
H2020–FETHPC–2014: GA 671633

D6.5
Evaluation of auto-tuning techniques

April 2019

NLAFET D6.5: Self-adaptive routines

Document information

Scheduled delivery 2019-04-30
Actual delivery 2019-04-29
Version 1.0
Responsible partner UMU

Dissemination level

PU — Public

Revision history

Date Editor Status Ver. Changes
2019-04-01 Lars, Mahmoud, Mirko Draft 0.1 First draft
2019-04-25 Lars, Mahmoud, Mirko Final 1.0 Final revision with respect to

comments from reviewers

Author(s)

Lars Karlsson (UMU)
Mahmoud Eljammaly (UMU)
Mirko Myllykoski (UMU)

Internal reviewers

Jan Papez (INRIA)
Srikara Pranesh (UNIMAN)
Pierre Blanchard (UNIMAN)

Contributors

Bo Kågström (UMU)
Angelika Schwarz (UMU)

Copyright

This work is c© by the NLAFET Consortium, 2015–2018. Its duplication is allowed only
for personal, educational, or research uses.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

Table of Contents
1 Introduction 4

2 Case I: Hessenberg Reduction 5
2.1 Self-Adaptive Mechanisms . 6

2.1.1 Mechanism A . 8
2.1.2 Mechanism B . 9

2.2 Experiments . 10

3 Case II: Eigenvector Computation 12
3.1 Self-Adaptive Mechanism . 13

3.1.1 Model fitting . 14
3.1.2 Tile size selection . 15
3.1.3 Initialization . 15

3.2 Experiments . 15

4 Case III: Schur Reduction 18
4.1 A Simple Model of Overlap . 20
4.2 Self-Adaptive Mechanism . 21
4.3 Experiments . 23

5 Conclusion 25

http://www.nlafet.eu/ 2/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

List of Figures
1 Cost profile of Hessenberg reduction. 6
2 Performance profile of GEMM in one Hessenberg iteration. 7
3 Performance profile of GEMM during Hessenberg reduction. 7
4 Self-adaptive mechanism A as a finite state machine. 8
5 Sketch of self-adaptive mechanism A’s search for a block size. 9
6 Performance profiles of GEMM when using mechanisms A and B. 11
7 The block sizes used by mechanisms A and B for the data in Figure 6. . . 11
8 Ratio of total execution time using mechanisms A and B to the best total

execution time. 12
9 Illustration of the task graph for eigenvector computation when n/b = 4. . 12
10 Sketch of where idling can occur during eigenvector computation. 13
11 Comparison between measurement-based costs and model-based costs. . . . 16
12 Observations and models of the pace for update and solve tasks. 16
13 The self-adaptive mechanism’s search for an appropriate tile size. 17
14 Control-flow graph for the QR algorithm with AED (simplified). 18
15 A single iteration of the QR algorithm. 19
16 An illustration of how a sequential AED can form a bottleneck. 19
17 The runtime of the QR algorithm as a function of the parallel AED threshold. 20
18 Contour plot of the speedup bound (14). 21
19 Sketch of how to make self-adaptive decisions in the QR algorithm. 22
20 Control-flow graph for the QR algorithm with AED and self-adaptation. . 23
21 The runtime of the QR algorithm as a function of the parallel AED thresh-

olds. 24

http://www.nlafet.eu/ 3/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

1 Introduction
The Description of Action (DoA) states for deliverable D6.5:

“D6.5: Evaluation of auto-tuning techniques
Report on the effect of applying the novel scheduling and auto-tuning proto-
types to various linear algebra problems.”

This deliverable is in the context of Task 6.1 (Scheduling and Runtime Systems).
Consider the perspective of a user of a parallel numerical linear algebra library de-

veloped by a third party. The performance of a library routine is determined by the
interactions of a multitude of factors, including but not limited to

• the characteristics of the machine,

• the number and configuration of the nodes and cores,

• the characteristics of the problem instances.

The user expects high performance from the library routine, but the library developers
had no knowledge of any of the above when they developed and tuned their code. The
developers are faced with the challenge of developing software which performs well on
unknown hardware, using unknown configurations, when applied to unknown problem
instances.

A common way to tackle the challenge is by making the internals of the routine
configurable from the outside. A number of algorithmic parameters (e.g., tile sizes) are
introduced to control some of the internals of the routine. The parameters are then
configured externally, either manually by the user or in some automated fashion using
offline or online auto-tuning tools. The LAPACK library is one example of a configurable
library. Many of the routines in LAPACK are configurable and the parameter values
are determined by the ILAENV auxiliary function. The library itself does not include an
auto-tuning facility, but in principle a third-party tool can be hooked up to provide such
functionality [7]. A user of LAPACK can also choose to manually tweak this function
to optimize the configuration for the user’s particular environment and types of problem
instances.

A different approach is to make the routine adapt itself at run-time. We here refer to
this as a self-adaptive routine.

Definition 1 (Self-adaptive routine). A self-adaptive routine attempts to continuously
optimize its own performance by making its behavior dependent on measurements of du-
rations and/or on the ordering of events during productive runs of the routine. The
measurements may stem from the current run and/or previous runs.

Integrating a regular offline auto-tuning technique into a routine will make it self-adaptive.
But the definition above allows for adaptive mechanisms which are not so easily expressed
in terms of optimization of parameters. Dynamic scheduling of tasks is an excellent
example of a self-adaptive mechanism. The order in which tasks are scheduled and the
assignment of tasks to threads is indirectly determined by the ordering of task-completion
events in the present run.

In this report, we share some of our experiences trying to add various self-adaptive
mechanisms to routines used in our non-symmetric eigenproblem solvers.

http://www.nlafet.eu/ 4/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

• Case I: Hessenberg reduction
The performance of Hessenberg reduction is dependent on a parameter which sets
a certain block size in the algorithm. We can argue qualitative that an appropri-
ate configuration of this parameter should neither be too small nor too large. But
precisely where the range of good values are depends on the system and its config-
uration as well as the size of the problem. In Section 2, we present a self-adaptive
mechanism which is capable of finding good values without prior training with just
a fraction of a single run.

• Case II: Eigenvector computation
The performance of eigenvector computations given a Schur form is dependent on
the size of a tile. From qualitative arguments we can reason that there is a trade-off
between parallelism, computational efficiency, and idling overhead. Again, where
precisely the range of good tile sizes is depends on the system and the problem
characteristics. In Section 3, we present a self-adaptive mechanism in which the
routine adapts its choice of tile size from one run to the next. The cost of the task
and of the idling overhead are modeled with the aim of capturing the essence of how
they depend on the tile size. The models are fitted to measurements made during
previous runs and drive the adjustment of the tile size prior to the next run.

