Parallel Numerical Linear Algebra
for Future Extreme Scale Systems

H2020-FETHPC-2014: GA 671633

D6.7

Prototypes for tiled one-sided factorizations
with algorithm-based fault tolerance

April 2019

NLAFET D6.7: ABFT prototypes

DOCUMENT INFORMATION

Scheduled delivery 2019-04-30
Actual delivery 2019-04-29
Version 2.0

Responsible partner UNIMAN

DISSEMINATION LEVEL

PU — Public

REVISION HISTORY

date Name
2019-04-02 | David Stevens | Draft 0.1 Initial version of document produced.
2019-04-16 | David Stevens | Draft 1.0 Revised version.

2019-04-17 | David Stevens | Draft 1.1 Version to address review comments
2019-04-25 | David Stevens | Final 2.0 Final version for submission

AUTHOR(S)

Jack Dongarra (UNIMAN)
David Stevens (UNIMAN)
Mawussi Zounon (UNIMAN)

INTERNAL REVIEWERS

Carl Christian Kjelgaard Mikkelsen (UMU)
Jan Papez (INRIA)

CONTRIBUTORS

George Bosilca (ICL)

COPYRIGHT

This work is (©by the NLAFET Consortium, 2015-2019. Its duplication is allowed only
for personal, educational, or research uses.

ACKNOWLEDGEMENTS

This project has received funding from the Furopean Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 1/9

NLAFET D6.7: ABFT prototypes

Table of Contents

1 Introduction 3
2 Implementation 4
3 Software compilation 6
3.1 Requirements 6
3.2 Compilationo 6
3.3 Usage 7
4 Results and Testing 7
5 Conclusion 8

List of Figures

1 Augmentation of the tile-based matrix with a two-line checksum.)
2 Performance on 1 Broadwell node 7
3 Memory overhead on 1 Broadwell node 8
4 Strong scaling test up to 9 nodeso 9

http://www.nlafet.eu/ 2/9

NLAFET D6.7: ABFT prototypes

1 Introduction
The Description of Action document states for deliverable D6.7:

“D6.7 Prototypes for tiled one-sided factorizations with algorithm-based fault
tolerance

Prototype software for the Cholesky, LU, and QR factorizations with algorithm-
based fault tolerance described in D6.6.”

This deliverable is in the context of Task 6.3 and demonstrates a prototype for the
algorithm-based fault tolerance (ABFT') techniques that have been described in the NLA-
FET deliverable D6.6 Algorithm-based fault tolerance techniques. Fault tolerance methods
aim to provide a mechanism for detecting and correcting errors, such as memory bit-flips,
data corruption, or intermittant hardware faults that can be expected to occur during
large-scale linear algebra computations [4]. The increasing parallelism of modern HPC
architectures inevitably leads to an increase in the frequency of such errors [1]. This is
illustrated by results in Table 1, where the mean time between failures (MTBF) can be
seen to decrease with as the number of computing cores grows. The scale of HPC systems
continues to experience rapid growth; for example the Summit system has almost 2.4
million cores, and mean time to failure on systems of this size can be expected to reduce
further. Therefore, in order to enable numerical simulation to produce a correct output,
efficient algorithms and strategies for the detection and correction of faults are required.
ABFT algorithms are a direct response to mitigate the high fault rates anticipated on
large-scale HPC systems, as they exploit algorithmic information in order to minimise the
computational cost of detecting and correcting such errors within parallel systems.

Table 1: Overall fault rate on different HPC systems from studies by Gupta et al [3].

System Best rank Cores MTBF (hours)
Jaguar XK6 1st (2009 & 2010) 298,592 8.93
Jaguar XT4 6th (2008) 31,328 36.91
Jaguar XT5 2nd (2008 & 2009) 150,152 22.67
EOS 263th (2015) 12,800 189.04
Titan Ist (2012) 560,640 14.51

