
H2020–FETHPC–2014: GA 671633

D2.9
Novel SVD Algorithms

April 2019

NLAFET D2.9: Novel SVD

Document information

Scheduled delivery 2019-04-30
Actual delivery 2019-04-29
Version 2.0
Responsible partner UNIMAN

Dissemination level

PU — Public

Revision history

Date Editor Status Ver. Changes
2019-04-29 Pierre Blanchard Complete 2.0 Revision for final version
2019-04-26 Pierre Blanchard Draft 1.1 Feedback from reviewers added.
2019-04-18 Pierre Blanchard Draft 1.0 Feedback from reviewers added.
2019-04-11 Pierre Blanchard Draft 0.1 Initial version of document pro-

duced.

Author(s)

Pierre Blanchard (UNIMAN)
Mawussi Zounon (UNIMAN)
Jack Dongarra (UNIMAN)
Nick Higham (UNIMAN)

Internal reviewers

Nicholas Higham (UNIMAN)
Sven Hammarling (UNIMAN)
Bo Kågström (UMU)
Carl Christian Kjelgaard Mikkelsen (UMU)

Copyright

This work is c©by the NLAFET Consortium, 2015–2018. Its duplication is allowed only
for personal, educational, or research uses.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/28

NLAFET D2.9: Novel SVD

Table of Contents
1 Introduction 4

2 Review of state-of-the-art SVD algorithms 5
2.1 Notation . 5
2.2 Computing the SVD . 5
2.3 Symmetric eigenvalue solvers . 6
2.4 Flops count . 7

3 Polar Decomposition based SVD 7
3.1 Polar Decomposition . 8
3.2 Applications . 8
3.3 The Polar–SVD Algorithm . 8
3.4 The QR trick . 9

4 Optimized Polar Decomposition algorithms 9
4.1 Computing the Polar Factor Up . 10
4.2 Optimized Halley’s iterations: the QDWH–PD algorithm 10
4.3 Estimating K2(A) to ensure optimal convergence 13
4.4 Complexity . 14

5 Implementation in Shared and Distributed Memory 15
5.1 QDWH–SVD for Multi– and Many–core Architectures 15
5.2 QDWH–SVD in Distributed Memory . 16
5.3 QDWH–PD on Accelerators . 17

6 Numerical Experiments 17
6.1 Benchmarking the Polar–SVD . 17
6.2 Experiments on a Single Node . 19
6.3 Experiments in Distributed Memory . 21
6.4 Experiments with Accelerators . 22

7 Conclusions 22

8 Appendix 26
8.1 Remarks on Accuracy and Precision . 26
8.2 Benchmarking SLATE . 28

List of Figures
1 Schematic view on the 2-stage reduction. 6
2 Time to solution and performance of QDWH–PD using QUARK or OpenMP. 20
3 Time to compute SVD using Plasma’s 2–stage SVD or QDWH–SVD. 20
4 Time to compute SVD using MKL’s 2–stage SVD or Plasma’s QDWH–SVD

on Haswell and KNL. 21
5 Scalability of 2–stage SVD and QDWH–SVD. 22
6 Detailed timing of QDWH–SVD on 8 Broadwell or Skylake nodes. 23
7 Performance (TFlops/s) of the GPU accelerated QDWH–PD. 24

http://www.nlafet.eu/ 2/28

NLAFET D2.9: Novel SVD

8 Accuracy of QDWH–SVD and 2–stage approaches. 27
9 Ratio between the time to solution in double and single precision. 27
10 Performance of QDWH–PD’s building blocks in SLATE. 28

http://www.nlafet.eu/ 3/28

NLAFET D2.9: Novel SVD

1 Introduction
The Description of Action document states for deliverable D2.9:

“D2.9 Novel SVD Algorithms
Prototypes for the standard SVD algorithm, the symmetric eigenvalue problem
and the ODWH-based SVD algorithm.”

This deliverable is in the context of Task 2.4 Singular value decomposition algorithms.

Emerging computer architectures show increasing floating point capabilities. Addi-
tionally, current and upcoming supercomputers have extremely heterogeneous computing
resources as they consists of many NUMA nodes with increasing numbers of cores and
SIMD instructions with increasing lengths, e.g., Intel’s AVX2 and AVX512 or ARM’s
SVE. They are also massively accelerated by graphic processing units (GPUs) and co–
processors (Intel Knights Landing or KNL). Scalability of algorithms is always crucial,
however in such an heterogeneous distributed memory environment it is very difficult to
guarantee. Therefore, algorithms with higher levels of concurrency should be preferred
and new parallel paradigms should be considered such as asynchronous execution and task
scheduling. Furthermore, in order to use modern CPUs at full efficiency algorithms in
numerical linear algebra must be redesigned to make better use of cache–efficient matrix
operations such as level–3 BLAS routines.

In this report we are interested in algorithms to perform the Singular Value Decom-
position (SVD), a keystone of scientific computing and data analysis. SVD algorithms
based on an initial bidiagonal reduction are known to be memory bandwidth–bound and
communication intensive. Thus, they fail to use the full compute capabilities of novel
architectures and exhibit poor scalability. Splitting the reduction phases in 2 stages in
order to make better use of level–3 BLAS operations is now considered the state-of-the-
art approach. Please note that deliverable 2.8 Bidiagonal factorization is concerned with
optimization of the first stage of the reduction in general bidiagonal factorizations with
focus on SVD. Simpler approaches like Jacobi are easier to parallelize but usually perform
worse than methods based on bidiagonal reduction.

Recent papers [9, 12] have pointed out the relevance of using the polar decompo-
sition as a tool to compute standard matrix factorization such as the SVD, eigenvalue
decomposition and matrix functions. These algorithms use many more flops than the
standard implementations but make better use of the cache memory hierarchy as they
rely mainly on matrix multiplications, Cholesky and QR factorizations. As a result, for
sufficiently large problems and on sufficiently recent architectures they can provide a full
SVD factorization in less time than even 2–stage reduction based variants.

In this report we evaluate the performance of a stable and scalable algorithm known
as QDWH iterations to perform the SVD and compare it to state-of-the-art implementa-
tions of the 2–stage SVD. We show comparative numerical results using implementations
in several numerical linear algebra libraries: for multicore architecture (PLASMA), dis-
tributed memory (ScaLAPACK) and heterogeneous architectures involving accelerators
(SLATE).

http://www.nlafet.eu/ 4/28

NLAFET D2.9: Novel SVD

2 Review of state-of-the-art SVD algorithms
SVD algorithms usually divide in 2 main classes: algorithms based on bidiagonal re-
duction or based on Jacobi method. In this section we briefly describe the former and
highlight some numerical limitations arising at large scale. An extensive description of all
approaches can be found in the recent review paper [1].

In this report we focus on optimized algorithms to compute singular values and vec-
tors as opposed to singular values only. In fact, as our first numerical experiments will
clearly show novel algorithms based on the polar decomposition such as QDWH–SVD are too
expensive for the computation of singular values only.

2.1 Notation
For any integer m and n, we denote Rm×n and Cm×n the sets of real and complex valued
m-by-n matrices, respectively. We denote Om×n and Um×n the set of real and complex
matrices with orthonormal columns, respectively. If m = n then they denote the sets
of orthogonal and unitary matrices, respectively. Finally, Dm×n denotes the set of real
diagonal m-by-n matrices.

For any symmetric matrix H ∈ Rn×n, there exists an eigenvalue decomposition, i.e., a
set of factors (W,Λ) ∈ Dn×n ×On×n such that

H = WΛW ∗ (1)

where W contains the eigenvectors of H and Λ contains the associated eigenvalues.
For any matrix A ∈ Rm×n the SVD of A is defined as the set of matrices (U,Σ, V) ∈

Om×m ×Dm×n ×On×n such that
A = UΣV ∗ (2)

where U and V contain the left and right singular vectors respectively, and Σ contains
the associated singular values of A (eigenvalues of A∗A). We will denote σi(A) = Σii the
i-th singular value of A, α = maxk σk(A) and β = mink σk(A).

If m > n, a more compact representation of A (known as economy size SVD) can be
used where U ∈ Om×n and V ∈ On×n and Σ ∈ Dn×n.

If m � n, i.e., the matrix A is tall and skinny, a typical trick consists in computing
a preliminary QR factorization of A, followed by the SVD of the R factor that we write
R = URΣV ∗. Hence, the left singular vectors of A are obtained by forming the matrix
U = QUR.

For the sake of clarity, we will mainly consider the case of real square matrices, i.e.,
A ∈ Rn×n. Extension of the method discussed in this report to the complex case is
straightforward.

