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1 Introduction
The Description of Action (DoA) states for deliverable D6.3:

“D6.3: Evaluation of software prototypes
Report evaluating the prototype software developed in task 6.1 with regard to
overall system performance on a selection of linear algebra algorithms.”

This deliverable is in the context of Task 6.1 titled Scheduling and Runtime Systems. We
report on an extension of the work first reported in [7] where we presented a prototypical
runtime system optimized for testing the idea of parallelizing the critical path when
scheduling a task graph on a multicore system. Here we incorporate the idea into a more
feature-complete runtime system called StarPU and evaluate it on an important kernel
in our recently developed non-symmetric generalized eigenvalue solver. We conclude with
some general guidelines to practitioners who want to predict the impact of the idea before
investing into the development necessary for its application.

1.1 Some assumptions and terminology
We assume a homogeneous multicore system with p cores and shared memory. We use
G = (V,E) to denote a task graph, i.e., a directed acyclic graph in which the vertices V
represent tasks and the edges E represent precedence constraints.

Take note that we (re)define concepts such as execution time, cost, path length, critical
paths, etc. relative to a particular execution of the task graph. The execution time of a
task graph is defined as the duration from the start of the first task to the completion of
the last task. The cost of a task graph is defined as the product of the execution time
and the number of cores used. The task time of v ∈ V , denoted by ω(v), is defined as
the duration from start to completion of v. The task cost of v ∈ V , denoted by c(v),
is defined as the product of the task time and the number of cores used. In particular,
c(v) = ω(v) for a sequential task v and c(v) = qω(v) for a parallel task v using q cores.
The total task cost of a task graph is defined as the sum of all task costs. The path length
of a path v1, v2, . . . , vn, where (vi, vi+1) ∈ E for i = 1, 2, . . . , n − 1, is defined as the sum
of the task times along the path. Similarly, the path cost of a path is defined as the sum
of the task costs along the path. A critical path is defined as a path with maximal path
length.

1.2 Two scheduling approaches
A straightforward approach to execute a task graph on a multicore system is to execute
each task sequentially on one core without preemption1. We refer to this approach as
regular scheduling.

Definition 1 (Regular scheduling). A task-based runtime system for a multicore system
with p cores uses regular scheduling if it schedules the tasks in a task graph G = (V,E)
according to the following principles:

1. If (v1, v2) ∈ E then v2 will not start until v1 has finished.
1With preemption we mean preemption of an executing task performed by the runtime system. We

do not preclude the operating system from preempting threads the runtime system uses to execute tasks.
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2. Once a task has started it runs to completion without preemption.

3. Each task is sequential and can be scheduled on any core.

We contrast regular scheduling with parallel critical path scheduling, in which both
the set of tasks and the set of cores are partitioned into two subsets. A specific path in
the graph (ideally a critical path) is selected and the tasks on this path are executed in
parallel (one at a time since they lie on a path) on a set of cores which has been reserved
for this purpose. The remaining tasks are executed sequentially on the other set of cores.
These tasks are executed precisely as for regular scheduling.

Definition 2 (Parallel critical path scheduling). A task-based runtime system for a mul-
ticore system with p cores and a reservation of 0 ≤ q < p cores uses parallel critical path
scheduling if it schedules the tasks in a task graph G = (V,E) according to the following
principles:

1. If (v1, v2) ∈ E then v2 will not start until v1 has finished.

2. Once a task has started it runs to completion without preemption.

3. The tasks are partitioned as V = Vcp ∪ Vnc s.t. all tasks in Vcp lie on the same path.

4. The cores are partitioned as C = Cres ∪ Cother s.t. |Cres| = q.

5. If q > 0, each task in Vcp runs in parallel on all cores in Cres.

6. If q = 0, each task in Vcp is sequential and runs on a single core in Cother.

7. Each task in Vnc is sequential and can be scheduled only on cores in Cother.

The tasks in Vcp are referred to as the critical tasks, and those in Vnc are referred to as
the non-critical tasks. The cores in Cres are referred to as the reserved cores. Notice that
for q = 0 this definition coincides with that of regular scheduling.

1.3 Why consider parallel critical path scheduling?
Consider the execution of a task graph G = (V,E) on p cores using regular scheduling.
Let time denote the resulting execution time and let cp denote the length of a critical
path. Trivially, we have cp ≤ time. If the ratio cp/time is close to one, then it is
effectively the critical paths which are limiting the execution time. Increasing the number
of cores is unlikely to yield any significant time savings since the additional cores can have
no significant impact on cp under regular scheduling.