For a given matrix A, one-sided matrix factorisations such as Cholesky factorisation
(A= LLT), QR factorisation (A = QR), LU factorisation (A = LU) are the innermost
kernels for solving systems of linear equations Ax = b. These algorithms are time consu-
ming, and therefore can be considered more likely to experience faults. We explain how
ABFT strategies can be exploited to design resilient matrix factorisation algorithms. For
the sake of generality and simplicity, we will consider A = ZU to represent a one-sided
matrix factorisation, where Z is the left matrix and U is an upper triangular matrix. It is
also beneficial to consider a one-sided factorisation as recursively applying Z; to the ini-
tial matrix A from the left until Z;Z;_; ... ZyA becomes upper triangular. In our ABFT
implementation we augment the matrix using a two-line checksum in order to identify
and correct faults (see Section 2 for more detail). The following theorem then becomes
the key ingredient behind the success of ABFT strategies for matrix operations.

http://www.nlafet.eu/ 3/9

NLAFET D6.7: ABFT prototypes

Theorem 1.1. Checksum relationship established before ZU factorisation is maintained
during and after factorisation.

Proof. For a given matrix A € R"*", let A = ZU denote its one-sided factorisation, where
Z € R™" and U is an upper triangular matrix. We denote A. = [A, A] € R the
original matrix augmented by the row-wise checksum matrix A € R™7, where ~ is the
width of the checksum. In the ABFT algorithm, the factorisation operations are applied
to the matrix A.. If we rewrite U as Z,Z,_1...ZyA = U, it follows that Vi € [1, n]

ZiZifl ce e Z()AC = ZiZifl e Zo[A, Z] (1)
== [ZiZifl oo ZoA, Znanl ‘e ZQZ] (2)
=[U, T). (3)

Since Z;Z;_1 ... Zy is a linear operation, the initial relation between the input matrix A
and the corresponding matrix A is still preserved in U, and U can be considered as the
checksum matrix of U. Consequently, at each iteration 7 of the factorisation, the factor
U’ has its corresponding checksum matrix U that can be used to regenerate any lost
portion of U’. The theorem remains valid in the special case of LU factorisation, so long
as each row permutation operation is applied to both the main matrix and the checksum
matrix. O

As introduced above, a one-sided matrix factorisation, A = ZU, produces two matri-
ces, the left factor Z, and the right factor U. The generic ABFT strategy, described above,
protects only U since U results from linear transformation of the initial matrix A, while
the left factor Z remains vulnerable to faults. In the special case of Cholesky factorisa-
tion (A = LL™), where only one factor (L) is required, ABFT techniques are sufficient to
design a fully resilient factorisation algorithm. However, in the case of QR factorisation,
(@ cannot be protected by ABFT algorithms since the matrix () is not recursively built by
applying linear operator; i.e., Q™! does not result from a linear transformation of Q°. The
same is true for the left factor L from LU factorisation. Other fault tolerance strategies
are required to design a fully resilient QR and LU solvers. Consequently, this deliverable
focuses on Cholesky factorisation to demonstrate the potential of ABFT algorithms.

The ABFT prototype software described here uses the PaARSEC framework [2]. The
performance of the ABFT approach is demonstrated here using Cholesky factorisation,
with a dual-checksum approach, allowing the location of faults to be identified and cor-
rected efficiently.

The structure of this report is as follows: The implementation of the ABFT technique
is outlined in Section 2, with instructions for compiling the software described in Section 3.
Section 4 provides performance results for the ABFT code in both shared- and distributed-
memory environments, followed by concluding remarks in Section 5.

2 Implementation

The ABFT implementation used here operates on a matrix that is partitioned in a tile-
based format, and affixes two checksums to each tile (see Figure 1). This tile-based
checksum approach allows independent tasks, which operate on individual tiles, to identify
and correct faults without the need to access the global matrix. In this way fault correction
can be contained within a single task, eliminating the risk of a fault infecting the global
solution, and minimising the computational cost of correction.

http://www.nlafet.eu/ 4/9

NLAFET D6.7: ABFT prototypes

. . . . -
I Checksum

Original Tile-Matrix Augmented Form

Figure 1: Augmentation of the tile-based matrix with a two-line checksum.

The checksums that augment the matrix are defined as follows:
cp =el A, with e; = (1,1,..., 1) (4)

co = ey A, with ey =(1,2,...,nb)" (5)

where nb is the tile size and A represents the corresponding matrix tile. To demonstrate
the detection and correction procedure we consider an error of magnitude v at position
(,7) in the matrix tile, i.e.

a’;,j = Q;; +7 (6)

The faulty column may be determined by considering checksum ¢;. Column j is faulty if
ar =3 ar;—(er); #0 (7)
k=1

i.e. ay = . The faulty row is then identified using checksum ¢y, by considering:
Qg = Z k‘ akJ — (Cg)j = ’I:CYl (8)
k=1

A row i where this does not hold is therefore faulty, and the matrix entry may then be
corrected as a; ; = a; ; + .

