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1 Introduction

The Description of Action document states for Deliverable 5.3:
“Evaluation of the NLAFET library in the context of the applications, leading to validation

of the library and recommendations for future improvements.”

This deliverable is in the context of Workpackage 5, and describes our efforts on valida-
ting and integrating the NLAFET library into several challenging applications.

1. Task-based Shared Memory Parallelism into 2DRMP software for modelling of elec-
tron scattering from H-like atoms and ions. Collaboration with Professor Stan Scott,
Queen’s University, Belfast. NLAFET contact Jack Dongarra, UNIMAN.

2. Load flow based calculations in large-scale power systems and PowerFactory code.
Collaboration with Bernd Klöss, DIgSILENT GmbH, Germany. NLAFET Contact, Iain
Duff, RAL.

3. Communication avoiding iterative methods and their efficiency for solving linear sy-
stems arising from several different applications, in particular linear elasticity pro-
blems. NLAFET contact Laura Grigori, Inria.

4. Data analysis in astrophysics and Midapack. Collaboration with University Paris 7,
France. NLAFET contact is Laura Grigori, Inria, principal application contacts are Ra-
dek Stompor from APC/CNRS, France, and Carlo Baccigalupi of SISSA Italy.

The applications are discussed in detail in Sections 2 to 5 and we present our conclusions in
Section 6.

The communication avoiding iterative methods tested in applications 3 and 4 above are
currently available within preAlps library (Inria) via NLAFET github. PreAlps was developed
by Inria in the context of Workpackage 4. The code has a reverse communication interface
such that it can be easily integrated into other scientific application and is scalable up to
16,000 cores.

In the Description of Action document, we had planned to collaborate with Thomas
Schulthess of ETH Zurich, Switzerland to test the dense solvers/eigensolvers developed in
Workpackage 2 in materials science and chemistry. As already pointed out in Deliverable
5.2, this collaboration was not pursued due to a lack of time from ETH Zurich. We had also
planned to validate our iterative methods on linear systems arising from Code Saturne in a
collaboration with EDF, France. However this was not pursued given the feedback we recei-
ved from the reviewers after our mid-term review.

2 Task-based Shared Memory Parallelism into 2DRMP soft-
ware

This section describes improvements made to the 2DRMP software suite [36] for the model-
ling of electron scattering from H-like atoms and ions. Linear algebra routines developed
within NLAFET have been integrated into an existing code, which was originally developed
at Queen’s University Belfast. A number of other improvements and modernisations have
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also been made to the software, aimed at improving the usability and extensibility of the
code.
Rather than focusing on explicit gains in computational performance on Intel-based archi-
tectures, the work undertaken has sought to improve the accessibility of the code, by allo-
wing users access to non-proprietary software for the linear algebra components that domi-
nate computational resources. In addition the work has sought to improve portability, allo-
wing high-performance solutions to be obtained on non-Intel architectures, such as ARM or
AMD machines. To achieve these goals, numerical linear algebra routines from the PLASMA
library [1] have been introduced into the software; specifically solutions to the general ma-
trix vector equation using LU factorisation (xGETRS), matrix-matrix multiplication (xGEMM),
and symmetric eigenvalue and eigenvector computation (xSYEVD). The PLASMA library has
been enhanced and expanded during the NLAFET project, and is available from the NLAFET
software repository (https://github.com/NLAFET/plasma).
The structure of this section is as follows: Section 2.1 provides a high-level overview of the R-
matrix method, with Section 2.2 introducing the concept of R-matrix propagation. Section
2.3 describes the structure of the 2DRMP code, and outlines the modifications made to it
within this project. In Section 2.4 some numerical performance results are presented for the
updated 2DRMP code and the constituent linear algebra kernels. Section 2.5 then discusses
the status of ongoing work and plans for publication.

2.1 Background and Theory

R-matrix theory, a term derived from the study of resonance theory, is a well established
technique for the analysis of nuclear interactions, having been first introduced in 1947 by
Wigner and Eisenbud [40], and adapted for the study of atomic and molecular collisions in
the early 1970s [10, 12]. In broad terms, R-matrix theory seeks to allow particle collisions to
be analysed without considering the complexity of nuclear forces within the atomic nucleus.
Instead, the unknown internal properties of the nucleus are treated as parameters and ap-
pear as elements within the R-matrix. Interest in R-matrix theory has remained strong since
its introduction, e.g. [6, 8, 9, 32], as the R-matrix method has proven to be a remarkably sta-
ble, robust and efficient technique for solving the close-coupling equations that arise when
describing electron and photon collisions with atoms, ions and molecules. An excellent over-
view of R-matrix theory is available within the MIT online lecture notes [29].
A number of codes for R-matrix-based computations have been developed over the years;
see for example [5, 13, 41]. While packages such as these have been used extensively, they
are primarily concerned with low-energy scattering, where the incident energy is insuffi-
cient to ionise the target. At intermediate energies, i.e. from close to the ionisation threshold
to several times above it, modelling of the scattering processes becomes significantly more
difficult, because account must be taken of the coupling amongst the infinite number of
continuum states of the ionized target, and the infinite number of target bound states lying
below the ionization threshold.
R-matrix approaches capable of representing this coupling with acceptable accuracy at in-
termediate energies fall into two categories; one is the R-matrix with Pseudostates Method
(RMPS) [4], and the other is the Intermediate Energy R-Matrix Method (IERM) [11]. Broadly
speaking, the RMPS approach offers relative simplicity of implementation, and results in R-
matrices of generally manageable size. In contrast, the IERM approach results in a densely-
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packed pseudostate basis, and therefore larger R-matrices that require a careful treatment in
order to obtain numerical solutions at a reasonable computational cost. The improved reso-
lution of the IERM method makes it more suitable for the study of scattering processes, such
as electron impact ionisation close to the ionisation threshold [35]. The 2DRMP software
suite [36], which we consider in this report, was developed to provide a framework for the
study of two-particle collisions in which both particles are considered independently (i.e. a
2D approach), using IERM. Prior to the development of 2DRMP in 2009, computational co-
des using IERM were only available in a configuration where both particles are considered
identically (i.e. a 1D approach).
The full detail of the 2D IERM approach can be found in [36]. The theory is complex, and
requires an in-depth knowledge of quantum mechanical interactions in order to fully ap-
preciate it. Given that such knowledge is beyond the scope of the NLAFET project, and has
relatively little overlap with the developments made to the 2DRMP code in this project, we
shall restrict our discussion to the broad practical steps involved in the 2D IERM approach,
and the associated R-Matrix propagation procedure, as implemented in the 2DRMP software
suite.

2.2 2D R-Matrix Propagation Procedure

The following provides a high-level overview of the steps involved in the 2D R-Matrix pro-
pagation procedure, with a particular focus on the steps where linear algebra routines are
utilised. A comprehensive description of the procedure is available in [36].
R-matrix theory is based around dividing the configuration space describing the collision
process into two regions by a sphere of radius a, where a is chosen such that the charge dis-
tribution of the target particle is contained within the sphere. This sphere is referred to as the
internal region, in which the full quantum mechanical interaction of the particles is conside-
red. In the external region, i.e. outside the sphere, the solution is approximated by potential
theory, and acts as a boundary condition to the solution within the internal region. In the
IERM method it can be shown that the number of basis functions required, and therefore the
size of the dense matrices generated, is proportional to a2 [34]. Therefore, as a increases to
allow the study of excitation to higher-lying energy states, the size of the computation can
rapidly become computationally intractable.
To mitigate this issue and allow the study of collisions at intermediate energies, the R-matrix
propagation approach divides the (r1,r2) space of the internal region into a number of subre-
gions. Within each subregion a local R-matrix is constructed, and these local R-matrices are
used to propagate a global R-matrix throughout the internal region.
Within each subregion two matrices are formed; the local Hamiltonian matrix, which repre-
sents the energy states of the system, and the local R-matrix, which describes the particle
interactions. In terms of numerical linear algebra, the local Hamiltonian matrix is diago-
nalised, producing the eigenvalues and eigenvectors of the system in this subregion. These
eigenvalues and eigenvectors are used to build the local R-matrices, and to compute sur-
face amplitudes, which are used as local boundary conditions to allow propagation of the
global R-matrix throughout the internal region. The propagation of the local R-matrix to its
neighbour requires the solution of a non-symmetric matrix equation Ax = b. The local Ha-
miltonian matrix and the corresponding R-matrix are generally not of equal size, with the
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Hamiltonian being larger in most practical scenarios. However, the diagonalisation of the
Hamiltonian occurs only once for each subregion, whereas the propagation of the local R-
matrix occurs many times, dependent on the collision energy. For high energy collisions the
propagation may occur tens or hundreds of times, and therefore more computational re-
sources are typically expended on executing the the LU factor-solve routine than on matrix
diagonalisation.