2.2 Computing the SVD
Bidiagonal SVD One of the most common approaches for computing the SVD of a
dense matrix consists in first reducing the matrix to bidiagonal form, then using a direct
solver to compute the SVD of the reduced matrix. Methods for computing the SVD of a
bidiagonal matrix rely on either the QR decomposition or a Divide and Conquer process
(D&C). The latter is usually preferred when both the singular values and vectors are
required.

http://www.nlafet.eu/ 5/28

NLAFET D2.9: Novel SVD

1–stage approach The reduction can be done in one stage by applying orthogonal
transformations to the input matrix. Each transformation can be expressed as a product
of elementary Householder reflectors. However this method is known to be memory–bound
and thus shows very limited performance on modern computer architectures [1]. In order
to address this issue a variant making use of blocked Householder transformations was
introduced in LAPACK [2]. It involves a total of about 8n3/3 flops if A is square, where
the flops count is equally split between level–2 and level–3 BLAS operations.

2–stage approach In order to further increase the use of BLAS 3 operations, in [3, 6]
the bidiagonalization is itself split into 2 stages as described on Fig 1: a reduction to
band format (stage 1) followed by a reduction to bidiagonal format (stage 2) based on
bulge chasing a memory–bound routine. The first stage can be implemented in 8n3/3
flops and is rich in level–3 BLAS operations, thus reaching similar performance as the QR
decomposition.

Multistage successive band reduction (SBR) can also be considered and have been
implemented in the latest version of Intel MKL’s LAPACK and ScaLAPACK. However
they increase the cost of constructing the singular vectors (back transformation), hence
they are not considered in this work.

Figure 1: Schematic view on the 2-stage reduction: reduction to band format then to
bidiagonal format using bulge chasing. Source: [1].

2.3 Symmetric eigenvalue solvers
In this deliverable we are not directly concerned with symmetric eigensolvers, i.e., comput-
ing (1). However they play a central role in Polar Decomposition–based SVD algorithms.
Therefore, we recall fundamentals of the state-of-the-art approach.

Tridiagonal reduction Implementation of symmetric eigensolvers are usually based on
a reduction to tridiagonal format followed by a direct tridiagonal solve of the eigenvalue
problem. Similarly to the SVD, this reduction is performed using orthogonal transfor-
mations. The 2–stage variants make use of level–3 BLAS routines by first reducing the
matrix to block tridiagonal format then to tridiagonal format using bulge–chasing.

Tridiagonal eigensolver There exists many variants for the tridiagonal eigensolver
using either QR (syev routine in LAPACK), D&C (syevd), MRRR (syevr) or bisection
plus inverse iterations (syevr). The performance and accuracy of each method depends on
the structure of the input matrix (e.g., clustering of eigenvalues) the necessity to compute

http://www.nlafet.eu/ 6/28

NLAFET D2.9: Novel SVD

Table 1: Flops count (/n3) for SVD algorithms (gesvd) and symmetric eigenvalue solvers
(syev) for either all values only or all values and vectors.

Problem gesvd syev

Output(s) Σ U,Σ, V Λ W,Λ

QR-based 8
3 ≈ 17 4

3 = 1 + 1
3

4
3 + 6 = 22

3 = 7 + 1
3

D & C 8
3 ≈ 9 4

3 = 1 + 1
3

8
3 + 4

3 = 4

2-Stage 10
3 = 3 + 1

3
10
3 + 4 = 7 + 1

3
4
3 = 1 + 1

3
4
3 + (8

3 + 4
3) = 5 + 1

3

eigenvectors and the number of MPI processes. As a reference, the Intel MKL team gives
the following informations1: “The EV driver is the slowest but also the most robust.
The EVX driver is the fastest but is more likely to fail for clustered eigenvalues. The
EVR driver struggles to scale. The EVD driver is slightly slower than EVX and should
be used only when eigenvectors are required.” In this report we will use the divide and
conquer approach as it is a good compromise between speed and accuracy for computing
eigenvalues and eigenvectors.

Implementation Robust symmetric eigensolvers can also be obtained using the polar
decomposition. In particular, a spectral divide and conquer symmetric eigensolver based
on QDWH is presented in [12]. However, preliminary experiments showed that it is not
very competitive with state-of-the-art approach in practice.

2.4 Flops count
One of the main points we make in the present report is that a routine involving many
more flops than another one does not necessarily result in a longer time to solution. In
fact, depending on the nature of the operations (cache efficient/compute–bound) and the
scalability of the algorithm it can actually run much faster. Table 1 summarizes the flop
counts associated with several SVD algorithms and symmetric eigenvalue solvers. Al-
though these numbers are much smaller than those associated with QDWH–SVD (Section 4),
namely 7n3 for 2–stage SVD and about 15 to 40n3 for QDWH–SVD, we show in Section 6
that on recent CPU architectures QDWH–SVD can run faster than 2–stage SVD.

3 Polar Decomposition based SVD
This section provides some basic knowledge on the polar decomposition and explains why
it is relevant to use it in SVD algorithms and eigensolvers. A generic algorithm is provided
for rectangular matrices using a generic polar decomposition algorithm denoted polar().

1https://software.intel.com/en-us/articles/intel-math-kernel-library-intel-mkl-2018-update-2-
scalapack-symmetric-eigensolver

http://www.nlafet.eu/ 7/28

NLAFET D2.9: Novel SVD

Algorithms for computing the polar decomposition are presented in Section 4, where focus
is made on QDWH iterations.

3.1 Polar Decomposition
The polar decomposition generalizes the polar representation of a complex numbers to
the case of matrices. More precisely, for any matrix A ∈ Rm×n there exists a set of
orthonormal columns Up ∈ Om×n and an Hermitian matrix H ∈ Rn×n such that

A = UpH. (3)

The matrix Up is also known as the unitary polar factor and the H as Hermitian factor.
The matrix representation (3) is called a polar decomposition (PD) and is equivalent to
the SVD. If the matrix is non-singular, then the polar decomposition is unique.

3.2 Applications
The polar decomposition is a keystone in the computation of matrix functions [5], being
very closely related to the matrix sign function [10]. Both the unitary and the Hermitian
factors provide useful information regarding nearby structured matrices [4]. In fact, in
the Frobenius norm U is the nearest orthonormal matrix to A, while 1

2(A + H) is the
nearest Hermitian positive semi-definite matrix to A. As a result, both U and H have
numerous practical applications in scientific computing. The polar factor U is used in
optimization schemes to orthonormalize the search space in optimization algorithms such
as the gradient descent. The Hermitian factor H has direct applications in instances of
principal component analysis (PCA) such as factor analysis or multidimensional scaling
(MDS). Finally, as pointed out in [5], not only is the polar decomposition ubiquitous in
the computation of matrix functions but it is also a powerful tool to perform standard
matrix factorizations. In this report we give some details on how it can be used to derive
a competitive SVD algorithm.

3.3 The Polar–SVD Algorithm
The SVD and the PD are equivalent and as a result one can easily be obtained from the
other. In this report we are interested in obtaining an SVD from a polar decomposition.
Let us consider an arbitrary matrix A ∈ Rm×n and its polar decomposition (3). Then,
the SVD (2) is obtained by first computing an eigenvalue decomposition of the Hermitian
factor H ∈ Rn×n, i.e., factors Σ ∈ Dn×n and V ∈ On×n such that

H = V ΣV ∗. (4)

Thus, the singular values of A are equal to the eigenvalues of H, while the right singular
vectors are equal to the eigenvectors of H. Finally, the left singular vectors of A are equal
to U = UpV ∈ Om×n. Hence, as described in Algorithm 1, an SVD can be obtained via
a PD followed by a symmetric eigensolve and a rectangular matrix-to-matrix multiplica-
tion. We call this generic algorithm Polar–SVD where the polar decomposition can be
implemented using the algorithm described in Section 4, namely QDWH iterations. For
a square matrix this represents an extra 6n3 flops after polar decomposition if vectors are
required and 2n3 otherwise.

http://www.nlafet.eu/ 8/28

NLAFET D2.9: Novel SVD

3.4 The QR trick
As mentioned in Section 2.1 it is often convenient for m > n to perform a preliminary QR
factorization. This trick obviously applies to the SVD or even the polar decomposition
itself, since we can compute the polar decomposition of the R factor as

R = ŪpH̄

and obtain the polar factors of A as Up = QŪp and H = H̄. For the Polar–SVD it is
cheaper to first compute the left singular vectors of R as Ū = ŪpV̄ and then apply the Q
factor to Ū in order to obtain the left singular vectors of A, namely U = QŪ .

As explained in [12], in order to minimize the number of flops in the standard bidi-
agonal SVD we need m ≥ 2n to apply this trick, while we only need m ≥ 1.15n for the
QDWH–SVD. This threshold may differ slightly if we want to minimize the computational
time. However, it is still a good indicator for QDWH–SVD as all flops in QDWH–PD can be
computed with a similar efficiency and we always solve the eigenvalue problem on a small
n-by-n matrix. Additionally, because the threshold is so close to the square case (m = n)
for the QDWH–SVD, we will mainly consider square matrices in our experiments. However,
we will give the detailed flops count for the general case of rectangular m-by-n matrices.