The addition of the checksum increases the overall matrix size from N to N(1 + 2).
Maintaining the checksum through the Cholesky factorisation procedure therefore leads
to a relative computational cost overhead of (1+ 2)3 — 1.

The detection of faults requires two additional tile-based matrix-vector multiplications
for each task performed, at a cost of 2nb? operations. For the %(%)3 tasks in the tile-
’I’L3

3.5 operations in total, representing a relative

based Cholesky routine this translates to 3-

computational overhead of %

It is important to note that the computational cost and memory overhead of the ABFT
routine is dependent only on the tile size chosen. It does not depend on the size of the
problem, the number of faults, the type of task that fails or the stage at which the fault
occurs.

http://www.nlafet.eu/ 5/9

NLAFET D6.7: ABFT prototypes

3 Software compilation

The prototype code is available on the NLAFET GitHub (https://github.com/NLAFET/
ABFT).

3.1 Requirements

In this section, we provide a brief description of different libraries required to build the
ABFT solver.

1. cmake version 2.8.0 or above. cmake can be found in the debian package cmake, or
as sources at the cmake download page (http://www.cmake.org/)

2. A BLAS library optimized for your platform: MKL, ACML, Goto, Atlas, VecLib
(MAC OS X), or in the worst case the default BLAS (http://www.netlib.org/blas/).

3. hwloc for processor and memory locality features
(http://www.open-mpi.org/projects/hwloc/)

4. Any MPI library Open MPI, MPICH2, MVAPICH or any vendor approved imple-
mentation.

5. PLASMA version 2.5 up to 2.8 (http://icl.cs.utk.edu/plasma/). Newer versions are
not currently supported

3.2 Compilation

The build system is based on CMake. The compilation is quite simple once the depen-
dencies are satisfied. The software can be compiled with the following instructions:

1. Get the source:
$ git clone git@github.com:NLAFET/ABFT.git

2. Navigate to the root directory and create a “build” directory:

$ cd ABFT
$ mkdir build
$ cd build

3. Set configuration parameters and execute cmake as in the following bash script:

#!/bin/bash

module load CMake # load cmake

module load intel/2018.01 # load mkl

rm -f CMakeCache.txt # remove existing CMakeCache.txt

Set compilation parameters and launch cmake
USER_OPTIONS+=" -DDPLASMA PRECISIONS=d"
CC=mpiicc \

FC=mpiifort \

CXX=mpiicc \

cmake ../ \

-DPLASMA_DIR= [[PLASMA 2.8 path 1]

http://www.nlafet.eu/ 6/9

NLAFET D6.7: ABFT prototypes

4. Finally, make the application:

$ make

3.3 Usage

At the end of a successful compilation, different folders will be created within the build
directory. From the build directory the testing routines can be found in dplasma/testing:

$ cd dplasma/testing

From this point the main testing routine is . /testing_dpotrf_abft2. A help information
on the testing usage can be obtained by executing

$./testing dpotrf_abft2 --help

The fault injection is hard-coded and controlled by the parameter DO_ERROR in the
file ABFT/dplasma/lib/zpotrf_L_abft2.jdf which is a regular PARSEC JDF file. The
verification and the checksum correction are done at the end of each kernel (BODY in the
JDF file). The JDF file is easy to modify to control the number of faults to inject, and the
kernel in which the fault must be injected. For the sake of comparison the standard task-
based Cholesky factorisation without ABFT is also provided with the associated testing
routine ./testing dpotrf_abft in the testing repository.

4 Results and Testing

The following plots demonstrate the performance of the ABFT algorithm with Cholesky
factorisation, using the formulation outlined in Section 2.

1000 16% 2.3% 25% 2.4% B Ref.
& 0.6% B ABFT-No fault
3 750
2 ABFT-One fault
o)
© 500 B ABFT-Two faults
G
£ 17%
é 250
)
o
0

4000 10000 20000 24000 28000 30000
Size

Figure 2: ABFT performance on a single node (Broadwell, 28 cores, 2.6Ghz, MKL 18).

