tuning mechanism was presented to see the impact of
auto-tuning on the proposed algorithm.

Future work includes designing an on-line (dynamic) auto-tuning mechanism for tuning
the most significant parameters identified in this paper. The aim is to have a mechanism
that gives the algorithm the highest degree of flexibility with respect to various architecture
characteristics.
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