Parallel critical path scheduling is attractive precisely when—and only when—the
ratio cp/time is close to one. By accelerating the tasks along a path, one hopes to
reduce cp as well as time. However, if cp/time is not close to one, then a reduction in
cp is unlikely to trigger a reduction in time simply because the execution time is likely
bounded by other factors than the length of a critical path.

Figure 1 helps to explain when and why parallel critical path scheduling can and
cannot execute a task graph faster than regular scheduling. The graph in Figure 1a has
four identical and independent tasks. Assuming that p ≥ 4, the execution time will be
bounded below by the maximum task time. Parallel critical path scheduling will select
one task (path) and parallelize it. The corresponding task time hopefully decreases, but
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(a) (b) (c)

Figure 1: Illustration of task graphs for which parallel critical path scheduling is (a)
useless, (b) ideal, and (c) attractive. The selected path (Vcp in Definition 2) are shown in
black.

the task time of every other task is unaffected. The lower bound on the execution time
therefore remains. Hence, parallel critical path scheduling is useless for perfectly parallel
computations.2

The graph depicted in Figure 1b is the polar opposite of the previous example. All
tasks lie on the same path and are therefore completely serialized. Any reduction in the
critical path length triggered by parallel critical path scheduling directly translates into
an equal reduction in the execution time. This is the ideal case but also the least realistic.

The graph in Figure 1c is more realistic and the effect of parallel critical path schedul-
ing is somewhere in between the two extremes. More precisely, suppose that p ≥ 4 and
ω(v) = 1 for all tasks v ∈ V . Then there are four critical paths, each with a path length
of 4. Since p ≥ 4, it is possible to schedule the tasks using regular scheduling such that
the execution time is 4. Suppose that we switch to parallel critical path scheduling with
a reservation of q cores and that this reduces the task time of the critical tasks from 1 to
s ∈ (0, 1]. The lengths of the four maximal paths are then given by

`i = is+ (4− i), i = 1, 2, 3, 4.

If we further assume p − q ≥ 3, then it is possible to schedule the tasks such that the
execution time is equal to the length of a critical path (`1 = s+ 3). The speedup one can
achieve by switching from regular scheduling to parallel critical path scheduling is thus
bounded above by

speedup = 4
s+ 3 < 4/3.

Note that we selected one of the four paths which were critical using regular scheduling,
but as soon as we see any acceleration (s < 1) it is no longer a critical path. In fact, it
becomes the shortest path with four tasks. Nevertheless, we see a continuous increase in
the speedup when we accelerate the selected path.

2 Parallelizing the tasks even in an otherwise perfectly parallel computation actually makes sense if
the parallelization of tasks achieve super-linear speedup; see [6] for a thorough discussion and numerical
experiments. As a simplified example, suppose there are n identical and independent tasks that each
take time Tq to execute on q cores. The computational cost is given by nqTq. Since there is perfect
parallelism we may reasonably assume there to be little overhead besides computation and overhead
internal to the tasks. Thus the execution time on p cores with each task parallelized over q cores is given
by Tq,p ≈ nqTq/p. If parallelizing the tasks gives a performance boost, then we have Tq,p < T1,p for q > 1,
which implies T1/Tq > q, i.e., the tasks experienced super-linear speedup.
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2 Parallel Critical Path Scheduling using StarPU
In this section, we describe how we have implemented parallel critical path scheduling
using StarPU [1]. In StarPU, every task is associated with a specific codelet. A codelet
encapsulates one or more alternative implementations (say for a CPU or a GPU) of some
type of task. A task provides the input/output data structures to the task’s associated
codelet. Each task is submitted to a scheduling context which schedules its execution on
the required compute resources. By default, there is one scheduling context which includes
all compute resources, but other contexts can be created. Each scheduling context has
its own scheduling policy and uses a set of workers (threads) to execute the submitted
tasks. The set of workers could be dedicated solely for a specific scheduling context or
dynamically move between scheduling contexts based on the needs; see [2] for details.