Figure 1 shows a schematic representation for the propagation of the local R-matrices

Figure 1: Propagation of the R-matrix across the internal region.

through the internal region. The (r1,r2) space is divided into subregions, with symmetry
requiring that only the lower half of the global domain be analysed. Before computing the R-
matrices, the eigenvectors and eigenvalues from the Hamiltonian matrices at all subregions
are obtained, allowing computation of surface amplitudes at each of the domain bounda-
ries. With this information the first local R-matrix may be computed, denoted as subregion
0 in Figure 1. The local R-matrix for subregion 0, along with the surface amplitudes corre-
sponding to the interface with its neighbouring subregion, denoted as subregion 1, allow the
local R-matrix at subregion 1 to be computed. In this way the global R-matrix is propagated
across all subregions systematically, starting from the r1 axis at the bottom of each strip, and
working up the r2 axis towards the diagonal. Once the propagation is complete and the glo-
bal R-matrix is obtained, the basis functions that span outermost edges of the domain are
projected onto the corresponding basis functions from the external region, and the global
R-matrix is modified accordingly. Note that this propagation procedure produces a solution
which is specific to a given scattering energy, and therefore must be performed many times
in order to analyse the full range of energies required during the collision. The Hamiltonian
matrices, however, need only be computed and diagonalised once.
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2.3 Code structure and Developments

The following section outlines the structure of the 2DRMP code. In its original form the code
was essentially a suite of seven quasi-independent programs, each of which communicates
input and output information via file writes; including the subregion matrices themselves
where needed. Our work during the NLAFET project has condensed the code into four sub-
programs that communicate a minimal amount of information, drastically reducing time
spent on file-writes. These changes, along with the addition of the PLASMA library, are des-
cribed in Section 2.3.2.

2.3.1 2DRMP Code Structure

The 2DRMP code can be considered as a collection of seven fundamental operations, execu-
ted in sequence. The function of these constituent programs can be described as follows:

1. bp
This routine constructs the atomic basis functions, as required within the internal region,
and the coefficients of the long-range potentials that are required in the external region. The
execution of this program is not computationally intensive, and does not contain any linear
algebra routines.

2. rint2
Here the radial integrals are computed, as required for the construction of the Hamiltonian
matrices in each subregion. This routine is also comparatively inexpensive.

3. newrd
At this stage the Hamiltonian matrices are computed within each subregion. The method of
computation varies slightly depending on whether the subregion is located on a diagonal or
off-diagonal block in the discretised (r1,r2) plane. In the original version of the code these
computations are performed in serial within each subregion.

4. diag
The Hamiltonian subregion matrices are now diagonalised, with their eigenvalues and ei-
genvectors saved as output. This routine is computationally intensive, and makes use of the
xSYEVD routine.

5. amps
Here the subregion surface amplitudes are computed, i.e. the wavefunction values at the
boundaries between subregions, based on the eigenvectors and eigenvalues of the Hamilto-
nian submatrices.

6. prop
At this stage the R-matrix propagation procedure begins. Local R-matrices are formed and
propagated systematically throughout the domain, as described in Section 2.1. The propaga-
tion procedure requires a general matrix equation solve (xGETRS), as well as a matrix-matrix
multiplication (xGEMM), for each subregion. This propagation procedure must be performed
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for each scattering energy required in the simulation, which will typically number in the tens
or hundreds. Therefore this routine typically dominates computational runtime.

7. FARM
The final stage of the procedure computes the solution in the external region, subject to the
R-matrix boundary conditions on the outer surface of the internal region. This operation
must also be performed for each scattering energy, however owing to the relative simplicity
of the equations involved, the computational cost is typically not significant.

2.3.2 Developments and Improvements

The original version of the code executed a program for each of the seven fundamental ope-
rations described above, with the programs executed sequentially, and all required input
and output data passed via file-writes. In particular, the Hamiltonian subregion matrices
were passed between the newrd and diag stages, and the set of corresponding eigenvectors
and eigenvalues were communicated between diag and amps. This highly segmented ap-
proach was useful for the independent development of constituent programs; however, the
frequent reading and writing of large files was identified as a weakness, as it left the compu-
tational runtime strongly dependent on the efficiency of the storage system.
In order to address this issue, the code has been reformulated to eliminate the need to pass
large datasets between programs. By formulating a unified nomenclature for variables, and
utilising the more advanced datastructres available within FORTRAN 95+, the code has been
reduced to four separate components. The first component combines the functionality of
bp and rint2, thereby acting as a general pre-calculation stage. The second component,
now named blkb, combines all computations associated with the Hamiltonian submatrices,
i.e. newrd, diag and amps. In this way file writes associated with the Hamiltonian matrices
and eigenvectors/eigenvalues are eliminated. The final two stages, prop and FARM, proceed
functionally as before, though utilising the improved data-structures. This new approach re-
moves the need for matrix-level objects to be passed via files. The remaining files transferred
between programs are typically of a maximum size in the single-digit megabytes, even for
large problems.
In the original version of the code the linear algebra components were executed using the
Intel Math Kernel Library (MKL), via LAPACK routines. While this approach does generally
lead to optimal performance on Intel architectures, it requires the user to have access to pro-
prietary software. While access to MKL is commonplace in the HPC community, it cannot be
taken for granted within other fields. Moreover, it restricts use of the code to Intel architectu-
res. To address this, routines from the PLASMA library have been integrated into the 2DRMP
code; specifically the PLASMA versions of xSYEVD, xGETRS and xGEMM. These routines ex-
ist alongside the original MKL-LAPACK routines, allowing the user to select at compile-time
which branch will be utilised. By including PLASMA routines in this way we eliminate the
need for proprietary software, and allow access to non-Intel architectures, without sacrifi-
cing the highly-tuned performance that these MKL routines can provide on Intel machines
when the software is available.
In addition to these two major developments, other modifications have been made to the
code. The setup and compilation procedure has been streamlined. A global parameter has
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also been introduced to control arithmetic precision, allowing single- or double-precision
floating point variables to be used throughout. As the code is written in FORTRAN, quad-
precision variables are also available, although a need for this degree of precision is not an-
ticipated. Finally, improvements have been made to the computation of the Hamiltonian
subregion matrices. In the previous version of the code parallelism was available only at
the subregion level, with the computation of each subregion matrix taking place on a single
thread. This has now been extended to allow parallelisation of the subregion matrix across
many cores within shared memory, via OpenMP.

2.4 Results and Testing
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Figure 2: Performance tests for linear algebra kernels on Intel Skylake architecture (2.1Ghz,
2x24 core)

To demonstrate the capabilities of the new 2DRMP code we present results on the In-
tel Skylake architecture. We first examine the performance of the constituent linear algebra
kernels, before presenting a particle collision simulation from the full 2DRMP code, whereby
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physical parameters are adjusted that result in varying matrix sizes.
Figure 2 shows the performance of PLASMA in comparison to Intel MKL for the three con-
stituent linear algebra kernels used within 2DRMP at double precision; i.e., DSYEVD, DGETRS
and DGEMM. Tests have been run on the MareNostrum computing cluster in Barcelona, on
a single node comprising two 24-core Intel Skylake processors (Intel Xeon Platinum 8160)
clocked at 2.1Ghz. PLASMA 18 is compared to MKL version 2019.2.057 for a range of matrix
sizes up to 30,000. We utilise one thread per core throughout, for 48 threads total. As ex-
pected PLASMA is able to produce performance that runs close to, but not matching, that
of MKL 2019. For the eigenvalue decomposition routine DSYEVD, the precise FLOP count is
unknown due to the nature of the algorithm, therefore wall-clock time is presented instead.

To demonstrate the linear algebra workload involved in the 2DRMP code we construct a
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Figure 3: Occurrence and performance of Hamiltonian subregion matrix diagonalisation

two-particle collision simulation, and run it in three slightly different configurations using
double precision arithmetic. For each collision we set the following parameters: Inner re-
gion radius of 60 a.u. (atomic units), a 4-strip subdivision of the inner region (resulting in
a 4×4 grid of subregions), maximum orbital angular momentum = 12, maximum principle
quantum number of target states = 70, and 1001 integration points in each subregion. We
then run three simulations, adjusting the value of nmax, the maximum principal quantum
number of the basis orbitals, to 25, 30 and 35 successively, in order to produce simulations
with differing Hamiltonian matrix sizes. These three simulations produce a wide range of
different matrices, and are intended to highlight the typical computational loads that can be
expected when running simulations using the 2DRMP code.
Figure 3 shows the occurrence of subregion Hamiltonian matrix sizes throughout the three

simulations (Figure 3a), along with the average wall-clock time spent on obtaining the ei-
genvalues and eigenvectors for each matrix size (Figure 3b). Since the Hamiltonian matrix
must be computed only once per simulation, the number of matrices generated is small and
predictable. The subdivision of the internal region into a 4 × 4 grid of subregions results
in four matrices on the diagonal of the subregion grid, and six matrices in the off-diagonal
(see Figure 1). In this case, each off-diagonal subregion results in a matrix double the size of
those from the diagonal block. Matrix sizes are comparatively large, varying between around
6000 and 14000 for the diagonal blocks, and around 12000 and 28000 for off-diagonal blocks.
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Matrix multiplication (DGEMM), nthr=48
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Figure 4: Occurrence and performance of subregion matrix multiplication

Computational performance of the routines closely mirrors that observed from the indivi-
dual kernel tests.
Figure 4 shows the occurrence of matrix-matrix multiplication (DGEMM) operations throug-