There are extra benefits in applying polar decomposition algorithms to a square or
even triangular input matrix. First, it reduces their relatively high memory footprint as
more matrices can be recycled and packed format can be used. Second, it can help improve
the accuracy and speed of the parameter estimation required in most polar decomposition
algorithms (see Section 4.3).

Algorithm 1 Polar Decomposition-based SVD (Polar–SVD).

Input: An m-by-n complex-valued matrix A and a boolean jobv to indicate if vectors
should be computed.
Output: Left and right singular vectors (U, V) and singular values Σ.

1: function polar–svd(A, jobv)
2: [Up, H] = polar(A) . polar=newton,qdwh,zolo,. . .
3: if jobv then
4: [V,Σ] = syev(H, jobv) . 4n3 flops
5: U = UpV . 2mn2 flops
6: return U,Σ, V
7: else
8: [,Σ] = syev(H, jobv) . 2n3 flops
9: return Σ

10: end if
11: end function

4 Optimized Polar Decomposition algorithms
In this section we are interested in ways to efficiently compute a polar decomposition.
We start by describing the main concepts behind the most commonly used algorithms
then present an efficient variant designed to perform well at large scale, namely QDWH
iterations (see Algorithm 2 in Section 4.2).

http://www.nlafet.eu/ 9/28

NLAFET D2.9: Novel SVD

4.1 Computing the Polar Factor Up

Algorithms for computing the polar decomposition can take many forms but they all
rely on first computing the polar factor Up using appropriate matrix iterations. Once an
approximate polar factor is computed, the Hermitian factor H is simply obtained using
a matrix to matrix multiplication, namely

H = U∗pA.

Since accumulation of rounding errors can result in H not being symmetric, we can
subsequently extract the symmetric part, namely H := 1

2(H∗ +H).

Matrix iterations Since we know that the singular values of Up are all equal to 1, any
matrix iteration

Xk+1 = f(Xk), with X0 = A

that maps the singular values of A to 1 while preserving the singular vectors is admissible.
Applying Newton iterations to A∗A = I is a simple way to do this, while Newton-Schulz
would be its inverse–free counterpart. The main idea here is that we can reformulate
matrix iterations for the polar decomposition as an optimization problem, where we seek
to minimize the distance δk = |1− `(Xk)| and

`k = `(Xk) = min
i≤n

σi(Xk)

denotes the minimum singular value of Xk. This criterion is very convenient as it provides
an upper bound on the distance of Up to orthogonality and ultimately some precious
information on the backward stability of the algorithms [11].

Rational approximation of the sign function The relation between the polar factor
and the matrix sign function is explained extensively in [5, Chap. 8]. In particular, it is
shown in [5, Theo. 8.13] that for any matrix function g of the form g(X) = Xh(X2) such
that g(X)∗ = g(X∗) and the matrix iteration Xk+1 = g(Xk+1) converges to sign(X0) then

Yk+1 = Ykh(Y ∗k Yk), Y0 = A

converges to Up. Once this relation is understood it is natural to prefer Padé iterations to
compute the polar decomposition. In fact, a common backward stable method is scaled
Newton iterations, the quadratically convergent iterations of the Padé family. Given
the relatively high number of iterations required to reach convergence that approach can
be computationally intractable at large scale. In this report, we will only consider the
computationally efficient and scalable QDWH iterations [9].

4.2 Optimized Halley’s iterations: the QDWH–PD algorithm
In order to accelerate the convergence of the polar decomposition, Halley’s iterations (3rd
order Padé iterations) can be considered, i.e.,

Xk+1 = Xk(aI + bX∗kXk)(I + cX∗kXk)−1, X0 = A/α

http://www.nlafet.eu/ 10/28

NLAFET D2.9: Novel SVD

where (a, b, c) = (3, 1, 3) denote static weights and α > 0 an approximate upper bound for
‖A‖2 = maxi σi(A). Thus, the singular values of X0 are iteratively mapped from [`0, 1] to
1 using the recursive relation `k+1 = h(`k), where the rational function h reads as

h(x) = xg(x2), g(x) = a+ bx

1 + cx
.

Choosing dynamic weights (ak, bk, ck) such as

ak = h(`k), bk = g(ak), ck = ak + bk − 1.

gives a best rational approximation of the sign function and thus ensures optimal con-
vergence of the scheme [9]. As a result these Dynamically Weighted Halley’s iterations
(DWH) can reach double precision accuracy in a maximum of 6 iterations, assuming the
2–norm condition number of A is lower than 1016 and parameters α and β = α`0 are
relatively accurate estimations of the maximum and minimum singular values of A (see
Section 4.3 for more details). Finally, the inverse matrix can be reformulated and imple-
mented using only QR decompositions (see line 9–11 of Algorithm 2). Hence we obtain
the following modified matrix iteration

Xk+1 = (bk/ck)Xk + (1/ck)(ak − bk/ck)Q1Q
∗
2, (5)

where Q1 and Q2 are computed by mean of a (m + n) − by − n QR decomposition such
that [

Q1
Q2

]
R =

([√
ckXk

In

])
. (6)

The resulting method is called QR-based Dynamically Weighted Halley’s iterations or
QDWH iterations.

Optimizing the QDWH iterations Two crucial optimizations have been proposed in
[12, Sec. 5.6] for the QDWH iterations. First, because the main computational bottleneck
of the method lies in the computation of the (m+n)-by-n QR factorization, it is important
to optimize it by first exploiting the identity structure of the last n-by-n block. By doing
so we reduce the cost of dense QR iterations from 8mn2 + 2

3n
3 flops to 7mn2 (See [7] for

details of implementation). Second, QR iterations (5) can be reformulated in terms of the
following Cholesky iterations (PO)

Z = In + ckX
∗
kXk, W = chol(Z)

Xk+1 = (ak/bk)Xk + (ak − bk/ck)
(
XkW

−1
)
W−∗.

As shown in [12], switching from QR to PO iterations for ck lower than 100 preserves
the stability of the algorithm. In practice, ck becomes lower than 100 after only 2 QR
iterations for matrices with condition number up to 1016. Additionally, for K2(A) < 106

a maximum of 1 QR iteration is required and for K2(A) < 100 only PO iterations are
required. PO iterations require 4mn2 + n3/3 flops each, which is half the flops required
by a dense QR iteration (dense (m+ n)-by-n QR factorization). Both types of iterations
reach performance that are fairly close to the peak of the machine, hence we expect PO
iterations to be about twice as fast as QR iterations.

The optimized QDWH–based polar decomposition QDWH–PD is described in Algo-
rithm 2. The QDWH–SVD is obtained by combining Polar–SVD (Algorithm 1) with QDWH–PD.

http://www.nlafet.eu/ 11/28

NLAFET D2.9: Novel SVD

Algorithm 2 Optimized QDWH based Polar Decomposition (QDWH–PD).

Input: An m-by-n complex-valued matrix A with m > n, an estimate for (α, β), a
tolerance ε for the stopping criterion and a boolean jobh to indicate if H should be
computed.
Output: A Polar factor U and an Hermitian factor H if jobh is true.

1: function qdwh(A,α, β, ε, jobh)
2: X0 = A/α, `0 = β/α
3: k = 0
4: while ‖Xk −Xk−1‖F ≤ u1/3‖Xk‖F do
5: ak = h(`k), bk = g(ak), ck = ak + bk − 1
6: //
7: if ck ≥ 100 then . QR-based it.: 8mn2 + 2

3n3 or 7mn2

8:

9:

[
Q1
Q2

]
R = qr

([√
ckXk

In

])
10:
11: Xk+1 = (bk/ck)Xk + (1/ck)(ak − bk/ck)Q1Q

∗
2

12:
13: else . PO-based it.: 4mn2 + n3/3
14:
15: Z = In + ckX

∗
kXk

16:
17: W = chol(Z)
18:
19: Xk+1 = (ak/bk)Xk + (ak − bk/ck) (XkW

−1)W−∗

20:
21: end if
22: //
23: `k+1 = `k(ak + bk`

2
k)/(1 + ck`

2
k)

24: k = k + 1
25: end while
26: U = Xk+1
27: if jobh then
28: H = U∗pA
29: H = 1

2(H∗ +H)
30: return U , H
31: else
32: return U
33: end if
34: end function

http://www.nlafet.eu/ 12/28

NLAFET D2.9: Novel SVD

4.3 Estimating K2(A) to ensure optimal convergence
In order to ensure fast convergence, it is crucial to properly initialize the iterations with
accurate estimation of parameter α and β = α`0. First, scaling A by ‖A‖2 (or at least a
tight upper bound) in the definition of X0 ensures that the singular values of X0 are in
the interval [`0, 1], where `0 = mini σi(X0). Second, providing an estimate for `0 (or at
least a tight lower bound) will allow us to estimate the number of iterations required to
reach a given convergence before actually starting the iterations.