To use StarPU with regular scheduling, it is sufficient to construct codelet(s) with a
single sequential CPU implementation. But to use parallel critical path scheduling we
need to do some extra work in addition to what is required for regular scheduling:

• Firstly, we must select a specific path in the task graph, ideally but not necessarily
one that is likely to be a critical path using regular scheduling. In other words,
we need to specify Vcp in Definition 2. The path is implicitly specified by telling
StarPU when the task is inserted if it is a member of Vcp or not.

• Secondly, for each codelet associated with a task in Vcp, we must provide a parallel
implementation or use a different codelet with a parallel implementation.

• Finally, we must choose the number of reserved cores q. This must be done at the
beginning of the computation.

StarPU’s concept of scheduling contexts is used to implement the two subsets of cores
required for parallel critical path scheduling. The reserved cores belong to one context
and the other cores belong to another context.

scheduling contexts

3 Structured QR Factorization
We applied parallel critical path scheduling using StarPU to a kernel in the Hessenberg-
triangular reduction algorithm presented in [5]. The overall performance of this algorithm
greatly depends on the performance of a kernel which we are about to describe. A detailed
understanding of the full algorithm in [5] is not necessary to follow the discussion below.

A matrix pair (A,B) with A,B ∈ Rn×n is reduced by the algorithm presented in [5]
to Hessenberg-triangular form by an orthogonal equivalence transformation (A,B) 7→
(QTAZ,QTBZ) carried out over n − 2 iterations. Each iteration reduces one column of
A and gives rise to a pair of Householder reflectors: one acting from the left and one
acting from the right. Periodically, after b pairs of reflectors have been accumulated,
the iterations are paused and the reflectors are “absorbed” into the matrix pair. The
iterations then resume with an emptied set of reflectors.

The kernel we describe below is one of the most computationally expensive parts of
this “absorption” process (see [5] for details). We will see that the number of accumulated
reflectors, b, is a parameter of the input together with the dimension of the matrix, n (see
Section 3.2 below). For this reason, we cannot directly compare the execution times for
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different b. However, we can meaningfully compare the pace (time per operation) defined
as P = T/b, where T is the execution time.

Definition 3 (Pace). Let T denote the execution time of the kernel with a block size of
b. Then the pace of the kernel is given by P = T/b. The smaller the number, the faster
the pace. This is analogous to the notion of pace in the context of running: a runner with
a pace of 5 min/km runs faster than one with a pace of 6 min/km.

The pace tells us how long it takes to process one reflector pair. Since we have a total
of n− 2 reflector pairs to process, the pace also tells us how fast we are moving towards
completion of the full algorithm. In particular, a computation which proceeds at a fast
pace, i.e., P = T/b is a small number, makes rapid progress towards the final result. For
example, suppose the block size b1 yields a time of T1 while b2 = 2b1 yields a time in the
range T1 < T2 < 2T1, then the paces P1 and P2 satisfy the inequalities

1
2P1 < P2 < P1.

In other words, the larger block size b2 gives a faster pace than the smaller block size
b1 and should therefore be preferred even though the execution time is longer. In the
analogy of running, a runner doing 1 km in 10 min is clearly slower than a runner doing
2 km in 15 min even though she completes her distance faster.

3.1 An Optimization Problem
Thus far we have considered only a single task graph. In the context of Hessenberg-
triangular reduction we are actually interested in an optimization problem over a finite
set of related task graphs. Fix the matrix dimension n. For each block size b there is an
associated task graph Gb. We seek to find a block size which yields the fastest pace.

We are free to choose, for any given block size b, either regular scheduling or parallel
critical path scheduling with some reservation q. Let Preg(b) denote the pace we get
for block size b with regular scheduling. The fastest pace we can achieve with regular
scheduling is given by

P opt
reg = min

b
Preg(b).

Similarly, let Ppcp(b, q) denote the pace we get for block size b with parallel critical path
scheduling with a reservation of q cores. The fastest past we can achieve with parallel
critical path scheduling is given by

P opt
pcp = min

b,q
Ppcp(b, q).

Can parallel critical path scheduling achieve a faster pace than regular scheduling? In
other words, is the speedup ratio

speedup =
P opt

reg

P opt
pcp

(1)

greater than one? This is the question we seek to understand in this report.
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(a) Initial shape (b) Middle step (c) Final step

Figure 2: (a) Matrix A in upper block Hessenberg form. (b) A step in the middle of
Algorithm 1. (c) The final step of Algorithm 1.