Linear system solve Ax=b (DGESV), nthr=48
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Figure 5: Occurrence and performance of subregion R-Matrix LU factor-solve

hout the three simulations. In the 2DRMP code matrix multiplications are performed be-
tween rectangular matrices, resulting in a square matrix output; i.e. multiplication of an
(m ×k) matrix on the left with a (k ×m) matrix on the right, resulting in a square matrix of
size (m×m), where k > m. Figure 4a shows the frequency of such matrices, across the range
of m and k encountered in the three simulations. While these matrices are typically smal-
ler than the Hamiltonian subregion matrices, their frequency of occurrence is significantly
higher, owing to the need to perform the R-matrix propagation stage of the simulation se-
veral times to account for the range of scattering energies encountered. The total number of
matrix-matrix multiplications therefore ranges into the tens of thousands. Performance of
the (dgemm) routine is shown in Figure 4b, and is relatively consistent across all encountered
matrix sizes.
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Figure 5 shows the occurrence of linear system solves (DGESV) encountered throughout the
three simulations, along with the associated mean performance. Here matrices are square,
of size represented by n, and are solved along with a varying number of right-hand-side vec-
tors, nr hs . The range of matrix sizes encountered varies between around 500 and 2000, whe-
reas the number of RHS vectors associated with each matrix varies between around 1000 and
2000. As with the dgemm results, these linear system solves are associated with the R-matrix
propagation stage, resulting in a large number of operations within each subregion. The
total number of linear systems to be solved is around 25,000, each with over 1000 solution
vectors, and so represents a significant computational load despite the relatively modest size
of the individual matrices.

2.5 Ongoing Work

Work on the 2DRMP code is ongoing, with a paper planned for submission in the summer
to Computer Physics Communications. The paper will detail the modifications made to the
2DRMP code, and demonstrate its capabilities on a large-scale test case. Towards this end,
further work is planned. This work will include: a more comprehensive benchmarking of
the PLASMA 2DRMP code on ARM and, potentially, AMD machines; inclusion of a tuning
program (rightsizer) to optimise linear algebra parameters within PLASMA, such as optimal
tile sizes and per-tile parallelism during LU factorisation; and creation of a user guide to
allow potential end-users to access the software quickly and efficiently. In addition we plan
to include results from a single large-scale test case, in order to demonstrate the capability of
the software to scale to large problems that may be otherwise impossible to analyse. We are
working with Andrew Sunderland at STFC Daresbury and Stan Scott at Queen’s University
Belfast in order to design a test case that would be of interest to the physics community,
and also showcase the capabilities of the 2DRMP software from a numerical linear algebra
perspective. In addition to the planned paper, a poster will be presented at the Advances in
Numerical Linear Algebra Conference and James Hardy Wilkinson Centenary at the University
of Manchester, May 29-30th this year.

3 Load flow in large scale power systems

The main NLAFET contact is Iain Duff and the main applications contact is Bernd Klöss of
DigSILENT GmbH, Germany.

In this section we present performance results on test cases for the Power Systems
application provided by Bernd Klöss using both the ParSHUM library and the BC library. We
discussed earlier work on the smaller matrices from these test problems in Deliverable 5.1.

The ParSHUM library is a parallel multithreaded library for the factorization of highly
unsymmetric matrices. For a given sparse matrix A, our solver decomposes the matrix into
the form

PAQ = LU ,

where P and Q are row and column permutation matrices respectively, and L and U are
sparse lower and upper triangular matrices, respectively. For further information about
this library, please refer to Deliverables 3.4 and 3.5. The major enhancement to ParSHUM
since these earlier deliverables has been to first partition the matrix to singly bordered block
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diagonal (SBBD) form using Zoltan [7]. We show this form in Figure 6. We assign one MPI

Figure 6: A matrix in singly bordered block diagonal form.

process to each diagonal block and then factorize these blocks simultaneously using the
core multithreaded ParSHUM code. Each diagonal block is factorized and each forms a local
Schur complement (shown in red in Figure 7a). Then the global Schur complement is formed
on the process 0 by combining all the local Schur complements (see Figure 7b). This global
Schur is then factorized using the dense solver from PLASMA [14]. We thus exploit two levels
of parallelism: on a distributed level by performing the factorization of each diagonal block
concurrently, and in shared memory through the multithreaded ParSHUM solver applied to
each block.

(a) (b)

Figure 7: Factorization of SBBD form.

The BC code is described in Deliverable 3.7 and again exploits parallelism at both
distributed and shared memory levels. For the experiments in this deliverable we use the
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row partitioning version of the code. The system Ax = b is partitioned by blocks of rows as:

A1

A2

·
·
·
Ap

x =



b1

b2

·
·
·
bp

 .

The block Cimmino method, on which our algorithm is based, then computes a solution
iteratively from an initial estimate x(0) according to:

ui = A+
i

(
bi − Ai x(k)

)
i = 1, ....p (3.1)

x(k+1) = x(k) +ω
p∑

i=1
ui , (3.2)

where we note the independence of the set of p equations. Since we assume that A is full

rank, so are the Ai and A+
i = AT

i (Ai AT
i )

−1
. Elfving [19] proves that this method converges

if ω is sufficiently small. The algorithm can thus be slow to converge. We can accelerate
this in two ways. One is to use a numerically aware partitioning [38] that makes the
manifolds corresponding to the Ai close to orthogonal to increase the value of ω necessary
for convergence and the other is to note that the iteration equations can be written as:

x(k+1) = x(k) +ω
p∑

i=1
A+

i

(
bi − Ai x(k)

)
=

(
I −ω

p∑
i=1

A+
i Ai

)
x(k) +ω

p∑
i=1

A+
i bi

= Qx(k) +ω
p∑

i=1
A+

i bi ,

and we can write the fixed point iteration as

H x = ξ, (3.3)

where H = I −Q. Since we assume that the matrices Ai have full row rank, the matrix
H = ω

∑p
i=1 A+

i Ai is a sum of projection matrices and is thus positive definite. Therefore
the system (3.3) can be solved by the conjugate gradient method. We note that, since
ξ = ω

∑p
i=1 A+

i bi , the parameter ω appears on both sides of equation (3.3) so we can
arbitrarily set it to one.

The resulting algorithm is a classic hybrid method coupling iterative and direct solvers
since we solve the systems (3.1) using our direct solver SpLDLT from the SyLVER library (see
Deliverable 3.3) on the augmented systems(

I AT
i

Ai 0

)(
ui

vi

)
=

(
0
ri

)
(3.4)

formed by each block row Ai , where ri = bi − Ai x(k). In our implementation we use the
independence of these p equations to exploit distributed memory while our direct solver is
designed to exploit many core systems.
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3.1 The test matrices and test environment

We follow [21] in defining the symmetry index si by the expression

si (A) = numberi 6= j {ai j ∗a j i 6= 0}

nnz{A}
,

where nnz{A} is the number of off-diagonal entries in the matrix A. A symmetric matrix
will thus have a symmetry index of 1.0. We define 0/0 to have the value 1.0 so that a
diagonal matrix will be symmetric. A triangular matrix will have symmetry index zero. Our
experiments suggest that matrices with symmetry indices of less than 0.9 can be considered
highly unsymmetric. Additionally, we define the fill-in factor as the number of entries in the
L and U factors divided by the number of entries in A, viz.

nnz{L}+nnz{U }

nnz{A}
.

The main characteristics for the matrices used in this study are presented in Table 1.
The first six matrices were used in Deliverable 5.1. For the experiments for this deliverable
we asked Bernd Klöss for a much larger matrix to try and stress our codes. This matrix,
which we call Newton_detailed, is of dimension 7 355 436 and comes from the first loop of an
unsymmetric load flow calculation when solving a nonlinear system. It is particularly big for
a power system matrix, because detailed substations are modelled in the nonlinear system,
rather than post-processing the solution for equivalent busbars.

Matrix n nnz si
(103) (103)

InnerLoop1 Balanced load flow 197 745 0.44
InnerLoop2 Balanced load flow 197 806 0.46
InnerLoop3 Balanced load flow 197 806 0.46
InnerLoop4 Balanced load flow 197 806 0.46
Jacobian_unbalancedLdf Unbalanced load flow 203 2410 0.80
Newton_Iteration1 Balanced optimal power flow 427 2380 0.14
Newton_detailed Unbalanced load flow 7355 23741 0.29

Table 1: Statistics for the matrices that are used in this study. The size (n), number of nonzero
entries (nnz) and the symmetry index (si ) are given for each matrix.

Our tests were all performed on the Kebnekaise system located at the High Performance
Computing Center North (HPC2N), Umeå University1. Each compute node contains 28 Intel
Xeon E5-2690v4 cores organised into 2 NUMA islands with 14 cores in each. The nodes are
connected with a FDR Infiniband Network. Each CPU core has 32 KB L1 data cache, 32 KB
L1 instruction cache and 256 KB L2 cache. Moreover, for every NUMA island there is 35 MB
of shared L3 cache. The total amount of RAM per compute node is 128 GB.