Let us focus on the case where A is a square matrix. For the reasons mentioned in
Section 3.4, if A is rectangular we will use a preliminary QR decomposition. As a result
the parameters estimation will be done on the triangular matrix R rather than A, which
offers more alternatives for the computation of α and β.

The 2–norm of A can be approximated efficiently using power iterations; see the
normest function in MATLAB. Setting the maximum number of iterations to 100 proved
very reliable in all cases of interest. Parameter estimation represents only a small fraction
of the computational cost but its outcome dramatically affects the overall cost of the
method. In particular, overestimating `0 can slow down convergence [9].

For `0 the estimator suggested in [12] reads as

0.9× 1
condest(X0)

where condest(X0) is an approximation of K1(X0) = ‖X0‖1‖X−1
0 ‖1. Alternatively,

K1(X0) can be bounded using the 1–norm of X0 and X−1
0 , and the relation ‖X−1

0 ‖1 ≥
‖X−1

0 ‖2/
√
n = (

√
n`0)−1. Hence, the estimate reads as

`0 ≥
1√

n‖X−1
0 ‖1

. (7)

This bound may be satisfactory for small matrices but as n grows we are more likely to
underestimate `0. In [12] the authors made it clear that underestimating `0 is somehow
harmless to the convergence and stability, however it can still incur one more iteration.
In a high performance implementation given the cost of each iteration it seems crucial to
get optimal convergence of the iterations. Finally, a similar bound is considered in [14]
without much justifications, namely

`0 ≥
α

1.1 ×
1

‖X0‖1‖X−1
0 ‖1

(8)

In [14] the authors suggest to use the triangular factor of the QR factorization of X0
to compute ‖X−1

0 ‖1. Not only is that inverse-free approach more efficient, scalable and
stable but it is also very convenient. In fact, the Q factor can be recycled for the first
matrix iteration decreasing its overall cost from 7n3 to 6n3. The difference in flops count
(1n3) may seem low, but it corresponds to the most expensive flops involved in the most
expensive iterations. However, in order to avoid relying on the assumption that ‖X−1

0 ‖1 ≈
‖R−1‖1, we will not consider (8) and derive our own estimate for `0.

In [9] the authors wonder why such crude estimate proved reliable and leave that
matter to future investigations. First, we agree that (7) or (8) are reliable, however our
experiments showed that they do not always minimize the number of iterations to reach
convergence. Second, we feel that there is no need for such crude estimate. In fact, if we

http://www.nlafet.eu/ 13/28

NLAFET D2.9: Novel SVD

Table 2: Estimated number of iterations (#QR + #PO) if `0 is computed as (7) (top)
or (9) (bottom). We use matrices from Section 6.1 with m = n = 4, 000. The difference
between the actual and estimated number of iterations is displayed in parenthesis. The
rows labeled error and ortho denote the Frobenius norms of the error in the factorization
A−UpH (normalized by the Frobenius norm of A) and the distance of Up to orthogonality
‖I − UpU

∗
p‖∞ (normalized by ‖I‖∞ = n).

K2(A) 100 104 108 1012 1016

#it 1 + 3 (-) 2 + 3 (-) 2 + 4 (+1) 2 + 4 (-) 3 + 3 (-)
(7) `0 1.581e-02 3.609e-08 3.143e-12 3.143e-16 1.767e-20

ortho 6.219e-40 1.110e-19 1.110e-19 1.110e-19 1.110e-19
error 1.688e-31 4.649e-16 3.434e-16 5.201e-16 4.702e-16
#it 0 + 1 (-) 1 + 4 (+1) 2 + 3 (-) 2 + 4 (+1) 2 + 4 (-)

(9) `0 1.000e+00 1.002e-04 1.002e-08 1.002e-12 5.636e-17
ortho 1.110e-19 1.110e-19 1.110e-19 1.110e-19 1.110e-19
error 9.182e-17 3.953e-16 4.326e-16 3.535e-16 5.826e-16

are able to build X−1
0 then we can re-use our 2–norm estimator and consequently obtain

an approximate ‖X−1
0 ‖2 = K2(A). Hence, our estimate simply reads as

`0 = 1/‖X−1
0 ‖2 ≈ 1/normest(X−1

0). (9)

Following the suggestion of [14] we can apply the 2–norm estimator to R−1 resulting in an
accurate estimate of ‖X−1

0 ‖2. Ifm > n then estimating ‖R−1‖2 is cheaper than estimating
‖A‖2. Our approach seems safer as we have a way to verify the accuracy of power itera-
tions. Not only did our method prove accurate but often resulted in less iterations than
other estimates, see Table 2. More precisely, the distance of Up to orthogonality remains
fairly constant with respect to the condition number and the choice of `0. Additionally, for
a similar number of iterations both estimates result in similar errors in the factorization.
As expected, the higher the number of iterations the more accurate the factorization. In
particular, the very small errors reported in the first column of the upper part of the
table are due to an overestimation of the condition number and consequently an excessive
number of iterations.

4.4 Complexity
Here we summarize the number of flops involved in QDWH–PD and QDWH–SVD with all the
aforementioned optimizations.

Polar decomposition The number of flops needed by each QR iteration is 8mn2+2/3n3

or 7mn2 if we exploit the identity structure. We can save another mn2 if we recycle the Q
factor from the parameter estimation. The number of flops needed by each PO iteration
is 4mn2 + 1/3n3. Given the number of iterations (#QR and #PO) required to reach
convergence of the QDWH iterations that were established in the previous section we can
deduce the total number of flops in Algorithm 2 by the following relation

#flops(QDWH) = #QR×
(
7mn2

)
+ #PO ×

(
4mn2 + 1/3n3

)
+ 2mn2

http://www.nlafet.eu/ 14/28

NLAFET D2.9: Novel SVD

For well-conditioned matrices only 1 PO iteration is required, therefore the minimum num-
ber of flop required by QDWH is 6mn2 + 1/3n3. For ill-conditioned matrices a maximum
of 2 QR and 4 PO iterations are required, which translates to (14 + 16 + 2)mn2 + 4/4n3 =
33mn2 + 1/3n3 flops.

Polar-SVD The number of flops required by a symmetric eigensolver and a matrix
multiplication are roughly 2mn2 + 4n3. If we add it to the previous flop count we obtain
the total number of flops required in QDWH–SVD, namely

#flops(QDWH− SVD) = #QR×
(
7mn2

)
+ #PO ×

(
4mn2 + 1/3n3

)
+ 4mn2 + 4n3.

Consequently, the QDWH–SVD requires between 10mn2+(4+1/3)n3 and 37mn2+(4+1/3)n3.
For square matrices (m = n), this translates to about 14n3 and 41n3, which is about 2 to
6 times the number of flops required by standard SVD. Finally, we noticed that QDWH–PD
converge in 1 iteration for matrices A with K2(A) = 1, whereas other relatively well–
conditioned matrices may require much more iterations. In particular, for K2(A) = 100 it
takes 1 QR and 3 PO iterations to reach convergence in double precision. Hence, it seems
honest to consider the latter case as a more realistic lower bound for the flops count as
well as for the experimental time to solution.

5 Implementation in Shared and Distributed Mem-
ory

In this section we describe our implementation of the QDWH–PD and QDWH–SVD in a linear
algebra library for multi- and many–core architectures (Section 5.1), and in libraries for
distributed memory computing and accelerators (Section 5.2). We focus on describing how
we calibrate each library to get best performance of the algorithms and some numerical
limitations.

5.1 QDWH–SVD for Multi– and Many–core Architectures
A first step to assess the performance and accuracy is to consider computations on a single
node. Therefore, the first task was for us to implement QDWH–PD and QDWH–SVD in a linear
algebra library for multi– and many–core architectures. The PLASMA library gives an
optimal framework for this type of algorithm as it provides optimized implementations
of matrix multiplication (gemm), QR (geqrf) and Cholesky (potrf) decomposition, using
bulk asynchronous task–based parallelism.

From QUARK to OpenMP Starting from an implementation of the QDWH–PD pro-
vided by the authors of [16], that was based on the relatively old PLASMA-2.82, we
provided an updated implementation in the latest version of the library, namely PLASMA-
18.113. The latter version improves its portability by switching from the QUARK runtime
system to OpenMP task features [17]. Therefore, our main technical task was to convert
QDWH–PD from the QUARK runtime system to OpenMP. A similar effort has been previ-
ously done for the 2–stage SVD and symmetric eigensolver.

2Can be downloaded from bitbucket.org/icl/plasma/downloads/plasma-2.8.tar.gz
3Can be downloaded from bitbucket.org/icl/plasma

http://www.nlafet.eu/ 15/28

NLAFET D2.9: Novel SVD

PLASMA–QDWH Additionally, and maybe most importantly we needed to define a
prototype for the polar decomposition but also a prototype for Polar–SVD that would be
consistent with that of the existing SVD routines. We provide our prototype software as
a fork of the latest version of PLASMA, called PLASMA-QDWH4. The fork contains a
set of custom testers in the drivers/ directory as well as standard testers in the tests/
directory. Informations on how to run custom tests are provided in drivers/README.
The names used for the routines and testers for QDWH–PD and QDWH–SVD are xgepd_qdwh
and xgesvd_qdwh respectively, where the prefix x denotes the datatype and the suffixes
stand for polar and singular value decomposition of a general matrix based on QDWH
iterations.