• Case III: Schur reduction
In reduction to Schur form, one of the subroutines can become a sequential bottle-
neck. The negative impact of this can be reduced by parallelizing the subroutine.
However, parallelization ought to be applied only when it is necessary or else the
additional overhead will only compound the problem. In Section 4, we present a self-
adaptive mechanism which uses run-time modeling of task completion rates and task
execution times to make dynamic decisions on when to parallelize the problematic
subroutine.

These case studies have some things in common. The overheads of the self-adaptive
mechanisms in terms of both space and time are negligible to the point of being trivial.
The mechanisms also rapidly find a range of good values (cases I and II) or learn to make
informed decisions (case III).

2 Case I: Hessenberg Reduction
A general dense matrix A ∈ Rn×n can be reduced to upper Hessenberg form H = QTAQ
using the cache-blocked algorithm first described in [3] and later slightly improved in [4].
In this algorithm, the reduction is carried out by constructing and applying a total of n−2
Householder reflections. Cache-efficiency is obtained by expressing most of the arithmetic
(around 80% of the flops) in terms of level 3 BLAS (mostly GEMM, general matrix times
general matrix) operations by using compact WY representations of products of reflectors.
Almost all of the remaining 20% of the flops are accounted for by n−2 large matrix-vector
multiplications (level 2 BLAS and hence memory-bound). The matrix-vector operations
dominate the execution time even though they account for a minority of the flops. One
can observe in practice that more than 80% of the execution time is due to matrix-vector
multiplications [6].

For our present purpose, we need only a high-level understanding of the structure
of the algorithm. The leading n − 2 columns are partitioned into N column blocks of

http://www.nlafet.eu/ 5/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

width bi ≥ 1, i = 1, 2, . . . , N , such that ∑N
i=1 bi = n− 2. The column blocks are reduced

to the correct shape one by one from left to right. The width of a block is crucial for
performance. If we set it too small then the cache reuse will not be enough to make
the level 3 BLAS operations (mostly GEMMs) efficient. But if we set it too large then the
lower-order arithmetic overheads start to become significant.

The block reduction is performed using multi-threaded kernels. OpenMP is used as a
parallel programming model.

2.1 Self-Adaptive Mechanisms
We use an implementation of the algorithm which has the ability to dynamically choose
bi+1 in the time interval between iterations i and i + 1. We present two self-adaptive
mechanisms which adapt the block size between iterations in one run. These are based
on a few general observations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

10 30 50 100 300 500

Ti
m

e
 i
n
 s

e
co

n
d

s

Block size

Other
GEMM

Figure 1: Illustration of the portion of the total execution time for Hessenberg reduction
attributable to GEMM operations and other operations, respectively. The matrix dimension
is n = 10000.

The first observation. If we choose all block sizes bi to be small but still large enough
to yield an acceptable GEMM performance, then the resulting performance tends to be
acceptable as well. Figure 1 provides support for this observation. We see the portion
of the execution time which is attributable to GEMM operations and other operations,
respectively, for a variety of block sizes. The GEMM portion decreases as the block size
increases but plateaus for b ' 100. This is in the same vicinity where the total execution
time is at a minimum. Increasing the block size even further increases the overhead caused
by other operations and the total execution time increases. As a rule of thumb: the block
size should be set large enough to give good GEMM performance but small enough to not
suffer from overheads in the other operations.

The second observation. In the ith iteration, the GEMM performance tends to increase
and eventually plateau when viewed as a function of the block size bi. Figure 2 provides
support for this observation. We see the GEMM performance in the ith iteration as a
function of the block size bi for i = 1, 2, 4, 8, 16. (The preceding block sizes bj for 1 < j < i
were set to b = 10, any other value will do as long as at iteration i we have at least bi
columns to reduce.). In all cases, the performance increases roughly monotonically and
eventually plateaus. We take advantage of the general shape of the GEMM performance

http://www.nlafet.eu/ 6/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

G
fl
o
p

s

Block size

itr = 1
itr = 2
itr = 4
itr = 8

itr = 16

Figure 2: Illustration of the GEMM performance in the ith iteration of Hessenberg reduction
as a function of the block size. The matrix dimension is n = 10000.

in our self-adaptive mechanisms. Specifically the facts that it increases and eventually
plateaus.

 0

 5

 10

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

G
fl
o
p

s

Column index

20
60

100
140

180
220

260
300

Figure 3: Illustration of how the GEMM performance per iteration varies from one iteration
to the next for a variety of block sizes. The x value (“column index”) is the first column
index of the unreduced part at the start of the iteration. The matrix dimension is n =
10000.

The third observation. There is a strong correlation between how the GEMM performs
in one iteration and how it performs in the next, particularly in the first half of the
iterations. Figure 3 supports this observation by showing how the GEMM performance
per iteration varies from start to finish for a variety of block sizes. We see that the
performance is relatively constant in the first half with a slight upward drift. We use
this observation in our self-adaptive mechanisms to deduce an appropriate value for bi+1
based on measurements obtained in the previous iteration using bi. This gives an ability
to rapidly improve the block size from one iteration to the next rather than from one run
to the next.

The rest of this section describes the two self-adaptive mechanisms and Section 2.2
presents some experimental result.

http://www.nlafet.eu/ 7/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

2.1.1 Mechanism A

Mechanism A initializes b1 randomly and selects block size bi+1 in the time interval between
iterations i and i + 1. The algorithm is essentially a finite state machine with three
states (see Figure 4) and transitions are triggered by comparing measurements of GEMM
performance in the two immediately preceding iterations. The adaptivity is disabled
after half the matrix has been processed, in part motivated by the fact that the third
observation (recall Section 2.1) breaks down close to the end.

S R

M

Figure 4: Self-adaptive mechanism A as a finite state machine.

The search state. The S-state (the “search state”) is the initial state. While in this
state the algorithm rapidly increases the block size in an attempt to find the first instance
of a block size which provides acceptable GEMM performance. The real-valued parameter
α > 1 controls the rate at which the block size is increased. Consider the transition from
iteration i to i + 1. Let gi denote the observed (measured) GEMM performance in the ith
iteration. If i = 1 we have only one prior measurement, so we unconditionally set b2 = αb1
to get a second measurement. Otherwise (i ≥ 2) we have measurements of both gi−1 and
gi and we begin to estimate the rate of change which we define as

ηi =
∣∣∣∣∣gi − gi−1

bi − bi−1

∣∣∣∣∣ . (1)

If ηi < θs, where θs is a real-valued positive parameter close to zero, this indicates a small
(positive or negative) rate of change from bi−1 to bi. We interpret this as an indication
that the two points are in the plateau region of the GEMM performance profile (recall
Figure 2 and the second observation). In this way, the parameter θs indirectly defines the
“plateau”; the smaller the value of θs the more flat the curve must be. The algorithm
transits to the R-state if ηi < θs and sets bi+1 as if the machine transitioned from the
R-state back to the R-state. Otherwise it sets bi+1 = αbi and remains in the S-state.