3.2 The Structured QR Factorization Kernel
The kernel we are considering is illustrated in Figure 2 and we refer to it as a structured
QR factorization for reasons that will become clear in a moment. The input is a matrix
A of size n× n in block upper Hessenberg form with blocks of size b× b (see Figure 2a).
Every grid cell in Figure 2 represents one such b×b block. The aim is to reduce A to upper
triangular form by orthogonal transformations from the left, i.e., to implicitly construct
an orthogonal matrix Q such that R = QTA is upper triangular.

Algorithm 1: StructuredQR(A)
1 for j ← 1, 2, . . . , N − 2 do

// Reduce a 2b× b block near the diagonal (red)
2 W,Y,Aj:j+1,j ← factor(Aj:j+1,j);

// Update an off-diagonal horizontal slab (blue)
3 Aj:j+1,j+1:N ← update(W,Y,Aj:j+1,j+1:N );

// Reduce the final 2b× 2b block (red)
4 W,Y,AN−1:N,N−1:N ← factor(AN−1:N,N−1:N );

Algorithm 1 is straightforward. The input matrix A is overwritten by the upper
triangular matrix R = QTA. The matrix Q is not computed explicitly. The number
of block columns is denoted by N = dn/be. The matrix is reduced one block column
at a time from left to right using N − 2 identical iterations and one special case at the
end to take care of the last two block columns. In each iteration, a 2b × b block (red in
Figure 2b) is reduced to upper triangular form by a QR factorization. The columns to
the right (blue in Figure 2b) are subsequently updated by a multiplicative update from
the left with the previously computed orthogonal factor. In the end, the two last block
columns are reduced (red in Figure 2c) to triangular form by a QR factorization without
any subsequent updates.

A product of k reflectors

H1H2 · · ·Hk =
k∏

i=1
(I − τiviv

T
i ), Hi = I − τiviv

T
i

is represented in regular WY form [4]

H1H2 · · ·Hk = I −WY T , W, Y ∈ Rn×k

http://www.nlafet.eu/ 8/21
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for the sake of computational efficiency3. Note that a reflector I − τvvT is essentially
already in WY form simply by taking W = v and Y = τv.

The product of two WY forms can be expressed in WY form as well. Let I −W1Y
T

1
and I−W2Y

T
2 be two WY forms representing the products of k1 ≥ 1 and k2 ≥ 1 reflectors,

respectively. Then their product can again be expressed in WY form as seen by

(I −W1Y
T

1 )(I −W2Y
T

2 ) = I −
[
W1 W2

]
︸ ︷︷ ︸

W

[
(I −W2Y

T
2 )TY1 Y2

]T
︸ ︷︷ ︸

Y T

= I −WY T , (2)

where W and Y have k1 + k2 columns each.

3.2.1 The Update Routine

The update routine (line 3 in Algorithm 1) applies an in-place update of the form

A← (I −WY T )TA,

where A is a general matrix of size m × ` and I −WY T is a WY form with k ≤ m/2
reflectors. The matrices W and Y , produced by the factor routine defined below,
are lower trapezoidal. This shape is exploited by partitioning both W and Y into a
lower triangular submatrix of size k × k on top of a dense submatrix of size (m − k) ×
k. Algorithm 2 provides details. The computation is dominated by calls to the TRMM,
triangular matrix times general matrix, and GEMM, general matrix times general matrix,
level 3 BLAS routines, which can execute with high performance due to cache reuse.

Algorithm 2: A = update(W,Y,A)
1 Partition A, W , and Y as in

A =
[
A1
A2

]
, W =

[
W1
W2

]
, Y =

[
Y1
Y2

]
such that A1, Y1,W1 have k rows;

2 Z ← A1; // Copy
3 Z ←WT

1 Z; // TRMM
4 Z ← Z +WT

2 A2; // GEMM
5 A2 ← A2 − Y2Z; // GEMM
6 Z ← Y1Z; // TRMM
7 A1 ← A1 − Z; return A;

We need both sequential and parallel implementations of the update routine. We
have developed two variations of the parallel implementation. In the column-partitioned
variant we uniformly partition the columns of A into q blocks and assign one block to
each of the q reserved cores. This perfectly parallel scheme is well suited for performing
update tasks along the selected path (see Section 3.3 below). Algorithm 3 shows the
column-partitioned variant of the parallel update.