5.2 QDWH–SVD in Distributed Memory
Here we describe our implementation of QDWH–PD and QDWH–SVD relying on libraries for
numerical linear algebra in distributed memory.

ScaLAPACK We wish to verify the scalability of the QDWH–PD and QDWH–SVD algo-
rithms and compare it to that of the standard approach to the SVD. Therefore, we
provide a pure CPU implementation in distributed memory using the state-of-the-art li-
brary ScaLAPACK. The library is used in pure MPI mode, i.e., we use 1 MPI process per
core. Rather than using existing implementations that may involve extra dependencies,
we choose to provide our own implementation with a single dependency, namely Intel
MKL’s ScaLAPACK — the same library we use to perform standard 2–stage SVD. On
the other hand, KAUST Extreme Computing Research Center’s (ECRC) implementation
of scalable algorithms for polar decomposition and SVD5 relies on ELPA library for the
symmetric eigensolver, see [15] for more details. Furthermore, our version implements our
own approach to parameters estimation (Section 4.3). In order to maximize the perfor-
mance of ScaLAPACK, a library exploiting a 2D block cyclic data distribution, we use
MPI process grids that are as square as possible. Finally, the optimal block size for the
gemm, geqrf and potrf in ScaLAPACK is usually b = 64 (or slightly higher), therefore
we use the same value for QDWH–PD and QDWH–SVD on all hardware architectures.

SLATE SLATE is a successor to ScaLAPACK enabling computations on accelerators.
Alternatives to SLATE for distributed memory and heterogeneous architectures include
MAGMA, Chameleon or DPlasma. The case of MAGMA (synchronous) and Chameleon
(asynchronous tasks scheduling based on StarPU) is considered in [14]. DPlasma is an
alternative to Chameleon, that relies on the ParSEC runtime system instead of StarPU.
We choose SLATE for its portability, its simplicity and the many convenient features it
provides such as templatization, ScaLAPACK–like data distribution and user–friendly in-
terface with ScaLAPACK. SLATE does not provide a symmetric eigensolver yet, however
we were able to assemble a partially accelerated QDWH–SVD using the built-in ScaLAPACK
interface. As shown by our preliminary experiment in Appendix 8.2, SLATE QR decom-
position is working relatively well and reaches performance close to that of Cholesky
decomposition. However, it is still under development and is not yet able to exploit the
identity structure in (6).

Two different modes can be considered in SLATE:
4Can be downloaded from bitbucket.org/piblanch/plasma-qdwh
5Can be downloaded from github.com/ecrc/ksvd

http://www.nlafet.eu/ 16/28

NLAFET D2.9: Novel SVD

• 1 proc per core (1ppc): similar to ScaLAPACK, each MPI processus is mapped
to a core.

• 1 proc per node (1ppn): This mode corresponds to a configuration where the
communication between nodes are handled by MPI, while communications within
a node are handled by OpenMP.

Comparative results for the 3 building blocks of QDWH–PD, namely geqrf, potrf and gemm,
are provided in Appendix 8.2 using both modes. ScaLAPACK can in theory be used in
1ppn mode, for instance by enabling multithreading in MKL’s BLAS and LAPACK.
However, it usually gives worse performance than 1ppc. In our case, using 1ppn provided
better performance, therefore we decided to show the results in 1ppn mode. Optimal block
sizes were determined empirically on recent Intel CPUs (see Appendix 8.2), we found that
a good compromise for the polar decomposition is to use a block size of b = 256 on either
Broadwell or Skylake nodes.

SLATE-POLAR Our prototype software for the QDWH–PD and QDWH–SVD in distributed
memory and on accelerators is available as a fork of the SLATE library called SLATE-
POLAR6. It implements both a ScaLAPACK only and a SLATE+ScaLAPACK version
of the algorithms. The routines and testers for QDWH–PD and QDWH–SVD are denoted
gepd_qdwh and gesvd_qdwh respectively.

5.3 QDWH–PD on Accelerators
Thanks to templatization our implementation of the polar decomposition in SLATE can
be executed via the same source code on either CPUs and/or GPUs and in single or
double precision. It is up to the user to provide a target type (device for GPU, host for
CPU) and a data type (s for real single or d for real double) at run time. Additionally,
computations on accelerators can only be done in the 1ppn mode, therefore all results
associated with SLATE will involve 1 MPI process per node. Optimal block sizes were
determined empirically on NVIDIA GPUs. We found that a good compromise for the
polar decomposition is to use a block size of b = 512. Finally, because the QDWH–SVD
cannot yet be fully accelerated we will only present numerical results on QDWH–PD with
SLATE (see Section 6.4).

6 Numerical Experiments
In this section we describe a way to benchmark the polar decomposition based SVD in
shared and distributed memory environments, then we provide some numerical results and
discuss the relative performance of the QDWH–SVD and the 2–stage bidiagonal SVD. Here
we strictly focus on performance for double precision real numbers, however Appendix 8.1
provides some important remarks on precision and accuracy.

6.1 Benchmarking the Polar–SVD
Test matrices Let us recall that for the sake of clarity we only consider real double
precision square matrices. Since the number of iterations required by the polar decom-
position algorithms depends on the conditioning of the matrix A we need to have control

6Can be downloaded from bitbucket.org/piblanch/slate-polar

http://www.nlafet.eu/ 17/28

NLAFET D2.9: Novel SVD

over the value of K2(A). Thus, we generate input matrices with the latms function of
LAPACK (equivalent to gallery(’randsvd’) in MATLAB) as it allows one to prescribe
the singular values explicitly. We enforced singular values that decrease arithmetically
(mode = 4) from 1 to 1/K2(A). We consider at least 2 extreme cases, namely K2(A) = 1
and K2(A) = 1/u = 1016. As discussed in 4.4, the intermediate case K2(A) = 100 should
be considered as a more realistic lower bound than K2(A) = 1 for the experimental time
to solution.

Finally, because it requires about 5 dense n-by-n matrices, the memory footprint of
the QDWH–PD is relatively high and very quickly exceeds the size of the low-bandwidth
memory on KNLs (16GB) or even the memory available on a GPU (12GB to 24GB in
NVIDIA K80). Therefore we will only consider matrix sizes below m = n = 20, 000.
Moreover, generating larger matrices with latms often requires several times the time
required to factorize them.

Hardware Architectures In this report we are first concerned with modern multi–
core and many–core architectures. Our experiments will be performed on 2-socket (NUMA
islands) nodes equipped with relatively recent Intel CPUs. We will use the CPUs listed
below and sorted by increasing throughput (GFlops/s):

• Haswell nodes1 are composed of 2x Intel Xeon E5-2650 v3 @ 2.30GHz.
20 cores, 64GB RAM. Available Instructions: AVX2.
Theoretical peak near 736 GFlops/s (double precision).

• Broadwell nodes 2 are composed of 2x Intel Xeon E5-2690v4 @ 2.60GHz.
28 cores, 128GB RAM. Available Instructions: AVX2 & FMA3.
Theoretical peak near 1160 GFlops/s (double precision).

• Skylake nodes2 are composed of 2x Intel Xeon Gold 6132 @ 2.60GHz.
28 cores, 192GB RAM. Available Instructions: SSE4.2, AVX, AVX2, AVX-512.
Theoretical peak near 2330 GFlops/s (double precision).

• KNL nodes2 are composed of 1x Xeon Phi 7250 @ 1.40GHz (only one socket)
68 cores, 192GB RAM + 16 GB MCDRAM. Instructions: AVX-512.
Theoretical peak near 3050 GFlops/s (double precision).

Note that the difference in flop rates between Haswell and Broadwell or Skylake and KNL
is mainly due to the respective numbers of cores, while the type of vectorization (length
of SIMD instructions) explains the difference between Broadwell and Skylake. Of course,
the memory hierarchy plays a crucial role too, especially on KNLs and accelerators.

Tuning Parameters We also chose to study the square case because it is relatively
easy to set up in terms of optimal tile size and MPI grid size. Hence, it is easier to see
how Polar–SVD can be competitive with state–of–the–art approaches. The cost of the
Polar–SVD algorithm studied in this report is governed by QR decomposition (geqrf),
Cholesky decomposition (potrf), and matrix multiplication (gemm). Therefore, the tuning
parameters should be picked to provide optimal performance of those kernels with stronger
emphasis on QR, as it dominates the overall cost.