The refinement state. The R-state (the “refinement state”) aims to slowly reduce the
block size from a known acceptable value to a smaller value which is also acceptable. A
real-valued parameter r > 1 controls the rate of the decrease, which is multiplicative with
scaling factor

β = α−1/r ∈ (0, 1).
The rate of change in the performance is calculated using (1). The algorithm transits to
the M-state if ηi > θr, where θr is a real-valued positive parameter close to zero, and sets

http://www.nlafet.eu/ 8/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

bi+1 = bi−1. Otherwise it sets bi+1 = βbi and remains in the R-state. Noisy measurements
can easily trigger the condition ηi > θr prematurely. To reduce the sensitivity to noise
we actually require the condition to be triggered twice in succession before making a
transition. When the condition is triggered for the first time the algorithm will change
neither the state nor the block size before the next iteration.

The monitoring state. The M-state (the “monitoring state”) aims to keep the block
size fixed as long as there are no reasons to believe that changing the block size can
improve performance. The block size bi+1 is set to bi and the expected performance,
gexp, is estimated by an exponential moving average to account for the upward drift (see
Figure 3 and the third observation). As long as the relative performance difference is
small, i.e., ∣∣∣∣∣gi − gexp

gexp

∣∣∣∣∣ < ε, (2)

for a small and positive real-valued parameter ε, the algorithm remains in the M-state.
Noisy measurements are handled similarly to the R-state. Three consecutive iterations
must violate (2) before the algorithm transits to the S-state.

nBlock size

GE
MM

pe
rfo

rm
an

ce

1

2

3

4

5

6
78

9
10
11

12

Figure 5: Sketch of how mechanism A explores an idealized GEMM performance profile.
The block size is increased in the S-state (blue), decreased in the R-state (orange), and
transits to the M-state after detecting a significant and robust drop in performance (gray).

Figure 5 sketches the behavior of mechanism A. The mechanism starts in the S-state
using a randomly selected value for the first block size. In this state, the mechanism
multiplicatively increases the block size (blue arrows above the performance profile) until
reaching the plateau at iteration 5. The mechanism then transits to the R-state, where
it multiplicatively decreases the block size using short jumps (orange arrows under the
performance profile). At the 10th and 11th iterations (gray arrow under the performance
profile), the mechanism detects that further reduction of the block size degrades the
performance rapidly, so it returns (in the 12th iteration) to the previous block size from
iteration 9 and transits to the M-state.

2.1.2 Mechanism B

Mechanism B is similar to A. We found that mechanism A would get stuck at inappro-
priately small block sizes or use way too large ones after being fooled by an unfortunate
sequence of noisy measurements. The vulnerable parts of mechanism A are the state tran-
sits. Requiring the triggering condition to be violated two or three times in succession

http://www.nlafet.eu/ 9/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

helps alleviate the problem to some extent but not completely. This led us to consider an
alternative mechanism which cannot get stuck and does not explode as readily.

The biggest difference between the two mechanisms is that mechanism B lacks states.
The choice of bi+1 is made on the basis of the (signed) rate of change in performance from
iteration i− 1 to i, defined as

ηi = gi − gi−1

bi − bi−1
.

The algorithm starts with a randomly selected b1 and sets b2 = αb1, where α > 1 is a
real-valued parameter controlling the rate of increase. After iteration i ≥ 2, the algorithm
checks the condition

gi + ηibi
gi

≥ θ, (3)

where θ > 1 is a real-valued parameter close to one.1 If the condition is satisfied, then
the block size is increased to bi+1 = αbi. Otherwise the block size is reduced, since a low
rate of change is indicative of reaching the plateau (see Figure 5).

The scheme we use is actually slightly more elaborate than simply a multiplicative
decrease. Using only multiplicative decreases we discovered a phenomenon where the al-
gorithm would be drawn to very large block sizes due to a sequence of noisy measurements.
The algorithm keeps a partial history of the ` previous measurements/iterations. When
the condition (3) is not satisfied the algorithm looks through its history and picks the
smallest block size bs smaller than bi whose performance gs satisfies gs > γ ·max{gi−1, gi}
where γ < 1 is a real-valued parameter close to one. If such a block size exists, then the
algorithm decreases the block size to bi+1 = bs. Otherwise it decreases the block size to
bi+1 = α−1bi.

2.2 Experiments
We experimentally compared the two mechanisms in Sections 2.1.1 and 2.1.2. We used one
compute node (in exclusive mode) of the Kebnekaise system at HPC2N, Umeå University.
A node contains 28 Intel Xeon E5-2690v4 cores with a total of 128 GB of main memory.
We used one thread per core (and all 28 cores) unless otherwise mentioned.

For mechanism A we set the parameters to α = 1.5, θs = 0.05, θr = 0.035, r =
1.40942084, and ε = 0.02. For mechanism B we set the parameters to α = 1.2, θ = 1.1,
and γ = 0.95.

Figure 6 shows the GEMM performance per iteration for mechanisms A and B (starting
at b1 = 10) compared to the best observed performance for the fixed block sizes

b ∈ {20, 60, 100, 140, 180, 220, 260, 300}.

Both mechanisms are able to quickly (after just a few iterations in one run) locate and stay
at a range of block sizes which give acceptable (close to the best observed) performance.
The block sizes corresponding to the data in Figure 6 are shown in Figure 7.

Figure 8 shows the ratio of total execution time using mechanisms A and B to the
best observed total execution time for the same experiment in Figures 6 and 7. Both
mechanisms in a single run reached total execution time very close (less than 10% slower)
to the best observed time using fixed block sizes.