The row-partitioned variant is suitable when the number of columns is small, which
is the case when updates are performed inside the factor routine. We uniformly par-
tition the rows of A into q blocks and assign one block to each core. Communication
between cores is necessary when computing W TA in parallel. Algorithm 4 shows the
row-partitioned variant of the parallel update.

3Regular WY has a significantly lower arithmetic overhead than compact WY when the size of the
reflectors is not much greater then the number of reflectors.
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Algorithm 3: A = update(W,Y,A) column-partitioned
1 Partition A as A =

[
A1 A2 · · · Aq

]
;

2 foreach i ∈ {1, 2, . . . , q} do // in parallel
3
4 Partition Ai, W , and Y as in

Ai =
[
A1i

A2i

]
, W =

[
W1
W2

]
, Y =

[
Y1
Y2

]
such that A1i, Y1,W1 have k rows;

5 Z ← A1i; // Copy
6 Z ←WT

1 Z; // TRMM
7 Z ← Z +WT

2 A2i; // GEMM
8 A2i ← A2i − Y2Z; // GEMM
9 Z ← Y1Z; // TRMM

10 A1i ← A1i − Z;
11 return A;

Algorithm 4: A = update(W,Y,A) row-partitioned
1 Partition A, W , and Y as in

Ai =


A1
A2
...
Aq

 , W =


W1
W2
...
Wq

 , Y =


Y1
Y2
...
Yq


such that A1, Y1,W1 have k rows;

2 foreach i ∈ {1, 2, . . . , q} do // in parallel
3
4 if i = 1 then
5 Z1 ← A1; // Copy
6 Z1 ←WT

1 Z1; // TRMM

7 else
8 Zi ← Zi +WT

i Ai; // GEMM

9 Barrier(); // synchronize
10 Zi ← Z1 + Z2 + · · ·+ Zq; // ReduceAll
11 if i = 1 then
12 Z1 ← Y1Z1; // TRMM
13 A1 ← A1 − Z1;
14 else
15 Ai ← Ai − YiZ; // GEMM

16 return A;
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3.2.2 The Factor Routine

The factor routine (lines 2 and 4 in Algorithm 1) computes a QR factorization

A = QR = (I −WY T )R

of a matrix A of size m × ` where m ≥ ` and in the process overwrites A by the upper
trapezoidal or triangular matrix R.

Algorithm 5: W,Y,R = factor(A)
1 Let m× ` be the size of A (assuming m ≥ `);
2 if m = ` = 1 then
3 return ([], [], A);
4 k ← min{m− 1, `};
5 if ` = 1 then

// A is a vector
6 Reduce (the vector) A by a reflector I − τvvT ;
7 return (v, τv,A);
8 else

// Split the columns in two halves
9 `1 ← b`/2c;

10 `2 ← `− `1;
// Factor the left half (recursively)

11 W1, Y1, A1:m,1:`1 ← factor(A1:m,1:`1);
// Update the right half

12 A1:m,`1+1:` ← update(W1, Y1, A1:m,`1+1:`);
// Factor the right half (recursively)

13 W2, Y2, A`1+1:m,`1+1:` ← Factor(A`1+1:m,`1+1:`);
14 Pad the tops of W2 and Y2 with `1 rows of zeros;

// Construct the product of the two WY forms
15 (Y1)`1+1:m,1:`1 ← update(W2, Y2, (Y1)`1+1:m,1:`1);
16 return (

[
W1 W2

]
,
[
Y1 Y2

]
, A);

Algorithm 5 recursively over the columns factors A such that the triangular factor R
overwrites A. Both W and Y will be lower trapezoidal/triangular, i.e., they will be zero
above the main diagonal.

The factor routine is parallelized by partitioning the rows of A into q blocks. The
construction of reflectors is serialized. The bulk of the work is in calls to the update
routine for which we use the row-partitioned variant (see Section 3.2.1).

3.3 The Parallel Formulation
The structured QR factorization (Algorithm 1) is straightforward to formulate in terms
of a task graph. Calls to the factor routine translate into a task of “factor” type,
each factoring a 2b × b or 2b × 2b block. Calls to the update routine translate into a
set of independent tasks of “update” type, each updating a 2b× b block. There are data
dependencies from a factor task to every update task within the same iteration. There
are also data dependencies from an update task in one iteration to the task (either an
update or a factor) in the next iteration that affects the same block column. Figure 3
illustrates the task graph for N = n/b = 6. The highlighted path (thick red edges) is the
one that we select for parallel critical path scheduling.
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http://www.nlafet.eu/


NLAFET D6.3: Prototype evaluation

Figure 3: Illustration of the task graph for the structured QR factorization when n/b = 6.