1See https://www.hpc2n.umu.se/resources/hardware/kebnekaise.
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3.2 Performance results using ParSHUM
In Deliverable 5.2, we compared the performance of ParSHUM with two state-of-the-art
solvers for unsymmetric matrices: MA48 [18] from the HSL library and UMFPACK [15] from
the SuiteSparse library. We showed that our code in general outperformed these codes.
Here, we first study the performance of our solver in distributed memory and then compare
it to two major state-of-the-art parallel solvers for unsymmetric problems for distributed
memory, MUMPS [2] and SuperLU [17].

The times presented in the tables in this subsection correspond to the time spent in
the numerical factorization step only, once the data is partitioned and distributed to the
corresponding nodes. Each MPI process is mapped on a NUMA node and runs on fourteen
cores.

We first investigate the parallel behaviour of ParSHUM. In Table 2, the times when varying
the number of partitions are presented. If this method has an Achilles heel, it is that the size
of the Schur complement can become quite large when the number of partitions increases.
We show these sizes for our test problems in Table 3 where we note that, although this does
grow with the number of partitions, it is still very low compared to the size of the original
problem. At the moment, we use a dense solver to factorize the Schur complement although
it is still a sparse matrix. Our future work will look at ways to exploit this.

For the largest matrix, Newton_detailed, a speed-up of 6.7 is obtained when eight
NUMA nodes are used. For the smaller matrices, the performance is limited by the
granularity, resulting in a speed-up of only 2.6 for the InnerLoop1 matrix. Furthermore, the
Newton_Iteration1 matrix, in addition to its small size, suffers from load imbalance among
the partitions and so achieves a speed-up of only 2.

#MPI processes
Matrix 1 2 4 8
InnerLoop1 0.41 0.32 0.24 0.16
InnerLoop2 0.38 0.32 0.27 0.17
InnerLoop3 0.41 0.28 0.24 0.17
InnerLoop4 0.41 0.30 0.27 0.16
Jacobian_unbalancedLdf 2.29 1.50 1.19 0.68
Newton_Iteration1 1.03 0.87 0.61 0.51
Newton_detailed 10.9 4.90 2.75 1.63

Table 2: The execution time in seconds for ParSHUM on the matrices presented in Table 1
partitioned in SBBD form.

In Table 4 the execution times and the fill-in factors for ParSHUM, MUMPS, and SuperLU
are presented. We obtain the lowest execution times with ParSHUM for all the matrices
except the Jacobian_unbalancedLdf, and Newton_Iteration1 matrices for which the MUMPS
solver yields the lowest execution time. There is only one case in which we require more
memory than the other solvers showing that our algorithms better accommodate high
asymmetry. In summary, our code is at least competitive with other state-of-the art codes
on matrices from this application, and it is particularly gratifying that we do so well on the
largest test problem.
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#MPI processes
Matrix 2 4 8
InnerLoop1 96 232 459
InnerLoop2 89 189 486
InnerLoop3 114 255 440
InnerLoop4 114 255 440
Jacobian_unbalancedLdf 662 1208 1954
Newton_Iteration1 192 426 978
Newton_detailed 240 918 1996

Table 3: The order of the global Schur matrices for the matrices presented in Table 1 in SBBD
form.

ParSHUM MUMPS SuperLU
Matrix time fill-in time fill-in time fill-in
InnerLoop1 0.16 3.23 0.61 3.90 0.91 6.02
InnerLoop2 0.17 2.94 0.34 3.72 0.92 5.57
InnerLoop3 0.17 2.96 0.33 3.72 0.88 5.60
InnerLoop4 0.16 2.50 0.39 3.73 0.85 5.56
Jacobian_unbalancedLdf 0.68 7.03 0.35 3.45 0.86 3.59
Newton_Iteration1 0.51 3.57 0.43 6.02 2.00 5.60
Newton_detailed 1.63 5.32 11.6 6.09 28.0 5.39

Table 4: The execution time and the fill-in factor for ParSHUM, MUMPS, and SuperLU solvers
on four nodes (that is with 8 processes). The best results are highlighted in bold.

3.3 Performance results using BC
We ran tests on Kebnekaise with the same number of partitions as MPI processes. The four
smallest matrices were too small to benefit from this method so we show, in Table 5, some
results from the matrices Jacobian_unbalancedLdf and Newton_Iteration1 on from 2 to 16
processes. Although we do see a reduction in time as we increase the number of processes, it
is at best linear and we might have expected better performance. We stopped the iterations
when our backward error was less than 10−6 and we show the number of these iterations in
the column niter. The time in the column Facto is the elapsed time for all the factorizations
to complete. As the size of the matrices involved decreases as we increase the number of
partitions we would have expected these values to decrease as we increase the number of
partitions. Clearly that is not happening, certainly not to the extent that we would expect. It
is this factor that affects the total time so we investigate this further on the largest matrix in
our test set.
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Problem npart niter Facto SumProject BCG Total Time Backward
(×10−1) (×10−1) (×10−7)

jacobian_unbalanced 2 14 26.9 9.19 10.3 30.8 9.29
4 11 23.7 4.19 5.19 26.3 9.79
8 31 7.01 6.23 9.65 9.65 9.69

16 27 12.1 4.03 7.60 14.7 9.69

newton_iteration1 2 8 4.78 8.26 10.6 9.75 9.05
4 16 3.38 8.42 12.8 6.99 9.65
8 13 3.43 4.43 9.08 6.13 8.80

16 11 2.72 2.68 7.01 5.25 9.83

Table 5: Execution times in seconds and backward errors for matrices
Jacobian_unbalancedLdf and Newton_Iteration1 for differing numbers of partitions.

We thus examine in more detail runs on the matrix Newton_detailed shown in Tables 6
to 9 where we increase the number of processes from 2 to 64. This problem was considered
large for these applications although the power of our approach would be more evident on
even larger problems when the power of our multicore sparse direct solver, SpLDLT, on the
augmented indefinite systems on each partition would be more evident.

npart n(Aug Ai ) nnz(Aug Ai )
mean(×105) max/min mean(×105) max/min

2 73.6 1.11 156 1.16
8 18.4 1.06 38.9 1.29

16 9.20 1.02 19.4 1.23
32 4.60 1.11 9.72 1.27
64 2.30 1.07 4.86 1.35

Table 6: Statistics on the size of the augmented systems for the Newton_detailed matrix for
differing numbers of partitions.

When we study Table 6 all is as expected. As we increase the number of partitions,
the average row order and number of entries for each partition decreases linearly and the
partitions are quite well balanced for these two measures.

npart nnz(L) Flops
mean(×106) max / min mean(×107) max/min

2 74.8 1.19 371 1.40
8 18.5 1.53 85.2 2.17

16 9.25 1.57 41.5 4.51
32 4.52 1.76 18.3 8.88
64 2.22 1.96 8.10 13.7

Table 7: Size of the factors and number of flops to factor the augmented systems for the
Newton_detailed matrix for differing numbers of partitions.

When we study the data in Table 7, we notice that this linearity is quite well conserved
in that the mean values for both entries in the factors and the number of floating point
operations for the factorizations are roughly halved when the number of partitions increases
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by two. However, the load balance is significantly worse, particularly for the number of
floating-point operations. We note that the figures in this table are obtained from the
analysis phase of the direct solver and so do not take into account additional numerical
pivoting needed for a stable factorization of the indefinite systems.

npart Time to factor
mean max/min

2 19.1 2.66
8 3.02 3.28

16 1.37 5.07
32 0.671 3.38
64 0.728 30.0

Table 8: Time to factor the augmented systems for the Newton_detailed matrix for differing
numbers of partitions.

We thus show, in Table 8, the mean times for the actual factorizations and the ratio of
the maximum and minimum of these times over the partitions. It is quite clear from these
results that the imbalance becomes a real problem and severely degrades our elapsed time
for computing all the factorizations in parallel and we see the effect of this in the times in
Table 9.

npart niter Facto SumProject BCG BC Time Backward
(10−9)

2 102 27.7 165 271 358 9.73
8 105 6.10 49.4 163 185 9.89

16 107 3.66 23.5 141 153 9.65
32 131 1.51 17.9 158 166 9.93
64 107 5.28 9.62 125 138 9.93

Table 9: Execution times and backward errors for the BC method for the Newton_detailed
matrix for differing numbers of partitions.

We investigated this further and found that our imbalance was caused by the pattern
of the matrices coming from our power system applications. In every case there was one
block of rows that was denser than the rest of the matrix. They would naturally be held
in one partition since the partitioning algorithms try to reduce the interactions between
blocks. This is true whether we use a symbolic or a numerically aware partitioning. When
we examined the distribution of the factorization times more closely we found that, in every
case, there was only a single partition requiring the maximum time and all other partitions
required much less time. In fact, the maximum time was always associated with the
block containing these denser rows. The issue concerns an intrinsic aspect of multifrontal
methods. As the name suggests there are, during the factorization, several fronts that await
assembly later in the factorization and the structure of an augmented system where the Ai

have relatively dense blocks of rows means that there could be very many fronts awaiting
assembly. We discuss a possible way of overcoming this problem in Section 6.
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Although it is not evident in our earlier results, we encountered another major problem
caused by matrices from the application that we were happily able to overcome. The
problem was that our direct solver was reporting that the matrices it was factorizing were
singular and so the computation was stopped. This was happening because the condition
number of the matrices in Table 1 is very high (over 1010) and simple scaling techniques
do not reduce this. The direct solver is solving the systems (3.4). The condition number of
the coefficient matrix is the square of that of Ai . Since the conditioning of these matrices
will reflect that of the matrix A, the condition number of the augmented systems will often
be greater than 1/ε where ε is the double precision round off, and so the direct solver will
find these matrices to be singular. In order to avoid this problem, we perform a scaling by
multiplying the identity matrix in equation (3.4) by α which ideally should be around the
smallest singular value of the matrix A.