1The left-hand side is an estimate of the relative improvement in performance obtained by doubling
the block size. The estimate is based on a linear extrapolation using the current performance and the
estimated rate of the change.

http://www.nlafet.eu/ 10/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500 4000

G
fl
o
p

s

Column index

Best
Method A
Method B

(a) n = 4000

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000 6000

G
fl
o
p

s

Column index

Best
Method A
Method B

(b) n = 6000

 0

 5

 10

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000 6000 7000 8000

G
fl
o
p

s

Column index

Best
Method A
Method B

(c) n = 8000

 0

 5

 10

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

G
fl
o
p

s

Column index

Best
Method A
Method B

(d) n = 10000

Figure 6: The GEMM performance per iteration for mechanisms A and B compared to runs
using various fixed block sizes.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500 4000

B
lo

ck
 s

iz
e

Column index

method A method B

(a) n = 4000

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000

B
lo

ck
 s

iz
e

Column index

method A method B

(b) n = 6000

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000 7000 8000

B
lo

ck
 s

iz
e

Column index

method A method B

(c) n = 8000

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
lo

ck
 s

iz
e

Column index

method A method B

(d) n = 10000

Figure 7: The block sizes used by mechanisms A and B for the data in Figure 6.

http://www.nlafet.eu/ 11/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

4000 6000 8000 10000

Ti
m

e
 /

 b
e
st

 t
im

e

Matrix size

Method A
Method B

Figure 8: Ratio of total execution time using mechanisms A and B to the best total
execution time for different problem sizes.

3 Case II: Eigenvector Computation
Consider the task of computing eigenvectors for the last m eigenvalues in a given real
Schur form S = QTAQ of size n× n (a special case of [5]) on a shared-memory system of
p cores. The input consists of S and m and the output is a matrix of size n ×m whose
columns are eigenvectors of S associated with the last m eigenvalues on the diagonal of
S. The algorithm internally partitions S into tiles of size b× b. The tile size is a tunable
parameter set to maximize performance. However, unlike the previous case in Section 2,
the tile size cannot be modified during a run. The routine must therefore adapt itself
from one run to the next.

Backsolve Solve Update

Figure 9: Illustration of the task graph for eigenvector computation when n/b = 4.

The algorithm for computing eigenvectors can be expressed as a task graph Gb which
is dependent on b. Figure 9 illustrates the shape of Gb for n/b = 4. There are three
type of tasks: backsolve (blue pentagon), solve (orange square), and update (green circle).
There is one task per b × b tile in the upper triangular part of S. Thus, a small b
implies a large number of tasks and vice versa. The total arithmetic cost is essentially
independent of b, so if Gb has many tasks they are necessarily also fine-grained. A large tile
size conversely implies a graph with only a few coarse-grained tasks and the resulting low
degree of concurrency will give rise to a significant idling cost. Optimizing the performance
therefore boils down to finding a balance between efficient tasks on the one hand and low
idling cost on the other.

http://www.nlafet.eu/ 12/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

3.1 Self-Adaptive Mechanism
The self-adaptive mechanism we describe below constructs simple models of the task
execution times from which we derive models of two prominent components of the parallel
cost: the total task cost and the idling cost. The models are adapted after each run based
on measurements recorded in all previous runs. The aim of the modeling is to capture
the long-range behavior (e.g., decreasing and then increasing) rather than the short-range
variations (e.g., high-frequency oscillations).

The execution times of tasks of each type are modeled as second-degree polynomial
functions of b. Specifically,

ωbs(b;α0, α1, α2) = α2b
2 + α1b+ α0 models backsolve tasks, (4)

ωs(b; β0, β1, β2) = β2b
2 + β1b+ β0 models solve tasks, and (5)

ωu(b; γ0, γ1, γ2) = γ2b
2 + γ1b+ γ0 models update tasks. (6)

There is only one backsolve task, so its contribution to the cost is negligible. Similarly,
there are only O(N) solve tasks but as many as O(N2) update tasks, where N = n/b.
We therefore ignore also the cost of the solve tasks. We end up modeling the total task
cost by

Ctask(b; γ0, γ1, γ2) = N2 −N
2︸ ︷︷ ︸

of tasks

·ωu(b; γ0, γ1, γ2)︸ ︷︷ ︸
time per task

. (7)

BS U
U
U
U
U
U

S U
U
U
U
U
U

S U
U
U
U
U

S U
U
U
U

S U
U
U

S U
U

S U S

time

Figure 10: Sketch illustrating idling at the beginning and end of eigenvector computation.
The letters identify the task types: backsolve (BS), solve (S), and update (U).

The task graph does not allow for any schedule with zero idling cost. Initially there
is merely one ready task (the backsolve). During its execution, one core will be busy and
the remaining p − 1 cores will idle. Suppose N > p. After completing the backsolve,
N − 1 ≥ p update tasks become ready (see Figure 9). This is sufficient to make all cores
busy immediately after the completion of the backsolve task. This initial phase of the
computation is sketched on the left side of Figure 10.

The path in the graph with the most tasks is of the form

BS(→ U→ S)N−1,

where (x)y is interpreted as “x repeated y times”. Hence, the N backsolve or solve tasks
are indirectly serialized. Immediately after completion of the kth backsolve or solve task,
k = 1, 2, . . . , N , the number of ready tasks is bounded above by

k(N − k). (8)

(In practice, far fewer tasks tend to be ready at this point.) Consider the situation after
completing the kth backsolve or solve task where k = N − p. According to (8) there are

http://www.nlafet.eu/ 13/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

at most p(N−p) ready tasks (all of them are update tasks), of which exactly p tasks were
unlocked by the kth backsolve or solve task. Suppose the p fresh ready tasks are the only
ready tasks at this point and that all cores are presently idle (which is likely the case when
the tile size is large). What remains of the task graph can then be scheduled optimally as
illustrated on the right side of Figure 10. By calculating the area corresponding to idling
we obtain the following model for the idling cost:

Cidle(b; β0, β1, β2, γ0, γ1, γ2) = p(p− 1) · ωs(b; β0, β1, β2) + p(p− 1)
2 · ωu(b; γ0, γ1, γ2). (9)

We stress that this is by no means an accurate model of the true idling cost. The model
does, however, capture that idling cost grows with b and that the amount of idling is
closely related to the execution times for certain types of tasks.

The total cost is modeled as the sum of the task cost (7) and the idling cost (9):

C(b) = Ctask(b) + Cidle(b). (10)

The self-adaptive mechanism can be summarized as follows:

1. Sample a few tile sizes until enough data is available to bootstrap the models.

2. Update the models by fitting them to the available data.

3. Choose a tile size that minimizes Eq. (10) 2 for the next run.

These steps are described in more detail below (in the order 2, 3, 1).

3.1.1 Model fitting

The solve and update tasks are such that their pace (time per elementary operation)
tends to monotonically decrease with b. In other words, these tasks tend to become more
efficient when we increase the tile size. In particular, the pace for an update task is

Pu(b; γ0, γ1, γ2) = ωu(b; γ0, γ1, γ2)
b2 = γ2 + γ1

b
+ γ0

b2 .

(The pace for a solve task is defined analogously.) Non-negativity constraints on γi ensure
that Pu is a non-increasing function with γ2 as the limit when b→∞.