Accelerating the selected path infinitely will reduce the critical path length: the ques-
tion is by how much? Let ωfac and ωupd denote the time per factor and update task,
respectively. If we let the time for each critical task go to zero, then the longest path in
the graph will shrink from

(N − 1)ωfac + (N − 2)ωupd to (N − 2)ωupd.

(The path corresponding to the shorter length includes the right-most column of tasks in
the figure.) The relative change is given by

(N − 1)ωfac + (N − 2)ωupd

(N − 2)ωupd
= 1 + N − 1

N − 2
ωfac

ωupd
≈ 1 + ωfac

ωupd
.

Clearly, even with an infinite acceleration of the selected path, the critical path length
drops by a relatively modest factor.

4 Experimental Analysis
We used StarPU version 1.2.2. Unless otherwise noted, we used the peager scheduler4 for
the critical context and the prio scheduler for the non-critical context5. Priorities were
computed at task insertion time using a formula derived from a critical path heuristic,
i.e., a task is given a priority which is proportional to the number of tasks in the longest
path that originates from the task. All experiments were performed on one compute node
(in exclusive mode) of the Kebnekaise system [3] at HPC2N, Umeå University. One node
consists of 28 Intel Xeon E5-2690v4 cores (spread over 2 sockets) with 128 GB RAM.

4.1 Tools for Data Analysis
We present analyses with the aim of gaining insight into the two scheduling approaches
and how they interact with the pace optimization problem defined in Section 3.1.

Let Gb denote the task graph associated with block size b. Let Treg(b) and Preg(b) =
Treg(b)/b denote the time and pace using regular scheduling, respectively. Similarly, let

4StarPU version 1.2.2 supports two experimental parallel schedulers and peager was the only one
working with our implementation.

5The global view of the task graph encoded in the priorities used by the prio scheduler often leads
to schedules with less idle time compared to other schedulers.
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Tpcp(b, q) and Ppcp(b, q) = Tpcp(b, q)/b denote the time and pace using parallel critical
path scheduling, respectively.

The length of any path in Gb is a lower bound on the execution time and hence
the pace. This applies in particular to the path, Vcp, we select for parallel critical path
scheduling. Formally, we have

Ppcp(b, q) ≥ 1
b

∑
v∈Vcp

ω(v). (3)

We refer to this as the critical path bound. This bound applies also to regular scheduling.
A second limiting factor is the amount of parallel resources available to execute the

non-critical tasks. More precisely, the pace is bounded below by

Ppcp(b, q) ≥ 1
b
· 1
p− q

·
∑

v∈Vnc

ω(v). (4)

We refer to this as the non-critical cost bound. A similar bound applies also to regular
scheduling if we take q = 0 and sum over all tasks.

The non-critical cost bound is somewhat unrealistic as close to perfect load balancing
is not achievable in practice when n/b is small relative to p− q. The structure of the task
graph (see Figure 3) is such that towards the end of the computation, fewer and fewer
tasks can be ready at the same time. Specifically, after having exactly p− q ready tasks
the cores become idle one by one at the start of each factor task. The number of cores
which are idle at the start of each factor task sum to

p−q−1∑
i=1

i = (p− q)(p− q − 1)
2 .

The time that each core is going to be idle between two successive factor tasks is estimated
to be the average time for a critical factor task and a critical update task. Based on this,
we estimate the inherent idling cost by

(p− q)(p− q − 1)
2 · (ωfac + ωupd), (5)

where ωfac is the average time of a (critical) factor task and ωupd is the average time of a
(critical) update task. Using this estimate to augment Eq. (4) we obtain the more realistic
approximate lower bound

Ppcp(b, q) ' 1
b

 1
p− q

·
∑

v∈Vnc

ω(v) + p− q − 1
2 · (ωfac + ωupd)

 . (6)