Figure 2 shows the overhead in computational cost of running ABFT on a single
node, for varying matrix sizes. The percentages presented for each test show the relative
performance loss between the reference solution without ABFT and the slowest of the
three ABFT implementations. For all matrices tested the block size is nb = 256. The

http://www.nlafet.eu/ 7/9

NLAFET D6.7: ABFT prototypes

increase in runtime for smaller matrices is moderate, as exhibited by the 17% overhead
observed in the N = 4000 matrix. However, for larger matrices the performance overhead
stabilises to a much smaller value; around 2.5%. The 2.5% overhead observed here aligns
well with the theoretical relative increase in FLOP count of - + (1+ 2)3 —1 described in
Section 2. The results here also demonstrate that the performance overhead is a primarily
a result of including the ABFT machinery, rather than from correcting any detected faults;
no significant deviation in performance is observed between the cases where no fault, one
fault, or two faults occur.

8000
. B Ref.
2 6000
2 B ABFT
£
S 4000
(@]
2
>
& 2000
£
()]
=
0

4000 10000 20000 24000 28000 30000
Size

Figure 3: Memory overhead ABFT (Broadwell, 28 cores, 2.6Ghz, MKL 18, single node).

Figure 3 demonstrates the memory overhead observed from the use of ABFT. Here we
see that the difference is consistent throughout all matrix sizes at %, as expected from the
algorithm. For the nb = 256 block size used here this translates to a consistent overhead
of 0.8%.

Figure 4 shows the performance of ABFT in a distributed memory environment, using
nodes of the same type as above, with a matrix fixed at size 80,000. Here we observe a
consistent growth of the performance differential as the number of nodes increases, and
the corresponding size of the matrix portion placed on each node shrinks. However, the
performance overhead remains modest throughout, reaching a maximum of 15% for the
9-node case.

5 Conclusion

This deliverable has provided a prototype implementation of the algorithm-based fault
tolerance (ABFT) techniques described in the NLAFET deliverable D6.6. Software for
the ABFT-enabled solution of Cholesky factorisation is provided, based on the PaRSEC
framework. Performance of the ABFT implementation has been demonstrated within
shared-memory and distributed-memory environments. Results show the approach exhi-
biting a very low memory overhead (<1%), with a small (typically around 2.5%) compu-

http://www.nlafet.eu/ 8/9

NLAFET D6.7: ABFT prototypes

15%
6000
B Ref.
- B ABFT
& 4000
(I
o
QL
Q
S 2000
£
S
5
(a8
0

1 2 3 4 6 9
#Nodes (Size = 80.000)

Figure 4: Strong scaling for ABFT in distributed memory environment (each node
comprises 28 Broadwell cores at 2.6Ghz).

tational cost overhead for moderate to large sized matrices within shared memory. When
using distributed computing the overhead can become somewhat larger, though it remains
fairly modest at around 10%. Performance and memory overheads arise from the inclusion
of the ABFT framework into the solution, rather than from the correction of any errors
discovered, which occurs at negligible computational cost. These findings strengthen the
case for use of ABFT as a mechanism for high-performance fault-detection within suitable
linear algebra algorithms.

References

[1] George Bosilca, Aurélien Bouteiller, Elisabeth Brunet, Franck Cappello, Jack Don-
garra, Amina Guermouche, Thomas Herault, Yves Robert, Frédéric Vivien, and Dou-
nia Zaidouni. Unified model for assessing checkpointing protocols at extreme-scale.
Concurrency and Computation: Practice and Experience, 26(17):2772-2791, 2014.

[2] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack Dongarra. Parsec: Exploiting heterogeneity to enhance scalabi-
lity. Computing in Science € Engineering, 15(6):36-45, 2013.

[3] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari. Failures in
large scale systems: long-term measurement, analysis, and implications. In Procee-
dings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, page 44. ACM, 2017.

[4] Bianca Schroeder and Garth A. Gibson. A Large-Scale study of failures in high-
performance computing systems. IFEE Transactions on Dependable and Secure Com-
puting, 7(4):337-351, 2010.

http://www.nlafet.eu/ 9/9