The task models are re-fitted after each run in order to make use of the new mea-
surements. Let sk = (bk, tk), k = 1, 2, . . . , s, denote the sequence of observations made
thus far. For the kth run, bk denotes the tile size used and tk denotes the mean of the
observed update task execution times. Using linear least squares regression, we determine
the parameters γi which minimizes the model error

E(γ0, γ1, γ2) =
s∑

k=1

(
tk
b2
k

− Pu(bk; γ0, γ1, γ2)
)2

subject to non-negativity constraints on γi. (An analogous procedure is used to fit the
model ωs.)

2Minimizing execution time is equivalent to minimizing cost when the number of cores is constant.

http://www.nlafet.eu/ 14/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

Since we have assumed the pace to be non-increasing, we can filter out outliers by
fitting the model only to points on the lower convex hull of the point set

{(bk, tk/b2
k)}sk=1.

The set of observations grows over time. Therefore, any point found to lie above the lower
convex hull will remain above the convex hull forever. We can save space and time by
simply discarding all such points. If the same tile size is sampled several times, then only
the measurements corresponding to the run with the shortest execution time are kept3.

3.1.2 Tile size selection

Refinements of the task models propagate to the task cost model (7), the idling cost model
(9), and ultimately to the full cost model (10). The tile size to use in the next run is
selected as one that minimizes the cost model C(b) rounded to the nearest integer.

3.1.3 Initialization

With three-parameter models we need to sample at least three tile sizes before we have
enough data to create a first fit. These initial samples are randomly chosen from the set

{k ∈ N : m ≤ k ≤ n/p},

where m is the smallest possible tile size and n/p is the largest tile size which affords at
least p tiles in either dimension.

3.2 Experiments
We experimentally evaluated the self-adaptive mechanism on one compute node (in ex-
clusive mode) of the Kebnekaise system (refer back to Section 2.2 for details). We used
OpenMP tasks as a runtime system. OpenMP performs task-based parallelization by
scheduling ready tasks to available cores. We compare two variants of the code: one that
uses the self-adapting mechanism (the adaptive variant) and one that does not (the regu-
lar variant). All kernels in the code are sequential, i.e., performed using a single thread.
We assigned one thread to each core.

To enable vectorization in the code, we round b to the nearest multiple of 4. We also
never allow tile sizes such that b < m because it would give rise to a differently shaped
task graph. We used m = 32 for all experiments. Furthermore, to ensure that all tiles
are of size b × b, we round n up to the nearest multiple of b. We noticed that the first
run tended to be slower than subsequent runs. We therefore repeated each run twice and
recorded measurements only for the fastest of the two.

Figure 11 relates measurement-based costs with model-based costs for n = 30000
(rounded up to the nearest multiple of b). The regular variant was run over a sweep of
tile sizes. For each run, we recorded the total cost (blue solid line), the total task cost
(green solid line) and the mean task execution times per task type. The idling cost cannot
be measured directly (cannot separate idling cost from overhead). We instead estimate
the idling cost for each tile size using the formula (9) with the models ωs and ωu replaced
with the corresponding measured mean task execution times.

3Total execution time is used as a selection criteria to keep the measurements of a single run coherent.

http://www.nlafet.eu/ 15/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

0 200 400 600 800 1000
Tile size

0

2

4

6

8

10

Ti
m

e
in

 se
co

nd
s

Total cost (MSR)
Comp. cost (MSR)
Idle cost (MSR)
Total cost (MOD)
Comp. cost (MOD)
Idle cost (MOD)

Figure 11: Comparison between measurement-based (MSR) costs and model-based
(MOD) costs for n = 30000 (rounded up to the nearest multiple of b).

The adaptive variant was run a total of 3 + 10 times. The final models of task cost,
idling cost, and total cost are shown as dashed lines in Figure 11. The task cost model is
able to capture the long-range behavior fairly well. The small variations observed in the
data are effectively filtered out by the model. The full cost model has a large absolute
error, mostly because it does not account for all components of the cost. On the other
hand, the model captures the overall shape of the total cost and most importantly it
accurately locates the good tile sizes.

Figure 12 shows all observed points (bk, tk/b2
k) for the solve and update tasks in the

adaptive variant, the lower convex hulls, and the corresponding models (5) and (6) (con-
verted from time to pace). The matrix sizes were n = 40000 rounded up to the nearest
multiple of b.

0 200 400 600 800 1000 1200 1400
Tile size

0

1

2

3

4

5

6

7

Pa
ce

1e 9
Above the hull
On the hull
Model

(a) Update tasks.

0 200 400 600 800 1000 1200 1400
Tile size

0

1

2

3

4

5

6

Pa
ce

1e 8
Above the hull
On the hull
Model

(b) Solve tasks.

Figure 12: The observed and modeled paces for the update and solve tasks for matrices
of size n = 40000 rounded up to the nearest multiple of b. The observations (bk, tk/b2

k) are
shown together with the lower convex hulls and the corresponding task execution time
model (converted from time to pace).

http://www.nlafet.eu/ 16/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

100 200 300 400 500 600 700
Tile size

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ti
m

e
in

 se
co

nd
s

1
2

3
45678

1

2

3
45678

1

2
3

4
567

8

Total time
Repetition 1
Repetition 2
Repetition 3

(a) n = 20000

0 200 400 600 800 1000
Tile size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ti
m

e
in

 se
co

nd
s

1

2

3

4 5678
1

2

3

45678

1

2

3

4567
8

Total time
Repetition 1
Repetition 2
Repetition 3

(b) n = 30000

0 200 400 600 800 1000 1200 1400
Tile size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
in

 se
co

nd
s

1

23

4 5678

1

2

3

4
56781 2

3 45678

Total time
Repetition 1
Repetition 2
Repetition 3

(c) n = 40000

Figure 13: Results of the self-adaptive mechanisms’ search for an appropriate tile size.
Each figure shows a different matrix size (rounded up to the nearest multiple of b) and
contains three repetitions (different initialization points). There are a total of 3+5 points
per repetition.

http://www.nlafet.eu/ 17/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

Figure 13 shows how the adaptive variant searches for an appropriate tile size. For each
matrix size, the progression of the search for three repetitions (with different initial points)
are shown. The total execution time of the regular variant is included for comparison (solid
line). The mechanism very quickly (immediately after the random initialization) locates
and then remains at acceptable tile sizes.