1Saturn: ICL’s experimental platform located at the University of Tennessee in Knoxville, TN.
2Kebnekaise: Swedish national supercomputer located at the University of Umeå, Sweden.

http://www.nlafet.eu/ 18/28

NLAFET D2.9: Novel SVD

In PLASMA-18.1, the Cholesky factorization typically gives best performance around
550 to 600 GFlops/s on Haswell with a tile size of b = 224 (see [17]). Similar to matrix
multiplication, factorization in QR form delivers best performance for slightly larger b,
namely b = 336 on Haswell and Broadwell. We use a standard setup for the value of the
inner block size in the QR routine, namely i = b/4, and we prefer the Householder variant
over the one based on a flat tree. The optimal tile size increases slightly for QDWH–SVD
as the number of cores (and flop rate) of the hardware grows. Hence, for QDWH–SVDon
Skylake we set b = 384 and on KNLs we set b = 448. For the 2–stage SVD the optimal
tile size remains relatively constant, namely around b = 160 for all architectures.

Reference implementations Our aim is to compare our prototype for the Polar–SVD
to the standard approach, namely SVD based on bidiagonal reduction (with either the
1– or 2–stage variant). A state–of–the–art implementation is provided in the Intel Math
Kernel Library (MKL). Because it is the most widely used in the scientific computing
community it will serve as a reference for our discussions on the relative performance
and accuracy. It is a fair comparison as MKL also serves as a BLAS and LAPACK core
engine in our experiments with PLASMA. However, MKL is relatively opaque and it is not
obvious what algorithm is actually implemented for the SVD and symmetric eigensolvers.
While 2–stage SVD seems to have been implemented in MKL since at least 2018, 2–stage
eigensolvers were only added for certain variants in version 2018.2+ 7.

6.2 Experiments on a Single Node
QUARK vs OpenMP Figure 2 shows the relative time to solution and performance of
the QUARK and OpenMP implementations with or without optimizations (i.e., exploiting
identity structure and recycling). As expected no significant difference is observed between
the 2 runtime systems in this range of sizes. Looking closer at the performance of the
OpenMP version, we observe that we get experimental flop rates around 75% of the peak
performance of a single Haswell node (including turbo boost). Optimizations do not
change the nature of the flops or the number of iterations, hence they do not significantly
impact the performance but rather decrease the time to solution (and the flop count) by a
small factor. The speedup associated with optimization is relatively small but still much
larger than that associated with the choice of runtime system (close to zero).

Bidiagonal–SVD vs QDWH–SVD Figure 3 (left) shows clearly that QDWH–SVD is
much slower than standard approaches to compute the singular values only. On the other
hand, Figure 3 (right) shows that QDWH–SVD is faster than the QR variant (gesvd) but
slower than the D&C variant of the 2–stage SVD (gesdd) in the ill–conditioned case. In
the following we will always take 2–stage D&C SVD as the reference and only consider
the computation of all singular values and vectors.

Since our algorithm is compute–bound, it suffices to use CPUs with larger flops capa-
bilities to speed it up. In fact, Figure 4 shows that for n = 14, 000 QDWH–SVD completes
in 3 to 8 minutes on Haswell (left) against about 1 to 2 minutes on KNLs, which means
a speedup of 4 in the ill –conditioned case. The latter provide a significant acceleration
of the QDWH–SVD while the 2–stage SVD (still memory bandwidth bound) is slightly less
accelerated, namely we measured a speedup of 3 on KNL for the divide and conquer

7More information on symmetric eigensolvers in MKL at https://software.intel.com/en-us/
articles/intel-math-kernel-library-intel-mkl-2018-update-2-scalapack-symmetric-eigensolver

http://www.nlafet.eu/ 19/28

NLAFET D2.9: Novel SVD

2 4 6 8 10 12

0

50

100

150

Matrix Size: n (/103)

T
im

e
(s
)

Intel Haswell - PLASMA::DGEPD QDWH

QUARK qdwh

QUARK qdwh with opt.

OpenMP qdwh

OpenMP qdwh with opt.

2 4 6 8 10 12
0

20

40

60

80

100

Matrix Size: n (/103)

P
er
ce
n
ta
g
e
o
f
P
ea

k
P
er
fo
rm

a
n
ce

(%
)

Intel Haswell - PLASMA::DGEPD QDWH

OpenMP qdwh

OpenMP qdwh opt.

Figure 2: Time to PD (left) and percentage of the peak performance including turbo boost
for QDWH–PD (right) for different task schedulers, namely QUARK (squares) and OpenMP
(circles). The input matrix is ill–conditioned (K2(A) = 1016) and factorized using a dense
QDWH–PD in brown or a fully optimized QDWH–PD (identity structure + recycling) in black.

2 4 6 8 10 12 14 16

0

5

10

15

Matrix Size: n (/103)

T
im

e
(m

in
.)

Intel Haswell - Singular Values Only

2–stage sdd

2–stage svd

qdwh–svd (K2(A) = 1)

qdwh–svd (K2(A) = 100)

qdwh–svd (K2(A) = 1016)

2 4 6 8 10 12 14 16

0

5

10

15

Matrix Size: n (/103)

T
im

e
(m

in
.)

Intel Haswell - Singular Values & Vectors

2–stage sdd

2–stage svd

qdwh–svd (K2(A) = 1)

qdwh–svd (K2(A) = 100)

qdwh–svd (K2(A) = 1016)

Figure 3: Time to compute the singular values only (left) or the singular values and
vectors (right) using PLASMA’s 2–stage bidiagonal SVD based on QR (red circles) or
D&C (brown circles) or QDWH–SVD (black squares) for different values of the condition
numbers K2(A): 1 (dotted lines), 100 (dashed lines) and 1016 (solid lines).

http://www.nlafet.eu/ 20/28

NLAFET D2.9: Novel SVD

approach and a speedup of 2 for the QR approach. The larger speed up obtained for
QDWH–SVD is mainly due to its much higher level of concurrency. As a result, on Intel
KNLs the QDWH–SVD becomes slightly faster than 2–stage SVD for ill–conditioned ma-
trices and twice as fast for well–conditioned matrices. Finally, because of its relatively
large memory footprint it may not be very convenient in general to compute QDWH–SVD
on a single node. Moreover, if the memory footprint exceeds the size of the MCDRAM
(high memory bandwidth) on Intel KNLs then we observe a large performance drop and
QDWH–SVD becomes slower than 2–stage SVD. Therefore, and also because in theory it
must have better scalability, QDWH–SVD should be an even better alternative to 2–stage in
distributed memory.

2 4 6 8 10 12 14 16

0

5

10

15

Matrix Size: n (/103)

T
im

e
(m

in
.)

Intel Haswell - Singular Values & Vectors

dgesdd (MKL)

dgesvd (MKL)

qdwh-svd (K2(A) = 1)

qdwh-svd (K2(A) = 100)

qdwh-svd (K2(A) = 1016)

2 4 6 8 10 12 14

0

1

2

3

4

Matrix Size: n (/103)

T
im

e
(m

in
.)

Intel KNL - Singular Values & Vectors

dgesdd (MKL)

dgesvd (MKL)

qdwh-svd (K2(A) = 1)

qdwh-svd (K2(A) = 100)

qdwh-svd (K2(A) = 1016)

Figure 4: Time to compute SVD (min.) using MKL’s 2–stage bidiagonal SVD based on
D&C (red), based on QR (brown) or PLASMA’s QDWH–SVD (black) for different values
of the condition numbers K2(A): 1 (dotted lines), 100 (dashed lines) and 1016 (solid lines).

6.3 Experiments in Distributed Memory
We expect the QDWH–SVD to be even more competitive in distributed memory as it is very
light in communications and in theory more scalable than 2–stage SVD. We verify that
assumption using our ScaLAPACK implementation.

Scalability Figure 5 shows the cumulative time (i.e., time multiplied by number of
nodes) for 2–stage SVD and QDWH–SVD. For a perfectly scalable algorithm and sufficiently
large matrices, the cumulative time should be constant with respect to the number of
nodes, i.e., for a given method all curves should coincide. First, the 2–stage SVD clearly
shows a lack of scalability that is characterized by the large gap between each red curve.
Second, the QDWH–SVD shows much better scalability (smaller gaps) for both ill– and well–
conditioned matrices. This is explained by the better scalability of gemm, geqrf and potrf
compared to 2–stage SVD.