4 Communication avoiding iterative methods for solving
linear systems arising from a few applications, in
particular linear elasticity problems

In this section we describe the efficiency of the enlarged CG method (ECG) on matrices
arising from several different applications. We focus in particular on matrices arising from
solving linear elasticity problems, since these matrices are known to be difficult to solve
by iterative methods. Linear elasticity problems arise in structural analysis. The enlarged
CG method was developed at Inria in the context of WP 4 and was described in detail in
Deliverables 4.2 to 4.5. Several parallel performance results were already presented in these
deliverables. However for completeness we recall some of them here, in addition to several
novel performance results.

Enlarged CG is an iterative method that relies on adding t vectors to the Krylov subspace
at each iteration of the iterative method. We refer to t as the enlarging factor. Two
variants of enlarged CG were introduced in [25] and [26] that use different approaches
for orthogonalizing the vectors of the Krylov subspace. They are referred to as Orthodir
(Odir) and Orthomin (Omin). We have also shown the explicit link between the two
methods and we have studied theoretically the convergence behaviour of ECG. We greatly
improved the previous result in [22], and showed that ECG acts as if the smallest eigenvalues
were somehow deflated. In practice, we observe that enlarging the Krylov subspaces can
drastically reduce the number of iterations for linear elasticity problems. Indeed in the
numerical experiments ECG is used with a block Jacobi preconditioner and acts as a second-
level preconditioner that, in a way, deflates the smallest eigenvalues. This is in accordance
with the theory and leads to significant speed-ups over the standard PCG for linear elasticity
problems, for example.

In the experiments, we use a block Jacobi preconditioner, associating with each block
an MPI process. Before calling ECG, each MPI process factorizes the diagonal block of
A corresponding to the local row panel that it owns. At each iteration of ECG, each MPI
process performs a backward and forward solve locally in order to apply the preconditioner.
Hence the application of the preconditioner does not need any communication. It is likely
that there exist better preconditioners than block Jacobi for our test cases, however we are
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Figure 8: Heterogeneity pattern of the Young’s modulus (E) and Poisson’s ratio (ν) for
elasticity matrices.

interested in using a highly parallel preconditioner. Although in theory it is possible to
apply any preconditioner within this implementation, in practice it is essential that applying
this preconditioner to several vectors at the same time is not too costly, e.g. a sublinear
complexity with respect to the number of vectors.

The following experiments were performed on the Kebnekaise system located at the High
Performance Computing Center North (HPC2N), Umeå University. It is a heterogeneous
machine formed by a mix of Intel Xeon E5-2690v4 (Broadwell) with 2x14 cores (and E7-
8860v4 for large memory computations), Nvidia K80 GPU and Intel Xeon Phi 7250 (Knight’s
Landing) with 68 cores. In our experiments, we use the so-called compute nodes, which are
formed by Intel Xeon E5-2690v4 (Broadwell) with 2x14 cores. For a detailed description of
the machine, we refer to the online documentation2.

We compile the code (and its dependencies) using the Intel toolchain installed on the
machine: mpiicc (based on icc version 18.0.1 20171018) and MKL [39] version 2018.1.163.
We use PETSc [3] in order to compare the ECG implementation with the PETSc PCG
implementation. In particular, PETSc is configured to use MKL-PARDISO as the exact solver
for sparse matrices in the block Jacobi preconditioner. For partitioning the matrix we use the
METIS library downloaded and installed by PETSc.

4.1 Test cases

The elasticity matrices, Ela_x, arise from the linear elasticity problem with Dirichlet and
Neumann boundary conditions defined as follows

div(σ(u))+ f = 0 onΩ (4.1)

u = 0 on ∂ΩD (4.2)

σ(u) ·n = 0 on ∂ΩN (4.3)

whereΩ is some regular domain, e.g, a parallelepiped. ∂ΩD is the Dirichlet boundary, ∂ΩN is
the Neumann boundary, f is some body force, and u is the unknown displacement field. We

2https://www.hpc2n.umu.se/resources/hardware/kebnekaise
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Name Size Nonzeros Problem

Hook_1498 1,498,023 59,374,451 Structural problem
Flan_1565 1,564,794 117,406,044 Structural problem
Bump_2911 2,911,419 130,378,257 Reservoir simulation
Queen_4147 4,147,110 316,548,962 Structural problem

Ela_1 615,168 21,373,272 Linear elasticity
Ela_2 1,210,800 42,611,160 Linear elasticity
Ela_3 2,383,125 84,726,039 Linear elasticity
Ela_4 4,615,683 165,388,197 Linear elasticity

Table 10: Test matrices.

denote by σ(.) the Cauchy stress tensor given by Hooke’s law: it can be expressed in terms of
Young’s Modulus E and Poisson’s ratio ν. For a more detailed description of the problem
see [23]. We consider a heterogeneous beam made of several layers of a hard material
(E1,ν1) = (2×1011,0.25) and a soft material (E2,ν2) = (107,0.45), i.e., discontinuous E and ν
(Figure 8). The matrices Ela_N in Table 10 correspond to this equation on a beam discretized
with FreeFem++ [27] using a triangular mesh that is refined as N increases, and a P1 finite
elements scheme. More precisely, the mesh used for generating the Ela_4 matrix contains
1600×30×30 points on the corresponding vertices. This mesh is coarsened by dividing the
number of vertices in each dimension by 21/3 in order to construct the Ela_3 matrix, and
so on and so forth for the Ela_2 and Ela_1 matrices. This test case is known to be difficult
because the matrix is ill conditioned. In particular, the standard one-level preconditioners
are not expected to be very effective.

As previously pointed out, ECG is an algebraic method that does not rely on any
particular assumption on the matrix, except that it is symmetric positive definite. As an
illustration, we also test the implementation on the four largest SPD matrices coming from
the Sparse Matrix Collection of Tim Davis [16]. Numerical properties of the test matrices are
summarized in Table 10.

In all the experiments the tolerance is set as the default tolerance of PETSc, i.e., 10−5 and
the maximum number of iterations is set to 25,000. The right-hand side is chosen uniformly
random and normalized and the initial guess is set to 0. We do not use any kind of threading
and use 28 MPI processes per node. Unless otherwise stated, we use one OpenMP thread per
MPI process — we also perform numerical experiments to observe the effect of threading in
Section 4.4.

4.2 Strong scaling study

In this section we perform a strong scaling study on Hook_1498, Flan_1565, Queen_4147,
and Ela_4, the results are presented in Figure 9.

For Bump_2911 and Queen_4147, we observe that the runtime is increasing when the
number of vectors t added to the Krylov subspace at each iteration increases. In this case,
the cause is inherent to the method: the number of iterations is not decreasing enough to
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compensate the increase in runtime of one iteration when the value of t increases. This
is particularly illustrated on Queen_4147, with Odir from t = 2 to t = 28, the number of
iterations is decreased by only 20%. For the sake of brevity, we omit the results obtained
with Bump_2911 because they are similar to those obtained with Queen_4147. There is an
interplay between the choice of t and the number of MPI processes. Indeed, increasing
the number of MPI processes deteriorates the quality of the preconditioner, and reduces
its application cost. However, for the sake of simplicity, we decide to keep the value of t
constant while increasing the number of MPI processes.

More precisely, we compare PETSc PCG (blue bars), ECG (orange bars), and a modified
PETSc PCG (green bars) where the sparse matrix-vector is applied using MatMatMult routine
from PETSc, i.e. the vector is regarded as a dense matrix with one column. For Hook_1498,
we use Orthodir with a dynamic detection of useful vectors to be added to the Krylov
subspace (referred to as D-Odir) and set t = 10, which corresponds to one of the best choice
over the values of t we tested in our studies. We observe that D-Odir is faster than PETSc
PCG when the number of MPI processes is relatively low (252 and 504), but when it is large
(more than 1,000) PETSc PCG becomes almost twice as fast. For the other matrices, we also
observe that the performance of ECG deteriorates significantly with respect to PETSc PCG
when the number of MPI processes becomes large. This is because the routine MatMatMult
is not optimized when the number of MPI processes is large and the number of columns
in the right-hand side is very small. For example, for Hook_1498 and Flan_1565, when
P = 2,016, the MatMult routine (sparse matrix-vector product) is around 10 times faster than
the MatMatMult routine where the right-hand side is regarded as a dense matrix with one
column. The total runtime per right-hand side of MatMatMult is indeed slightly lower than
the runtime of MatMult when the number of right-hand sides is large enough; in this case,
the total runtime of MatMatMult is significantly larger. However if the number of right-hand
sides is not large enough — which is the case in our strong scaling study — then the runtime
per right-hand side is larger than the runtime of the MatMult routine. Furthermore, the gap
between the performance of MatMatMult and MatMult routines increases when the number
of MPI processes increases.