4 Case III: Schur Reduction
All eigenvalues of a matrix A ∈ Rn×n can be computed by a reduction to real Schur form
via an intermediate Hessenberg form. Specifically, one first reduces A to upper Hessenberg
form H = QT

1AQ1 by an orthogonal similarity transformation. Then one applies the
small-bulge multi-shift QR algorithm with aggressive early deflation (AED) [1, 2] to H to
obtain a real Schur form S = QT

2HQ2 with 1× 1 and 2× 2 blocks on the main diagonal.
The QR algorithm with AED has two computationally expensive components: aggressive
early deflation and bulge chasing.

Sequential AED

Bulge chasing

1

2

34

5

Figure 14: Simplified control-flow graph for the QR algorithm with AED. 1) The algo-
rithm starts with AED. 2) AED can be followed by another AED, typically when many
eigenvalues were deflated. 3) AED generates shifts for a subsequent bulge chasing. 4)
Bulge chasing is followed by AED. 5) The algorithm terminates after AED deflates all
remaining eigenvalues.

Figure 14 shows a simplified control-flow graph for the QR algorithm with AED.
The algorithm starts with AED, which may detect and deflate zero or more converged
eigenvalues. The algorithm terminates if the AED deflates the problem down to nothing.
Otherwise the algorithm chooses to either perform another AED or one round of bulge
chasing. (This decision is typically made on the basis of how many eigenvalues were
deflated.) Bulge chasing is always followed by AED.

Figure 15 illustrates a typical iteration of the QR algorithm with AED. AED is per-
formed on a trailing principal submatrix referred to as the AED window. The submatrix
inside the window is reduced to Schur form by a recursive application of the QR algorithm
with AED. When the corresponding transformation is applied to the whole matrix, a spike
emerges immediately to the left of the AED window (by engaging a non-zero subdiagonal
entry from the left). If the last element of the spike is sufficiently small, then it can be
truncated to zero, which deflates the problem into a smaller one. Otherwise, the corre-
sponding eigenvalue candidate is not considered converged and is moved out of the way.

http://www.nlafet.eu/ 18/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

Figure 15: Illustration of one iteration of the QR algorithm with AED. Left: The Hessen-
berg matrixH. Middle: The AED window and its associated spike. Converged eigenvalues
shown in green and failed eigenvalue candidates (potential shifts) shown in red. Right:
Bulge chasing of six bulges spread over two bulge-chasing windows.

After systematically checking and reordering all eigenvalue candidates in the AED win-
dow, we will have identified zero or more converged eigenvalues (green) and zero or more
potential shifts for bulge chasing (red). The spike is finally eliminated by a Hessenberg
reduction.

Figure 16: Illustration of why AED is sometimes a bottleneck (bottom) and other times
not a bottleneck (top) in a task-based implementation of the QR algorithm. Time flows
along the horizontal axes and the number of tasks known to the runtime system is on
the vertical axes. The time intervals during which a (sequential) AED is performed are
shaded green. Top: There are enough tasks available during all AEDs to keep the other
cores busy. Bottom: The number of available tasks falls below the level required to keep
all cores busy.

If performed sequentially, AED can quickly limit the strong scalability of the algorithm
as illustrated in Figure 16. Each AED is followed by a sudden spike in the number of
tasks (vertical axes) due to the rapid insertion of bulge-chasing tasks. The next AED
transitively depends only on a subset of the bulge-chasing tasks. Therefore, an AED task
can run on one core while the rest of the cores are still busy with bulge-chasing tasks. If
no core runs out of (bulge-chasing) tasks during AED, then AED is not hampering the
performance (at least not locally). This case is sketched in Figure 16 (top). Otherwise,
one ore more cores will become idle due to a lack of bulge-chasing tasks during AED; see
Figure 16 (bottom).

http://www.nlafet.eu/ 19/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

 10

 15

 20

 25

 30

 35

 40

 100 200 300 400 500 600 700 800

R
u
n
ti

m
e
 [

s]

Parallel AED threshold

4 cores
20 cores

(a) n = 8000

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 100 200 300 400 500 600 700 800 900 1000

R
u
n
ti

m
e
 [

s]

Parallel AED threshold

4 cores
20 cores

(b) n = 10000

Figure 17: The runtime of the QR algorithm as a function of the parallel AED threshold.

Note that AED can itself be parallelized. But when does it make sense to run AED in
parallel? The answer is simple if we do not allow bulge chasing and AED to overlap. In
this case, any speedup of AED directly translates into speedup of the whole algorithm, so
AED should run in parallel if and only if it can be done with some speedup. The question
gets more complicated as soon as we allow overlap. A naive implementation would impose
a parallel AED threshold that defines when an AED is large enough to perform in parallel.
Only AEDs with a window size above the threshold would be processed in parallel. As
shown in Figure 17, the tricky part is to find a single threshold that would work with a
large range of matrix sizes and CPU core counts. The optimal threshold is different for
four cores compared to 20 cores. In addition, the behavior changes with the problem size.

In order to understand what is happening, suppose the overlap is complete, i.e., no
idling during AED. In this situation, running AED in parallel would likely be unwise since
it will add overhead to the total cost without any gain (at least not locally). On the other
hand, if there is zero overlap or only a partial overlap, then running AED in parallel would
likely improve performance (at least locally) by reducing the idling overhead. We present
in Section 4.2 and evaluate in Section 4.3 a self-adaptive mechanism which dynamically
decides when to run AED in parallel by trying to answer the question: “Will the overlap
of the next AED be partial?”

4.1 A Simple Model of Overlap
A simple model helps us gain insight into how the critical path and the amount of overlap
combine to limit the potential speedup. Consider a fixed task graph for the QR algorithm
with AED. Let C denote the total computational cost of this graph. Some portion,
αC where α ∈ (0, 1], of the cost is on the critical path. Assuming that all tasks run
sequentially, then the parallel execution time is bounded below by

Tp ≥ αC. (11)

Consider the union of all time intervals in which a critical task is being executed. At any
moment there are p − 1 cores who are not executing a critical task. The corresponding
cost is α(p−1)C. Some portion, αβ(p−1)C where β ∈ [0, 1], of this cost is accounted for
by computation. The rest, α(1 − β)(p − 1)C, is idling cost. The parallel execution time

http://www.nlafet.eu/ 20/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

is therefore bounded below also by

Tp ≥ (1 + α(1− β)(p− 1)) · C
p
. (12)

Combining (11) and (12) we get

Tp ≥ max{αp, 1 + α(1− β)(p− 1)}︸ ︷︷ ︸
γα,β,p

·C
p

= γα,β,p ·
C

p
. (13)

Note that C/p is the ideal execution time corresponding to zero overhead and γα,β,p ≥ 1
measures how far from the ideal case the lower bounds are. As a consequence of (13), the
parallel speedup will be bounded above by

Sp = C

Tp
≤ p

γα,β,p
. (14)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

alpha

be
ta

6

8

10

12

14

16

18

Figure 18: Contours of p/γα,β,p from the speedup bound (14) for p = 20. The thick black
curve demarcates the boundary between the two cases generated by the max in (13).