Detailed timing Figure 6 shows the detailed timing associated with the QDWH–SVD.
Top graphs illustrate the benefit of using a 2–stage eigensolver (MKL 2019, on the right)
instead of the regular 1–stage (MKL 2018, on the left). The bottom graph shows the

http://www.nlafet.eu/ 21/28

NLAFET D2.9: Novel SVD

40 60 80 100 120

100

101

102

Matrix Size: n (/103)

T
im

e
×

#
n
o
d
es

(h
o
u
rs
)

Intel Broadwells - Singular Values & Vectors
ScaLAPACK - Intel MKL-2019.1 (GCC-6.4)

2stg-svd - 8 nodes

2stg-svd - 16 nodes

2stg-svd - 32 nodes

qdwh-svd (well) - 8 nodes

qdwh-svd (well) - 16 nodes

qdwh-svd (well) - 32 nodes

qdwh-svd (ill) - 8 nodes

qdwh-svd (ill) - 16 nodes

qdwh-svd (ill) - 32 nodes

Figure 5: Time to SVD times the number of nodes (min.) using MKL’s 2–stage SVD
(red) or PLASMA’s QDWH–SVD for well– (brown) or ill–conditioned matrices (black). The
smaller the gab between curves of a given color the higher the scalability of the underlying
implementation/algorithm.

benefit of using a CPU with higher throughput, namely Skylake. The main acceleration is
observed for the QDWH–PD (about 50% speedup compared to Broadwell). The 2–stage SVD
is also slightly faster on Skylake as it involves a significant part of level–3 BLAS operations.
However, the final overall gain is still slightly better for Skylake than Broadwell. Hence,
not only is QDWH–SVD more scalable but it is roughly 2 to 5 times faster than 2–stage
SVD on 8 nodes.

6.4 Experiments with Accelerators
We expect the speedup to be much larger when performing the polar decomposition on
accelerators such as NVIDIA GPUs. We provide some preliminary results using SLATE
in order to validate its performance.

Figure 7 shows the relative performance on a single CPU versus a single GPU as well
as a single GPU versus multiple GPUs. The GPUs used in our experiments are NVIDIA
V100 or K80, more precisely each node hosts 2 Broadwell CPUs plus 2 GPUs. Results
show that acceleration is working effectively, however scalability is not yet fully ensured
because some minor operations are still performed on CPUs and thus unnecessary data
movement between CPUs and GPUs still occurs.

Those preliminary results are encouraging and provide a solid basis for upcoming
implementations of the SVD in SLATE as well as other standard matrix factorizations
powered by QDWH iterations.

7 Conclusions
We showed that algorithms for the polar decomposition can be straightforwardly imple-
mented and used to speed–up the SVD of large matrices. The resulting QDWH–SVD uses
computing resources with an efficiency close to that of matrix multiplication, namely
about 75% of the peak performance on a single node. Consequently, it can run faster

http://www.nlafet.eu/ 22/28

NLAFET D2.9: Novel SVD

8× 2 Broadwells - Singular Values & Vectors
ScaLAPACK - Intel MKL-2018.1

pdgesvd 2stg

il
l

il
l

il
l

8× 2 Broadwells - Singular Values & Vectors
ScaLAPACK - Intel MKL-2018.1

pdgepd qdwh

pdsyevx

pdgemm

45 50 55 60 65
0

20

40

60

80

w
el
l

w
el
l

w
el
l

Matrix size: n (/103)

T
im

e
(m

in
.)

8× 2 Broadwells - Singular Values & Vectors
ScaLAPACK - Intel MKL-2018.1

8× 2 Broadwells - Singular Values & Vectors
ScaLAPACK - Intel MKL-2019.1

pdgesvd 2stg

il
l

il
l

il
l

8× 2 Broadwells - Singular Values & Vectors
ScaLAPACK - Intel MKL-2019.1

pdgepd qdwh

pdsyevx

pdgemm

45 50 55 60 65
0

20

40

60

80

w
el
l w

el
l

w
el
l

Matrix size: n (/103)

T
im

e
(m

in
.)

8× 2 Broadwells - Singular Values & Vectors
ScaLAPACK - Intel MKL-2019.1

8× 2 Skylakes - Singular Values & Vectors
ScaLAPACK - Intel MKL-2019.1

pdgesvd 2stg

il
l

il
l

il
l

8× 2 Skylakes - Singular Values & Vectors
ScaLAPACK - Intel MKL-2019.1

pdgepd qdwh

pdsyevx

pdgemm

45 50 55 60 65
0

20

40

60

80

w
el
l w

el
l w

el
l

Matrix size: n (/103)

T
im

e
(m

in
.)

8× 2 Skylakes - Singular Values & Vectors
ScaLAPACK - Intel MKL-2019.1

Figure 6: Time to SVD (min.) using ScaLAPACK’s 2–stage SVD (gray) or QDWH–SVD
(colors) on Broadwell with MKL 2018 (top left), Broadwell with MKL 2019 (top right)
and Skylake with MKL 2019 (bottom). We use 8 times 2–socket Broadwell nodes. The
labels ill and well indicate that the associated matrices have condition number 1016 and
1 respectively.

http://www.nlafet.eu/ 23/28

NLAFET D2.9: Novel SVD

10 20 30 40 50 60

0

1

2

3

4

Matrix Size: n (/103)

P
er
fo
rm

a
n
ce

(T
F
lo
p
s/
s)

Broadwells with GPUs - SLATE::GEPD QDWH

Intel MKL-2019.1 - CUDA-10

2 CPUs

1×(2 CPUs + 2×K80 GPU)

1×(2 CPUs + 2×V100 GPU)

2×(2 CPUs + 2×K80 GPU)

4×(2 CPUs + 2×K80 GPU)

8×(2 CPUs + 2×K80 GPU)

Figure 7: Performance (TFlops/s) of the GPU accelerated QDWH–PD. Each node as 2
Broadwell CPUs and 2 NVIDIA GPUs. The input matrix A has an intermediate condition
number of K2(A) = 100.

than the state–of–the–art SVD based on 2–stage bidiagonal reduction, even though it
involves much more flops.

Redesigning the SVD algorithm to use matrix iterations and thus be predominantly
compute–bound allowed us to fully benefit from recent CPU architectures that have aug-
mented flop capacities. Hence, we showed that thanks to its very high level of concurrency
the QDWH–SVD can fully benefit from the large flop rate of recent CPUs, co–processors and
accelerators.

Additionally, numerical experiments in distributed memory showed that QDWH–SVD
scales much better than 2–stage SVD. As a result, the measured speed–up was even more
significant at large scale. Speed–up factors of 2 to 5 were observed for matrices of in-
termediate sizes and experiments running on 8 Broadwell nodes. Finally, experiments
highlighted that QDWH–SVD can benefit greatly from a high performance symmetric eigen-
solver, like the one based on 2–stage tridiagonal reduction.

An interesting feature of this algorithm is that it runs more than 2 times faster than
double precision when executed in single precision, see Appendix 8.1. The main reason
for that is the slightly lower number of iterations required to get convergence. This
feature should be exploited in future research to further increase the performance of
Polar Decomposition based SVD algorithms.

Finally, there exists a much more involved version of the QDWH iterations having
arbitrary high orders of convergence and known has Zolotarev iterations. This variant
is very similar to the QDWH iterations in terms of algorithm and parallel performances
but involves much more flops, namely about r times if 2r + 1 is the order of convergence
(r = 8 in practice). Fortunately, all extra flops are embarrassingly parallel. As a result,
Zolotarev–based SVD can run up to 3 times faster than QDWH–SVD if enough computing
resources are available. For more details on Zolotarev iterations please refer to [10, 7, 8].
This type of alternatives should be considered at very large scales if enough resources are
available.

http://www.nlafet.eu/ 24/28

NLAFET D2.9: Novel SVD

Acknowledgments
We thank the High Performance Computing Center North (HPC2N) at Umeå University,
which is part of the Swedish National Infrastructure for Computing (SNIC), for providing
computational resources and valuable support.

References
[1] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stan-

imire Tomov, and Ichitaro Yamazaki. The Singular Value Decomposition: Anatomy
of optimizing an algorithm for extreme scale. SIAM Review, 60(4):808–865, 2018.

[2] Jack J. Dongarra, Danny C. Sorensen, and Sven J. Hammarling. Block reduction of
matrices to condensed forms for eigenvalue computations. Journal of Computational
and Applied Mathematics, 27(1-2):215–227, 1989.

[3] Benedikt Großer and Bruno Lang. Efficient parallel reduction to bidiagonal form.
Parallel Computing, 25(8):969–986, 1999.

[4] Nicholas J. Higham. Matrix nearness problems and applications. In M. J. C. Gover
and S. Barnett, editors, Applications of Matrix Theory, pages 1–27. Oxford University
Press, 1989.

[5] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[6] Bruno Lang. Parallel reduction of banded matrices to bidiagonal form. Parallel
Computing, 22(1):1–18, 1996.

[7] Shengguo Li, Jie Liu, and Yunfei Du. A new high performance and scalable SVD
algorithm on distributed memory systems. arXiv preprint, 2018.

[8] Hatem Ltaief, Dalal Sukkari, Aniello Esposito, and David Keyes. Massively parallel
polar decomposition on distributed-memory systems. preprint, 2018.

[9] Yuji Nakatsukasa, Zhaojun Bai, and François Gygi. Optimizing Halley’s iteration
for computing the matrix polar decomposition. SIAM Journal on Matrix Analysis
and Applications, 31(5):2700–2720, 2010.