Hence, we also compare ECG with a modified PETSc PCG (green bars) where the routine
MatMatMult is used for computing the sparse matrix-vector product. We believe that
this comparison is relevant because both ECG and this modified PETSc PCG rely on the
exact same routine for computing the sparse matrix application to a (set of) vector(s). We
indeed observe that this modified version of PETSc PCG is less scalable than the default
one, for example for Hook_1498 the runtime increases from 1,008 to 2,016 MPI processes.
Furthermore, we observe that this modified version of PETSc PCG is also less scalable than
ECG; for Hook_1498, Flan_1565, and Ela_4 the speed-up is slightly increasing from 1,008 to
2,016 MPI processes.

In conclusion, we have shown that ECG’s scaling is highly dependent of the routine that
performs the sparse matrix-set of vectors product. This is of course not very surprising. What
is more surprising, however, is the fact that the MatMult routine of PETSc is much more
scalable than the MatMatMult when the number of right-hand sides is small. In practice,
this explains the difference in terms of scalability of ECG compared to PETSc PCG. We believe
that it should be possible to optimize the MatMatMult routine so that this difference would
at least be reduced, or even be removed. Also, we want to emphasize that enlarging the
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Figure 9: Strong scaling results for Hook_1498, Flan_1565, Queen_4147, and Ela_4 with P
varying from 252 to 2016. We indicate both the runtimes, with bars (left scale), and the
iteration counts, with black dots (right scale). The speed-up of ECG with respect to PETSc
and PETSc using MatMatMult routine is indicated on top of the bars. The orthogonalization
method used for each matrix, Omin(t) or D-Odir(t), is also displayed, where t represents the
enlarging factor.
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D-Odir PETSc CG

# MPI n t # iter Ttot # iter Tdef TMMM

252 6.15×105 20 360 3.4 8,803 13.0 (x3.8) 16.3 (x4.8)
504 1.21×106 20 463 4.9 11,333 17.6 (x3.6) 23.7 (x4.8)

1008 2.38×106 20 608 6.8 14,801 23.8 (x3.5) 36.8 (x5.4)
2016 4.61×106 20 784 10.2 19,047 36.1 (x3.5) 64.0 (x6.4)

Table 11: Weak scaling study. The dimension of the matrix is denoted n, and t denotes
the enlarging factor. The ratio between PETSc runtime and ECG runtime is indicated in
parentheses.

Krylov subspaces is not incompatible with other techniques currently developed in order
to increase the performances of Krylov methods. For instance, we mention that we are
currently performing 4 calls to MPI_Allreduce per iteration, but that could be reduced to
2, and even 1 with Odir (and D-Odir), by fusing them. This technique is described in detail
in Deliverable 4.5, Integration.

4.3 Dependence on the mesh size — weak scaling study

Given the importance of the enlarging factor t for the efficiency of the method, we perform a
study of convergence with respect to the mesh size for the elasticity test case. More precisely,
we consider the Ela_N matrices (N = 1, . . . ,4). Our focus is not only the weak scaling of ECG,
but also the comparison between PETSc’s CG and D-Odir in terms of runtime.

As for the strong scaling study, we use D-Odir(20). The results are summarized in
Table 11. We observe that D-Odir(20) is always at least 3.5 times faster than PETSc PCG.
However the gap tends to slightly decrease when the number of MPI processes increases.
Indeed, when P = 256 D-Odir(20) is up to 3.8 times faster than PETSc PCG. As outlined in
the strong scaling study, the MatMatMult routine scales poorly (compared to the MatMult
routine) when the number of columns in the right-hand side is very small. Thus, we also
indicate, in the column labelled TMMM, the runtimes when replacing the sparse matrix-
vector product within PETSc PCG by a call to MatMatMult. In this case, the performance
gap between D-Odir(20) and the modified PETSc PCG increases when the number of MPI
processes increases. For instance, when P = 2016, D-Odir(20) is around 6.5 times faster than
the modified PETSc PCG, whereas it is 4.8 times faster for the smallest problem.

4.4 Impact of threads on performance

One motivation for enlarging the Krylov subspaces is to increase the arithmetic intensity
of the resulting methods. This is of particular interest when taking advantage of the so-
called manycore architecture as Nvidia GPUs, Intel Xeon Phi, or Sunway SW26010 used in
the Sunway TaihuLight supercomputer. As the implementation relies on the MKL library
which is multi-threaded [39], it is straightforward to assess its efficiency on the Xeon Phi
processors.

In order to do so, we performed the following experiments on NERSC’s supercomputer
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PETSc PCG Odir(20)

# threads Ttot speed-up Ttot speed-up

1 83.3 - 32.6 -
2 75.4 1.1 25.0 1.3
4 62.5 1.3 19.5 1.7
8 56.1 1.5 16.6 2.0

Table 12: Runtime results (in seconds) on the Ela_4 matrix when P = 2,048. We indicate the
speed-up when increasing the number of threads for each method.

Cori. It consists of two partitions, one with Intel Haswell processors and another with the last
generation of Intel Xeon Phi processors: Knights Landing (KNL). More precisely, the second
partition consists of 9,688 single-socket Intel Xeon Phi 7250 (KNL) processors with 68 cores
each. For a detailed description of the machine, we refer to the online documentation3. We
compile the code (and its dependencies) using the default compilers and libraries installed
on the machine: icc version 18.0.1, cray-mpich version 7.6.2, MKL version 2018.1.163 and
METIS version 5.1.0. We have installed PETSc and, as for Kebnekaise, it has been linked with
MKL so that it uses MKL-PARDISO in the block Jacobi preconditioner. We consider the Ela_4
test case and study the impact of the number of threads on the strong scaling of Odir(20).
We do not use the dynamic reduction of the search directions in order to keep the cost of
one iteration constant during the solve to better understand the effect of threading. We fix
the number of MPI processes to 2048 and increase the number of threads from 1 to 8 — this
means at most 2,048×8 = 16,384 threads, each one being bound to one physical core.

The results obtained are summarized in Table 12. We observe that using more than 2
threads, and up to 8, has always a significant effect on the speed-up, even when the number
of MPI processes is high. For instance, as shown in Table 12, increasing the number of
threads from 1 to 8 with a fixed number of 2,048 MPI processes leads to a decrease in runtime
of 2. Of course, we are not close to full efficiency when using multiple threads, but we are still
taking advantage of the Level 3 BLAS routines. Indeed, the corresponding speed-up with
PETSc PCG is only 1.5. In particular, we observe that the difference between ECG’s speed-up
and PETSc PCG’s speed-up increases when the number of threads increases. Thus, ECG is
more adapted to the current trend in hardware architecture for reaching exascale, namely
manycore processors.

For instance for a 3D linear elasticity problem with heterogeneous coefficients with
4.5 millions of unknowns and 165 millions of nonzero entries, we observe that ECG is
up to 5.7 times faster than the PETSc implementation of PCG, both using a block Jacobi
preconditioner. This test case is known to be difficult because the standard one-level
preconditioners are not expected to be very effective.

3http://www.nersc.gov/users/computational-systems/cori/configuration/
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5 Data analysis in astrophysics and Midapack

Studies of the minute fluctuations of the intensity and polarization of primordial photons,
called CMB for Cosmic Microwave Background, have been for nearly 25 years one of the
main sources of invaluable information about our universe and the fundamental laws
of physics. Astrophysicists produce and analyse multi-frequency images of the universe
when it was 5% of its current age. The new generation of CMB experiments produces
overwhelmingly large and complex data sets by observing the sky with thousands of
detectors over long time periods (many years). For example, Planck – a keystone satellite
mission which has been developed under the auspices of the European Space Agency (ESA)
– has been surveying the sky since 2010. Planck produces Terabytes of data and requires 100
Petaflops to compute each image of the universe. The volumes of the data sets produced
over the last two decades grow consistently at Moore’s Law rate.

One of the main computational challenges in the CMB data analysis involves
reconstructing a 2-dimensional map of the sky from enormous data sets. This problem,
called a map-making problem, is difficult for a number of reasons, including data volumes,
long-term noise correlations and presence of parasitic signals. With current algorithms,
the reconstruction of the sky maps from the data available by early 2020 is expected to
require 100 Exaflops. In the analysis of any CMB data, the map-making step may need to be
performed hundreds if not thousands of times as, for instance, is the case whenever popular
Monte Carlo sampling algorithms are used to characterize the uncertainties of the estimated
sky maps.

Given the size of linear systems solved at each map-making step, the approximate
solution is most readily obtained using iterative algorithms (in particular Krylov subspace
methods), and is facilitated by exploiting efficient methods for multiplying the system matrix
by a vector. For our experiments we consider the MIDAPACK library4. The volumes of the
data and the requirement to process the entire data set in one step in order to deal with
and properly account for the long-term noise correlations, require the use of the largest
available supercomputers with their complex architectures and communication networks
and appropriate numerical algorithms.