Figure 18 illustrates the bound (14) as a function of α and β for p = 20. The thick
black curve demarcates the boundary between the two cases of the max in (13). The
critical path is the limiting factor above the curve, and computational cost and lack of
overlap are the limiting factors below.

Suppose AED and bulge chasing do not overlap at all. This situation corresponds to β
being small since AED typically accounts for the majority of the cost of the critical path.
According to Figure 18, the speedup will be sensitive to the relative cost of the critical
path (represented by α).

4.2 Self-Adaptive Mechanism
Since the bulge-chasing tasks are similar to one another we expect them to have roughly
the same execution times. As a consequence, the task pool will deplete at a rate propor-
tional to the number of tasks executed at the same time (which is p or less). As long

http://www.nlafet.eu/ 21/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

as the number of ready tasks is greater than or equal to p, the size of the task pool will
decrease at a constant rate. When the task pool begins to dry up, fewer and fewer tasks
will be able to run concurrently and as a result the size of the task pool will start to
decrease at a slower rate.

Decision point Predicted exhaustion
of the task pool

Measurements

Potential sequential
AED

Figure 19: An illustration of how the performance models can be used to make adaptive
task insertion decisions. The vertical axis shows the total number of inserted task and
the horizontal axis shows the elapsed real time. An already executed sequential AED is
illustrated with green shading. The red dashes show the predicted slope of the graph.
The left illustration models a situation where the sequential AED is predicted to finish
before the task pool has been exhausted. The right illustration models a situation where
the sequential AED is predicted to finish after the task pool has been exhausted.

Our self-adaptive mechanism makes good use of the observation that the number
of tasks in the task pool as a function of time can be well approximated by a linear
model. Due to this we only need two adequately spaced samples to accurately estimate
the parameters of the linear model. The idea is illustrated in Figure 19. We start by
recording the number of tasks (and the time) immediately after inserting all the bulge-
chasing tasks. We then again record the number of tasks immediately before starting
an AED. We draw a line through these two points and extrapolate to find the point in
time, tdep, when the task pool is expected to be depleted. Let taed denote the point in
time when the next AED is estimated to complete if it is executed sequentially. We use
StarPU’s performance modeling capability to estimate the execution time of a sequential
AED based on a performance model that StarPU calibrates at run-time. The model for
the AED tasks is of the form anb, where a and b are parameters estimated by StarPU
and n is the size of the AED window. The self-adaptive mechanism dynamically decides
to run the next AED in parallel if taed < tdep. Otherwise it will run sequentially.

This adaptive approach is indented to be used in situations where it is unclear whether
parallel AED is beneficial. In its current form, the implementation will perform a sequen-
tial AED if the performance model is not calibrate well enough for a given AED size.
The acquired data point is then used to calibrate the model. If the AED window size is
1000, then parallel AED is likely to be faster but the first few sequential AEDs are not
going to matter that much in the long run since the performance model will gradually
calibrate itself. However, a few sequential AEDs of the size 5000 are virtually guaranteed
to destroy the performance. Furthermore, if the AED window is very small, then the
StarPU overhead is going to dominate the execution time on any machine. Thus, the
self-adaptive mechanism is only activated when the AED window size w is within a cer-

http://www.nlafet.eu/ 22/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

tain interval wlo ≤ w ≤ wup defined by a lower parallel AED threshold wlo and an upper
parallel AED threshold wup. AEDs with a window size smaller than wlo are processed
sequentially. Those whose window size is larger than wup are processed in parallel. Note
that since AED is recursive (by invoking the QR algorithm with AED), the self-adaptive
mechanism can be used inside a recursive call even for large problems.

Self-adaptive mechanism

Sequential AED Parallel AED

Bulge chasing

1

2a 2b

4

3 6

5

Figure 20: Simplified control-flow graph for the QR algorithm with a self-adaptive mech-
anism which decides when to use sequential or parallel AED. 1) The algorithm starts
with AED. 2) A decision is made to use either sequential or parallel AED. 3) AED can
be followed by AED. 4) AED can generate shifts to a subsequent bulge chasing. 5) Bulge
chasing is followed by AED. 6) The algorithm terminates after AED deflates all remaining
eigenvalues.

Figure 20 shows a simplified control-flow graph for the QR algorithm with AED and
our self-adaptive mechanism. The self-adaptive mechanism chooses between sequential
(2a) and parallel (2b) AED. Regardless of the choice, AED is followed by another AED,
by bulge chasing, or by termination.

4.3 Experiments
We evaluated the self-adaptive mechanism through experiments whose results are sum-
marized in Figure 21. Each of the 15 heat maps shows the runtime of the QR algorithm as
a function of the lower/upper parallel AED thresholds wlo and wup. Recall that the self-
adaptive mechanism is applied only for AEDs with a window size between these thresholds.
The diagonals correspond to fixed thresholds with the self-adaptive mechanism turned off
(see also Figure 17).

We draw two conclusions from this data. Firstly, if we use a fixed threshold (which
corresponds to the diagonals in the heat maps), then the optimal value of the threshold
depends on both the problem size and the core count. Secondly, optimal or close to
optimal runtimes are obtained using the self-adaptive mechanism with a lower threshold
of wlo = 300 and an upper threshold which is effective “infinite”. It should be noted that

http://www.nlafet.eu/ 23/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

100

200

300

400

100 200 300 400
 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 7.4

(a) n = 4000, p = 4

100

200

300

400

100 200 300 400
 3.95

 4

 4.05

 4.1

 4.15

 4.2

 4.25

 4.3

(b) n = 4000, p = 12

100

200

300

400

100 200 300 400
 3.65

 3.7

 3.75

 3.8

 3.85

 3.9

 3.95

(c) n = 4000, p = 20
100

200

300

400

500

600

100 200 300 400 500 600
 16

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

(d) n = 6000, p = 4

100

200

300

400

500

600

100 200 300 400 500 600
 8.5

 9

 9.5

 10

 10.5

 11

(e) n = 6000, p = 12

100

200

300

400

500

600

100 200 300 400 500 600
 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

(f) n = 6000, p = 20
100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800
 31

 32

 33

 34

 35

 36

 37

 38

(g) n = 8000, p = 4

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800
 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

(h) n = 8000, p = 12

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800
 12

 14

 16

 18

 20

 22

 24

(i) n = 8000, p = 20
100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600 700 800 900 1000
 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