4.2 Traces
Figure 4a shows the trace for one example where parallel critical scheduling would be
pointless. The sheer volume of non-critical tasks, rather than the length of the critical
path, is limiting the execution time. In general, when n/b is sufficiently large relative to
p − q and q = 1, the non-critical work will dominate. Note how the non-reserved cores
are busy with little idling. The reserved core (top row) runs out of work approximately
one quarter into the execution. There it starts to idle while waiting for the non-reserved
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(a) n = 40000, b = 185, q = 1, execution time: 1908.057 ms

(b) n = 40000, b = 494, q = 1, execution time: 6033.201 ms

(c) n = 20000, b = 834, q = 4, execution time: 3182.128 ms

Figure 4: Traces illustrating a variety of phenomena observed using parallel critical path
scheduling. Each row is one core and time flows left to right. The reserved cores are on
the first q rows. Green is a critical task, white is a non-critical task, red is idling, and
gray is the background.
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cores to complete the task(s) which are stalling the next critical task. The execution time
is close to the non-critical cost bound Eq. (6).

Figure 4b shows the trace for a contrasting example where parallel critical path
scheduling actually could help. Here q = 1 but the ratio n/b is now small relative to
p − q. Note how the reserved core (top row) is executing the critical tasks without any
interruptions. The non-reserved cores, on the other handle, are idling quite a bit towards
the end, due to the task graph’s inherent idling (recall Section 4.1). The execution time
is close to the critical path bound Eq. (3).

Figure 4c shows the trace for an example where parallel critical path scheduling has
been applied and significantly reduced the execution time. The ratio n/b is even smaller
relative to p − q and now q = 4. Note that there are periods of idling between pairs of
critical tasks despite a lack of non-critical tasks. The reason for this is that the selected
path has been accelerated to such an extent that it is not a critical path. However, recall
from the toy example in Figure 1c in Section 1.3 that a reduction in the execution time
by increasing q is still possible.

4.3 Pace as a Function of the Block Size
Figure 5 plots the pace as a function of the block size for a couple of values of n and q and
aims to illustrate some qualitatively different cases. For block sizes b / 100, the overhead
in the runtime system is too severe to be of practical use6.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0  100  200  300  400  500  600  700

Pa
ce

Block size

total
critical

non-critical
idle + non-critical

(a) n = 10000, q = 1
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(c) n = 40000, q = 1
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(d) n = 40000, q = 4

Figure 5: The pace as a function of the block size compared to the bounds from Section 4.1.
6We can tell this by observing that the execution time is far above the nearest bound.
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In Figure 5a, the pace is limited by the critical path for b ' 200. For smaller block
sizes the runtime overhead becomes significant. Parallelizing the critical path improves
the pace for b ' 200, as seen by comparing with Figure 5b. Note also that the inherent
idling cost dramatically decreases as a result of accelerating the critical path.

In Figure 5c, block sizes in the range 150 / b / 300 are large enough to not be
impacted by overhead but also small enough to make the non-critical cost bound Eq. (4)
active. The cost is dominated by the non-critical tasks and the critical path is not a
limiting factor here. Parallel critical path scheduling would thus be useless in this range.
For b ' 300, the critical path starts to dominate the cost and the bound Eq. (3) is
active. Parallelizing the critical path has a significant impact in this range, as is evident
in Figure 5d where q = 4. The non-critical cost bound Eq. (6) has become active.

4.4 Pace Comparison
The central question is how regular scheduling compares with parallel critical path schedul-
ing under optimal conditions, meaning optimally chosen block sizes and number of re-
served cores (recall Section 3.1). Figure 6 shows how the two perform as a function of the
block size b when q is chosen optimally. The initial downward slope is due to the lessening
impact of the runtime system overhead. The curve for regular scheduling eventually in-
creases due to the critical path starting to dominate. The curve for parallel critical path
scheduling stays more flat since the acceleration can counter the increased work on the
critical path.

Figure 7 illustrates the speedup ratio for each block size, defined as

speedup = Preg(b)
min

q∈{0,1,...,4}
Ppcp(b, q) . (7)

This plot shows that speedup can be observed for sufficiently large block sizes. For large
problems (e.g., n = 40000), a larger block size is required before any speedup can be
observed.

The comparisons above use the same block size for both approaches. This is illustrative
but not a proper comparison since we can choose the block size independently for each. A
more appropriate metric is the ratio Eq. (1) from Section 3.1. The observed speedups for
various matrix sizes is summarized in Figure 8. We conclude that parallel critical path
scheduling provides the most speedup for medium-sized problems, and the optimal block
size is larger than for regular scheduling.