In the context of Workpackage 5, our goal was to adapt and validate communication-
avoiding iterative methods for the CMB map-making problem and to make them available
to the CMB community by integrating them with the MIDAPACK package. Previous
experiments show that the communication is the bottleneck that prevents scaling the map
making problem to a very large number of processors; see, e.g., [24, 37].

We search for novel preconditioning techniques, which are suitable for single runs but
also for preconditioners appropriate for multiple sequential solves with different right-hand
sides, where the information from the previous runs is accumulated and exploited in the
forthcoming runs or a precomputation is used to construct a better and more efficient
preconditioner. In either case, the methods we are seeking should lead to reducing the
overall time-to-solution. Thus the required preconditioners need to be cheap to construct
and apply in a massively parallel context appropriate for modern computer architectures.

Our experiments were performed on National Energy Research Scientific Computing

4www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/software/midapack/ver1.1/index.html
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Center (NERSC) Cori Machine and on High Performance Computing Center North (HPC2N)
at Umeå University machine Kebnekaise.

5.1 Map-making problem

The observed data is modelled as
d = Pm +n, (5.1)

where d stands for a vector of all measurements with dimension nt up to 1015, m is
an unknown pixelized map of the sky signal of the order typically 106–108 and n is the
(instrumental) noise. The pointing matrix P describes, which pixel of the map is observed at
each time, it is very sparse, tall and skinny.

Then, the maximum-likelihood is computed as

(P t N−1P )mML = P t N−1d , (5.2)

where the weight matrix N−1, of size nt and structured (typically block-Toeplitz),
approximates the covariance matrix of the noise n.

5.2 Data for experiments

In contrast to other communities (cf. , e.g., the Suite Sparse Collection), there does not exist
a set of test cases for problems in CMB data analysis. Typically, authors generate a new data
set for each of their manuscripts in order to demonstrate the behaviour of the methods in
a particular setting. This makes a comparison of various solvers and preconditioners quite
difficult. Additionally, we were able to run only a limited number of experiments because
of having only a few data sets provided to us by our partners from APC. While generating
smaller test cases (e.g., based on the observation of the small fraction of the sky and/or not
involving more complex features) can be done using several freely available packages, the
data for large tests require careful and time-consuming preprocessing, e.g., in order to avoid
singularity of the resulting algebraic system.

We run prototyping experiments using our sequential code developed in Python on
several (relatively small) test cases. The parallel experiments on Enlarged Conjugate
Gradient method were run using one larger dataset. The results for more complex and even
larger datasets are a subject of our further work.

5.3 State-of-the art solvers

Traditionally the iterative method of choice is Preconditioned Conjugate Gradient method
(PCG) with a simple preconditioner given by

P T diag(N−1)P. (5.3)

Thanks to the properties of the pointing matrix, this preconditioner is block-diagonal and
easy to construct and apply. It was observed that this preconditioner successfully removes
the effect of large eigenvalues of the system matrix P T N−1P ; here we can see an analogy
with block-diagonal preconditioners from domain decomposition methods despite their
principally different construction.
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The block-diagonal preconditioner was improved by using the deflation of a few vectors
approximating the eigenvectors associated with the smallest eigenvalues of the system
matrix, which often harm the convergence of the PCG solver; see e.g., [24,30,33,37]. However,
the construction of the deflation space can be even more costly than solving a single system
with the preconditioner (5.3).

We discuss two other techniques for solving problem (5.2) in the later subsections.

5.4 Messenger-field method for map-making

Recently, the application of the so-called messenger-field technique to the map-making
problem was suggested in [28]. This technique was originally proposed in [20] for the Wiener
Filter, another application in CMB data analysis. Because of the strong claims in the above
mentioned papers and presented numerical results, we decided to analyse this technique
and test it for our simulated data.

Our findings were published in [31]. We showed that the messenger-field techniques
correspond to fixed point iterations of an appropriately preconditioned initial system (5.2).
In the map-making application, this preconditioner is exactly the standard one given in (5.3).
We then argue that a conjugate gradient solver applied to the same preconditioned system
will in general ensure at least a comparable and typically better performance in terms of the
number of iterations to convergence and time-to-solution. This is illustrated in Figure 10,
where the PCG preconditioned by (5.3) is compared with the messenger-field method. The
figure also gives the comparison of the methods when using so-called cooling, a technique
proposed to improve the convergence of the messenger-field; see [31] for more details.
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Figure 10: Convergence of PCG and the messenger-field with and without cooling in the
map-making application.

Based on these results, we decided to concentrate on (P)CG solvers and their
modifications as a more promising direction in which to continue our work.
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5.5 Enlarged Conjugate Gradients (ECG) for map-making

As already mentioned in the introduction, the adaptation and the validation of
communication-avoiding iterative methods in the context of the CMB map-making problem
was one of our main goals within this project.

The numerical observations and recent theoretical proof (see, [26, Sect. 2.4]) show that
ECG with the enlarging factor equal to t (asymptotically) converges as the PCG applied to
the operator with the t −1 smallest eigenvalues deflated. Since the two-level preconditioner,
i.e. the combination of the standard and deflation preconditioners, proved to be efficient in
the map-making problem (see, e.g., [24, 37]), we consider ECG as a prospective method for
highly parallel computations within this application.

We first run prototyping experiments on smaller datasets to identify possible suggestions
for choosing a proper orthogonalization variant and/or the value of the enlarging factor.
Despite the fact that those smaller datasets may not capture all the features and difficulties
present in real large scale data, we expected that a possible speed-up w.r.t. the standard PCG
might be already observed. The numerical results of the sequential implementation of ECG
in Python are presented in the following subsection.

5.5.1 Prototyping results

The results of initial experiments confirmed our expectations about the similar behaviour of
ECG and PCG with a two-level preconditioner based on the deflation of the eigenvectors
corresponding to the smallest eigenvalues. These eigenvectors are computed in our
experiments using the SciPy wrapper5 for ARPACK. The comparison for two test cases is
shown in Figure 11.
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Figure 11: Comparison of ECG and PCG with deflation in two test cases.

In other experiments we concentrated on the comparison of two (orthogonalization)
variants for computing the new search direction in ECG. Those variants are called Orthodir
and Orthomin. They have different memory and computational requirements and they can
differ in finite precision; see, e.g., [25]. Their convergence in some test cases was quite
different and surprising. In particular for the Orthodir variant, we observed stagnation of

5docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html
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the relative residual at some (relatively) high level, which mildly depends on the enlarging
factor. In the same cases, Orthomin converges to much higher accuracy. One of these results
is given in Figure 12. To our knowledge, such behaviour has not been observed before and
poses important questions on the numerical stability of the method, which is a subject of
our further research.

Figure 12: Comparison of two orthogonalization variants of ECG, Orthodir (left) and
Orthomin (right). Here, t split indicates the enlarging factor t .

Since the negative effect of small eigenvalues on the PCG convergence in these test cases
was not as harmful as, e.g., in the elasticity problems ECG was tested on, the decrease
of iteration counts with the increasing enlarging factor seems not to compensate for the
increasing cost and time of each iteration.

5.5.2 Results using the highly parallel map-making code MIDAPACK

In order to use ECG in the highly parallel map-making test case, we have interfaced ECG
implemented in preAlps NLAFET library with MIDAPACK library used for applying the
system matrix in (5.2). This required some modifications of the original ECG code to handle
in a different way how the vectors are split in MIDAPACK.

In order to preserve the structure of the weighting matrix N−1 (which is necessary in
order to be able to apply this matrix to a vector), MIDAPACK splits vectors not in the pixel
but in the time domain. This means that each MPI process is assigned a part of the vector
but those parts are overlapping and the (full) vector is given as a properly weighted sum of
the local parts. For ECG, this requires a modification of the inner product to include the
weighting and also a modification of the splitting of the initial residual – the entries of the
residual vector are assigned to the same column in each MPI process that manipulates the
particular row index.

Because the "overlapping ECG" presents a very specific generalization of the ECG code,
we decided not to include the corresponding scripts in the preAlps library but to make this
code available later as a part of the MIDAPACK library.

Finally, we point out that the current version of MIDAPACK does not allow us to apply a
matrix to a set of vectors, which is one of the crucial operations in ECG that should bring a
speed-up over simple PCG. Work on implementing this is in progress and should be available
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soon. In the current experiments with ECG, we apply the matrix to vectors one by one. As
expected, applying a matrix to t vectors then takes t times longer than a single matrix-vector
product.

Given a single dataset to run the experiments on, we study the number of iterations and
timings for various enlarging factors and timings for a number of MPI processes. We note
that, in contrast to, e.g., domain decomposition methods, the block-diagonal preconditioner
in map-making does not depend on the splitting of the vectors, and therefore the iteration
counts for PCG and ECG are independent of the number of processes.