(j) n = 10000, p = 4

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600 700 800 900 1000
 24

 26

 28

 30

 32

 34

 36

 38

 40

(k) n = 10000, p = 12

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600 700 800 900 1000
 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

(l) n = 10000, p = 20
100

200

300

400

500

600

700

800

900

1000

1100

1200

100 200 300 400 500 600 700 800 900 1000 1100 1200
 90

 92

 94

 96

 98

 100

 102

 104

 106

(m) n = 12000, p = 4

100

200

300

400

500

600

700

800

900

1000

1100

1200

100 200 300 400 500 600 700 800 900 1000 1100 1200
 35

 40

 45

 50

 55

 60

 65

(n) n = 12000, p = 12

100

200

300

400

500

600

700

800

900

1000

1100

1200

100 200 300 400 500 600 700 800 900 1000 1100 1200
 25

 30

 35

 40

 45

 50

 55

 60

(o) n = 12000, p = 20

Figure 21: The runtime of the QR algorithm as a function of the lower (horizontal axes)
and upper (vertical axes) parallel AED thresholds. The color indicates the runtime in
seconds. (Notice that the scales differ between panels.)

http://www.nlafet.eu/ 24/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

these experiments were performed under conditions where the performance models were
given best possible change to calibrate themselves properly and the predictions could thus
be expected to be quite accurate. If the performance models are not as well calibrated,
then unsuccessful predictions are more likely to happen and this could be very costly with
larger AED windows. In addition, the sequential implementation does not perform well
with larger AED windows due to cache reuse related reasons. Thus, the upper threshold
should still be imposed in practise.

5 Conclusion
We explored a variety of mechanisms that make parallel numerical linear algebra routines
self-adaptive in the sense that they dynamically optimize their own performance during
one run and/or from one run to the next. The advantages from a user’s perspective are
clear: less need to manually configure the software and less need to allocate computational
resources to just-in-case offline tuning.

We presented three case studies from various components of our non-symmetric eigen-
value problem solvers. In Case I we used a rule of thumb together with a general ob-
servation about the shape of the performance profile of GEMM to derive a self-adaptive
mechanism. Experimental results showed that this mechanism was capable of locating,
within a fraction of a single run, a range of decent values for an important algorithmic
block size parameter.

In Case II we constructed a self-adaptive mechanism which addresses a delicate trade-
off between computational efficiency and idling overhead by crudely modeling two impor-
tant components of the parallel cost. Even though the resulting model does not accurately
estimate the true cost, it is nevertheless good enough to accurately and robustly locate a
range of tile sizes with decent overall performance. In this case, the adaptation was from
one run to the next. Experimental results showed that good tile sizes could be found after
just a handful of runs.

In Case III we added self-adaptivity by making a previously static decision dynamic.
A certain task was at risk of becoming a sequential bottleneck unless it was parallelized.
We modeled the rate at which tasks were executed and estimated the execution time of
an upcoming task to dynamically decide when to parallelize a critical task. Experimental
results show that the self-adaptive mechanism in many cases yields optimal or close to
optimal runtimes, thus removing the need for choosing a single threshold. In addition,
even in the worst cases the adaptive approach does not ruin the performance.

At first glance, it may appear as if we have merely replaced the problem of setting
one set of parameters with the problem of setting a different set of parameters. But this
ignores a subtle but very important difference in the character of these parameters. The
original parameters determine the performance which we are trying to optimize. The new
parameters, however, influence some aspects of the adaptive mechanism. For example,
how fast it adapts. Concrete values must be chosen for the new parameters, but there
is no need to optimize them. Therein lies the primary distinction. Regardless of how
the new parameters are set, we will end up with an adaptive scheme. We could have
eliminated the new parameters altogether by simply picking some concrete values, but we
chose instead to make the design choices explicit.

In conclusion, there appears to be many diverse and effective low-cost mechanisms for
adding self-adaptivity to parallel numerical linear algebra routines. The final performance
may not be as good as what can be achieved through more rigorous approaches such as

http://www.nlafet.eu/ 25/26

http://www.nlafet.eu/

NLAFET D6.5: Self-adaptive routines

offline tuning. But considering the robustness, ease-of-use, and negligible run-time over-
head that appear to be within reach with these types of approaches, getting only decent
instead of near-optimal performance might be a fair price to pay. Despite the potential
of self-adaptive mechanisms demonstrated in this report, it is hard to find literature on
the subject.

Acknowledgements
We thank the High Performance Computing Center North (HPC2N) at Umeå University,
which is part of the Swedish National Infrastructure for Computing (SNIC), for providing
computational resources and valuable support.

References
[1] K. Braman, R. Byers, and R. Mathias. The Multishift QR Algorithm. Part I: Main-

taining Well-Focused Shifts and Level 3 Performance. SIAM J. Matrix Anal. Appl.,
23(4):929–947, 2002.

[2] K. Braman, R. Byers, and R. Mathias. The Multishift QR Algorithm. Part II: Ag-
gressive Early Deflation. SIAM J. Matrix Anal. Appl., 23(4):948–973, 2002.

[3] J. Dongarra, D. Sorensen, and S. Hammarling. Block reduction of matrices to con-
densed forms for eigenvalue computations. Journal of Computational and Applied
Mathematics, 27(1-2):215–227, 1989.

[4] G. Quintana-Ortí and R. van de Geijn. Improving the performance of reduction to
hessenberg form. ACM Transactions on Mathematical Software, 32(2):180–194, 2006.

[5] A. Schwarz and L. Karlsson. Scalable Eigenvector Computation for the Non-
Symmetric Eigenvalue Problem. Submitted (under review), 2019.

[6] S. Tomov, R. Nath, and J. Dongarra. Accelerating the reduction to upper Hessen-
berg, tridiagonal,and bidiagonal forms through hybrid GPU-based computing. Parallel
Computing, 36(12):645–654, 2010.

[7] R. C. Whaley. Empirically tuning LAPACK’s blocking factor for increased perfor-
mance. In 2008 International Multiconference on Computer Science and Information
Technology, pages 303–310. IEEE, 2008.

http://www.nlafet.eu/ 26/26

http://www.nlafet.eu/

	Introduction
	Case I: Hessenberg Reduction
	Self-Adaptive Mechanisms
	Mechanism A
	Mechanism B

	Experiments

	Case II: Eigenvector Computation
	Self-Adaptive Mechanism
	Model fitting
	Tile size selection
	Initialization

	Experiments

	Case III: Schur Reduction
	A Simple Model of Overlap
	Self-Adaptive Mechanism
	Experiments

	Conclusion