5 Discussion
The results and analyses in Section 4 show that parallel critical path scheduling can
improve the pace of the kernel when parameters are chosen optimally. A speedup of up
to 1.4 has been observed for medium-sized matrices.

However, using parallel critical path scheduling is not without cost. Parallel imple-
mentations must be developed for the task types on the selected path, and a strategy for
optimizing the new parameter q must be devised. An important engineering question is
thus: How can I determine ahead of time how much, if any, speedup I can hope to gain
from applying parallel critical path scheduling?
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Figure 6: Comparison of regular scheduling (labeled “q = 0”) with parallel critical path
scheduling with optimally chosen q ∈ {0, 1, 2, 3, 4}. The numbers in the plot indicate the
optimal value of q for the associated block size.
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Figure 7: The speedup of parallel critical path scheduling over regular scheduling on a
block size by block size basis. The five rows of numbers indicate the optimal value of q
for the corresponding block size and matrix size.
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Figure 8: Speedup calculated according to Eq. (1) for a variety of matrix sizes. The
numbers in the rows on top show the optimal values of b for each approach (first two
rows) and the optimal values of q (third row) for parallel critical path scheduling.
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We sketch, by means of an example, a methodology that aims to estimate an answer
to this question. For the kernel described in Section 3, the following procedure can be
used a priori to estimate the maximum speedup achievable through parallel critical path
scheduling.

1. Select a path in the task graph which is thought to be a critical path.

2. Using regular scheduling, run a parameter sweep across a sufficiently wide range of
block sizes b = b1, b2, . . . , bm to capture the characteristic “bowl shape” of the pace
curve (see Figure 5). For each block size bi, record:

• the total execution time Ti,
• the total critical task cost Ccp

i ,
• the total non-critical task cost Cnc

i ,
• the average execution time of a factor task ωfac

i , and
• the average execution time of a critical update task ωupd

i .

3. Based on these measurements we can speculate how the kernel will perform under
parallel critical path scheduling. According to Eq. (3) and Eq. (6), both the length
of the selected path and the non-critical task cost impose bounds which depend
on q. Taking the maximum of these two bounds and generously assuming linear
speedup for the critical tasks, we obtain the following bound:

Ppcp(bi, q) ≥
1
bi

·max
{(

Cnc
i + C id

i

p− q

)
,
Ccp

i

q

}
, (8)

where the inherent idling cost according to Eq. (5) (and linear speedup of tasks) is
estimated by

C id
i = (p− q)(p− q − 1)

2 · ω
fac
i + ωupd

i

q
. (9)

4. The observed pace for regular scheduling is Ti/bi, which includes overheads. The
bound Eq. (8), on the other hand, does not. To compensate for this we estimate the
amount of overhead and add it to the estimate for parallel critical path scheduling.
Specifically, we estimate the overhead by

T oh
i = Ti −max {Ccp

i , (Cnc
i + Ccp

i )/p} , (10)

which is essentially the difference between the observed time Ti and the closest
bound. We then estimate the maximum speedup that we can hope for using parallel
critical path scheduling by

Smax =
min

i
Ti/bi

min
i,q

1
bi

(
max

{
(Cnc

i + C id
i )/(p− q), Ccp

i /q
}

+ T oh
i

) . (11)

Figure 9 compares the speedup estimates calculated via Eq. (11) with the actual
speedups reported in Figure 8. The corresponding optimal values of b and q for each
matrix size are reported in Table 1. Clearly, the speedup estimate is optimistic: in all
cases the speedup is overestimated. For small matrices and after examining the data,
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Figure 9: Speedup estimates using Eq. (11) compared to the measurements in Figure 8.

Table 1: The optimal values of b and q associated with the data in Figure 9.

n 5000 10000 15000 20000 40000
b q b q b q b q b q

Regular 152 0 183 0 152 0 152 0 264 0
Estimated 152 4 220 4 458 4 458 4 458 2
Measured 550 4 381 4 381 4 264 3 458 2

the large gap can be explained by the unrealistic assumption of linear speedup of the
critical tasks. This suggests that if additional information about the parallel speedup of
the critical tasks is available, then the accuracy of the speedup estimates can likely be
greatly improved.
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