Similarly to the prototyping experiments, we observed a different convergence behaviour
for Orthodir and Orthomin variants. For Orthodir with the enlarging factor bigger than one,
the relative residual again stagnates at certain level. In the current case, this level is mostly
below the commonly used tolerance 10−6 but those results pose important questions for the
other applications of ECG with Orthodir, in particular in map-making. The convergence of
ECG with various enlarging factors is shown in Figure 13. Here, we considered 128 processes
but, as noted above, the convergence for other numbers of processes is nearly the same (the
timing differs as we discuss below).

Figure 13: Convergence of ECG in the code using the MIDAPACK library; Orthodir (left) and
Orthomin (right).

We run the experiments on the NERSC Cori machine with Haswell computational nodes.
Following the suggestion of the MIDAPACK developers, we assign one core to each MPI
process. The timings of ECG runs are given in Table 13 including times of overall ECG runs
(denoted as "ECG total"), time for internal ECG operations, i.e. all the operations except
the application of the system matrix and the preconditioner to a set of vectors (denoted as
"ECG inner op."), and the time spent on applying the system matrix ("P T N−1P×V "). We can
see that the matrix-vector product significantly dominates the overall time, despite the fact
that it scales satisfactorily when the increasing number of processes. Because the decrease
of iteration counts with increasing the enlarging factor is quite mild, the overall ECG time
significantly increases for higher enlarging factors. This rather unsatisfactory behaviour is
also due to a particular test case, where the PCG convergence is (after few initial iterations)
linear and the effect of small eigenvalues is not pronounced (see Figure 13).

We note that the present ECG implementation (yet intended for enlarging factors larger
than 1) presents a more efficient and faster implementation of the (standard) PCG than the
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current code from MIDAPACK. The total timing of a PCG run as implemented in MIDAPACK
is 108.3 s, 55.7 s and 38.4 s for 128, 256 and 512 processes, respectively, cf. the timing for
Odir(t = 1) or Omin(t = 1) in Table 13.

Odir Omin
enl. factor t 1 2 4 8 16 1 2 4 8 16

128 MPI processes (local problem size = 11121)
# iter 293 286 218 161 117 291 279 216 160 117

ECG total 94.27 179.6 271.6 399.2 583.4 94.01 175.3 269.4 396.5 581.8
ECG inner op. 1.876 1.265 1.913 3.372 8.355 1.468 1.151 1.590 2.630 6.371
P t N−1P ×V 92.29 178.2 269.4 395.5 574.7 92.44 174.0 267.7 393.6 575.1

256 MPI processes (local problem size = 5622)
# iter 291 285 219 160 118 293 278 216 159 118

ECG total 49.31 92.00 138.1 200.4 294.2 49.80 89.90 136.5 197.8 293.7
ECG inner op. 1.344 0.904 0.894 1.651 3.715 1.360 0.710 0.925 1.162 2.567
P t N−1P ×V 47.93 91.04 137.1 198.6 290.3 48.40 89.13 135.5 196.5 291.0

512 MPI processes (local problem size = 2865)
# iter 292 >400 219 160 118 291 278 216 159 118

ECG total 29.12 — 76.68 109.1 159.5 29.85 50.01 73.74 105.7 155.4
ECG inner op. 1.838 — 1.231 1.286 2.058 2.534 1.141 0.823 0.880 1.503
P t N−1P ×V 27.26 — 75.41 107.7 157.3 27.29 28.84 72.88 104.8 153.8

Table 13: Timing of ECG runs, in seconds. Tolerance for the relative residual was set to 10−6.
Each MPI process is assigned to one core. Odir(t = 2) for 512 processes did not converge in
400 iterations.

6 Summary and recommendations for future improvements

Section 2 has described developments made to the 2DRMP software suite for the modelling
of electron scattering from H-like atoms and ions. Two major modifications have been made
to the code: Firstly, the introduction of the PLASMA library to provide an alternative to the
use of proprietary MKL software, and to improve portability by allowing high-performance
solutions to be obtained on non-Intel architectures. Secondly, the code structure has been
modified to provide a more integrated approach, which does not rely on passing large files
between constituent components. A number of other minor improvements have also been
made to improve the user-friendliness of the code.

The modified code has been tested on the Intel Skylake platform. While, as expected,
the PLASMA routines do not quite match the performance of MKL on this Intel platform,
inclusion of the PLASMA library does allow the opportunity to achieve high performance on
non-Intel architectures. In cases where users have access to the MKL library, the option to
use it in preference to PLASMA is available. A number of other benchmarks and minor code
developments are planned, including performance analysis on ARM and AMD platforms,
which will result in submission of a paper later this year.
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The matrices from the application that we discuss in Section 3 are unsymmetric and very
ill-conditioned with condition numbers greater than 1010. Simple scaling does not reduce
this condition number. Although the matrices can be quite large, they are also very sparse
and so we can factorize even the largest matrix of order over 7 million quite quickly. In fact,
the power of our codes cannot be fully demonstrated since we would require much larger
matrices to do so. In solving the power flow systems, we use most of the codes developed
in Workpackage WP3. Both solvers that we use, from the ParSHUM library and the BC
library combine distributed memory parallelism, handled using MPI, with shared memory
parallelism using OpenMP or the runtime system StarPU. In both cases, we first partition the
matrix and then run a sparse direct code on subsystems defined by this partition. In the case
of ParSHUM, we partition the matrix to singly bordered block diagonal form using Zoltan and
then use our multicore unsymmetric sparse direct factorization on the rectangular blocks on
the diagonal of the SBBDF form. In the case of BC we partition the matrix into blocks of rows
using a memory-aware partitioning that tries to keep these blocks mutually orthogonal. We
then use an iterative method based on the block Cimmino approach to precondition block
conjugate gradients.

We found the matrices from this application quite challenging and this has helped us
to plan future enhancements for our codes that will continue to be maintained after the
end of the NLAFET Project. The code that was particularly challenged by these matrices
was BC. Here we plan to make the code able to detect and react to possible problems. For
example, if the direct code detects a singularity we could automatically try to refactor the
matrix with the α scaling discussed in Section 3.3, perhaps iterating until a good value for α
is obtained. Another enhancement would be to preprocess the matrix to remove dense rows,
and partition the matrix so the main factorization can be done on this block but the solution
can be obtained by forming the small Schur complement from these dense rows. A more
ambitious enhancement, which would be particularly for the use of SpLDLT in the context of
BC, would be to monitor the analysis estimation of the number of floating-point operations
for factorization and use this to assign a different number of cores to each factorization in
order to better balance the load. Although it did not appear to be a major problem with
this application, one enhancement to ParSHUM might be to look at alternatives to using the
PLASMA dense codes in the factorization of the global Schur as mentioned in Section 3.2.
ParSHUM could be recalled to factorize that, or the whole factorization routine with its prior
SBBD partitioning could be used on this block. This would enable us to factorize even larger
matrices where more partitions were needed and the order of the Schur was too large for the
dense solver.

One issue when working with a commercial company such as DIgSILENT GmbH is that
we do not have access to their proprietary code and have had to experiment on matrices
supplied by them. It is only quite recently that we have given access to the codes to our
collaborator, Bernd Klöss, who is planning to test the codes within the framework of their
packages. The other issue is that we need very large matrices to stress our codes and to
achieve very high levels of parallelism. We asked explicitly for a particularly large matrix for
power systems but even that was factorized rather too quickly to see benefits from greater
levels of parallelism. There is nothing in the SuiteSparse set of test matrices that comes close
to the size of this problem. Now that we have made our codes available, our main future work
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will be in continuing to tune and enhance these when we get feedback from the solution of
even larger problems than we have so far had access to.

We have presented in Section 4 the parallel efficiency of the enlarged CG method
developed at Inria on matrices arising from several different applications, in particular
from solving linear elasticity problems. Enlarged CG increases the arithmetic intensity and
reduces the communication between processors, and hence is well suited for modern and
future architectures that exhibit massive parallelism. For the previous elasticity problem, we
show that the method can scale up to 16,384 threads, each one being bound to one physical
core, which means that each core owns nearly 280 unknowns.

Enlarged CG does not require any information from the underlying PDE and does not
rely on any assumption, except that the matrix is symmetric positive definite. Hence it can
be seen as a black-box solver and integrated very easily in any existing code. For instance for
a 3D linear elasticity problem with heterogeneous coefficients with 4.5 million unknowns
and 165 millions of nonzero entries, we observe that ECG is up to 5.7 times faster than the
PETSc implementation of PCG, both using a block Jacobi preconditioner. This test case is
known to be difficult because standard one-level preconditioners are not expected to be very
effective.

In section 5 we have adapted our ECG code to be used in CMB data analysis, in particular
the map-making problem, and tested it on a few datasets that were provided by our
partners at APC. Despite obtaining quite pessimistic results, we argue that communication-
avoiding methods have the potential of being efficient also in this application. This
requires implementation of matrix-matrix products in MIDAPACK (which is currently in
progress) and considering test problems where the convergence of PCG with the standard
preconditioner is indeed harmed by small eigenvalues. Such cases were, from the very
beginning, identified as appropriate for enlarged Krylov methods and this crucial feature
is not present in the current test datasets. The ECG code with the modification done to the
interface for the MIDAPACK library will be made available for the (astrophysical) community
within the new version of the MIDAPACK.
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