[10] Yuji Nakatsukasa and Roland W. Freund. Computing fundamental matrix decom-
positions accurately via the matrix sign function in two iterations: The power of
Zolotarev’s functions. SIAM Review, 58(3):461–493, 2016.

[11] Yuji Nakatsukasa and Nicholas J. Higham. Backward stability of iterations for com-
puting the polar decomposition. SIAM J. Matrix Anal. Appl., 33(2):460–479, 2012.

[12] Yuji Nakatsukasa and Nicholas J. Higham. Stable and efficient spectral divide and
conquer algorithms for the symmetric eigenvalue decomposition and the SVD. SIAM
J. Sci. Comput., 35(3):A1325–A1349, 2013.

http://www.nlafet.eu/ 25/28

NLAFET D2.9: Novel SVD

[13] Takeshi Ogita and Kensuke Aishima. Iterative refinement for symmetric eigenvalue
decomposition. Japan Journal of Industrial and Applied Mathematics, 35(3):1007–
1035, nov 2018.

[14] Dalal Sukkari, Hatem Ltaief, Mathieu Faverge, and David Keyes. Asynchronous
task-based polar decomposition on single node manycore architectures. IEEE Trans.
Parallel Distrib. Syst., 29(2):312–323, 2018.

[15] Dalal Sukkari, Hatem Ltaief, and David Keyes. High performance polar decomposi-
tion on distributed memory systems. In Euro-Par, pages 605–616, 2016.

[16] Dalal E Sukkari, Hatem Ltaief, and David E Keyes. A high performance QDWH-
SVD solver using hardware accelerators. ACM Trans. Math. Softw., 43(1):6:1–6:25,
2016.

[17] Asim YarKhan, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra. Porting the
PLASMA numerical library to the OpenMP standard. International Journal of Par-
allel Programming, 45(3):612–633, 2017.

8 Appendix

8.1 Remarks on Accuracy and Precision
Accuracy Comparing the relative accuracy of QDWH–based SVD and standard algo-
rithms for SVD can be tricky. However, we believe this is a fundamental aspect of novel
SVD algorithms that needs to be addressed with a lot of care. In fact, in most cases both
approaches yields similar accuracy, i.e., have the same order of magnitude and differ only
by a small constant. However, divide and conquer approaches may not converge in case of
clustered eigenvalues. For illustration of the latter phenomenon as well as a more detailed
comparison of the accuracy of QDWH–SVD and standard approaches please refer to [16].

Figure 8 shows the error in factorization ‖A − UΣV T‖F and the distance of U to
orthogonality in infinity norm (results for V are similar) for the matrices studied in Sec-
tion 6.2. The measured accuracy for the QR based approach is about 3 times worse than
that of the divide and conquer approach. The distance to orthogonality for the QDWH–SVD
lies somewhere inbetween (closer to the QR approach for large n), while the error in fac-
torization almost coincides with that of the divide and conquer approach. On the other
hand, due to its iterative nature the output accuracy of the PD— and consequently the
SVD —can easily be adjusted. For instance, allowing one more matrix iterations can
be relatively harmless to the cost of the overall algorithm, while providing a significant
improvement of the accuracy, see Table 2.

A standard method suggested in [12] in order to improve the accuracy of the QDWH–SVD
and QDWH–PD a posteriori and at a low cost is to use 1 or 2 Newton–Schultz iterations.

Finally, the choice of symmetric eigensolver does matter too. In particular, divide and
conquer approaches may also encounter convergence issues in case of clustered eigenvalues.

Precision This report focuses on computations in double precision floating point arith-
metic. Here we provide some results using single precision. It would be natural to consider
108 as the maximum condition number, however we want to run the algorithm on the same

http://www.nlafet.eu/ 26/28

NLAFET D2.9: Novel SVD

2 4 6 8 10 12 14 16

1

2

3

4

·10−15

Matrix Size: n (/103)

‖A
−

U
Σ
V

T
‖ F

/
‖A
‖ F

Error in Factorization

2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1

1.2

·10−16

Matrix Size: n (/103)

‖I
−

U
U

T
‖ ∞

/
n

Distance to Orthogonality

dgesdd (MKL - K2(A) = 100)

dgesdd (MKL - K2(A) = 1016)

dgesvd (MKL - K2(A) = 100)

dgesvd (MKL - K2(A) = 1016)

qdwh-svd (K2(A) = 100)

qdwh-svd (K2(A) = 1016)

Figure 8: Accuracy of QDWH–SVD and 2–stage approaches with respect to the matrix size.
The error in factorization (left) and the distance of U to orthogonality are represented.

matrices in order to compute a speedup between double and single precision. First, be-
cause our stopping criterion depends on the unit round–off it is possible that the number
of iterations needed to reach convergence will be lower than in double precision. Second,
the building blocks of QDWH–PD usually run slightly more than twice faster in single than
in double precision. Figure 9 shows the experimental speedup on one two–socket Intel
Haswell node for QDWH–SVD as well as for 2–stage SVD based on QR and on divide and
conquer. The QR approach fails to provide any speedup except for large matrices while
all other approaches provide a speedup larger than 2. Moreover, QDWH–SVD almost always
shows a larger speedup than divide and conquer. In particular, when the number of itera-
tions increases (K2 ≥ 100), single precision is about 2.5 times faster than double precision
in average.

As mentioned in our paragraph on accuracy, since it is sufficient to perform a few more
iterations to improve the accuracy, matrix iterations inherently provide a straightforward
way to improve the accuracy of the factorization if ever required. Additionally, recent
papers [13] have derived cheap ways of refining eigenvalue decompositions and SVD using
combinations of Newton–Schultz iterations and Davies–Modi’s approach.

2 4 6 8 10 12 14

0.5

1

1.5

2

2.5

3

Matrix Size: n (/103)

sp
ee
d
u
p
(d

o
u
b
le

o
v
er

si
n
g
le

p
re
ci
si
o
n
)

Intel Haswell - Singular Values & Vectors

dgesdd (MKL)

dgesvd (MKL)

qdwh-svd (K2(A) = 1)

qdwh-svd (K2(A) = 100)

qdwh-svd (K2(A) = 1016)

Figure 9: Ratio between the time to solution in double and single precision. A ratio
higher than 2 means that single precision is more than twice faster than double precision.

http://www.nlafet.eu/ 27/28

NLAFET D2.9: Novel SVD

8.2 Benchmarking SLATE
Figure 10 provides performance results for the matrix multiplication (gemm), QR decom-
position (geqrf) and Cholesky decomposition (potrf) in SLATE using either the 1ppn
mode (solid lines) or the 1ppc mode (dashed lines) for a fixed value of the tile size, namely
b = 256. Hence, we do not expect to obtain best performance of each routine but rather
a good compromise for the performance of QDWH–PD. Results show experimental flop rates
around 75% of the theoretical peak performance for gemm and 50% for geqrf and potrf.
It also shows relatively good scalability as long as saturation is reached. The perfor-
mance are better in the 1ppn mode, except for the QR factorization that is not yet fully
optimized. The performance of SLATE’s QDWH–PD depends mainly on these results.

10 20 30 40 50 60 70
0

100

200

300

400

Matrix Size: n (/103)

P
er
ce
n
ta
g
e
o
f
P
ea

k
P
er
fo
rm

a
n
ce

(%
)

SLATE::GEMM on Intel Broadwell
Intel MKL-2019.1 - CUDA-9.1

1ppn × 1 node

1ppn × 2 nodes

1ppn × 4 nodes

1ppc × 1 node

1ppc × 2 nodes

1ppc × 4 nodes

10 20 30 40 50 60 70
0

50

100

150

200

250

Matrix Size: n (/103)

P
er
ce
n
ta
g
e
o
f
P
ea

k
P
er
fo
rm

a
n
ce

(%
)

SLATE::POTRF on Intel Broadwell
Intel MKL-2019.1 - CUDA-9.1

1ppn × 1 node

1ppn × 2 nodes

1ppn × 4 nodes

1ppc × 1 node

1ppc × 2 nodes

1ppc × 4 nodes

10 20 30 40 50 60 70
0

50

100

150

200

250

Matrix Size: n (/103)

P
er
ce
n
ta
g
e
o
f
P
ea

k
P
er
fo
rm

a
n
ce

(%
)

SLATE::GEQRF on Intel Broadwell
Intel MKL-2019.1 - CUDA-9.1

1ppn × 1 node

1ppn × 2 nodes

1ppn × 4 nodes

1ppc × 1 node

1ppc × 2 nodes

1ppc × 4 nodes

Figure 10: Percentage of the peak performance including turbo boost for matrix multi-
plication (top), Cholesky (bottom left) and QR (bottom right) using SLATE in 1ppn and
1ppc modes on Intel Broadwell nodes (max. 1.16 TFlops/s per node).

http://www.nlafet.eu/ 28/28

