
H2020–FETHPC–2014: GA 671633

D7.8
Release of the NLAFET library

April 2019

NLAFET NLAFET library software

Document information

Scheduled delivery 2019-04-30
Actual delivery 2019-04-29
Version 2.0
Responsible partner UMU

Dissemination level

PU — Public

Revision history

Date Editor Status Ver. Changes
20/02/2019 Bo Kågström Draft 0.1 First layout of structure
27/03/2019 UMU: BK and MM Draft 0.1 Draft of section 3: Dense eigenva-

lue problems—tools and solvers
03/04/2019 BK Draft 0.1 Drafts and updates of contributi-

ons from INRIA (Sec 5), STFC
(Sec 4) and UMU (Sec 3, Sec 6 +
Intro etc)

23/04/2019 BK Draft 0.2 Further updates of partner contri-
butions

29/04/2019 Bo Kågström Final 2.0 Revised for submission

Author(s)

• Bo Kågström, Mirko Myllykoski, Lars Karlsson, and Carl Christian Kjelgaard Mik-
kelsen, UMU.

• Sébastien Cayrols, Iain Duff, Florent Lopez, and Stojce Nakov, STFC.

• Srikara Pranesh, David Stevens and Jack Dongarra, UNIMAN.

• Simplice Donfack, Laura Grigori, and Olivier Tissot, INRIA.

Internal reviewers

• Authors from the list above have also reviewed parts of the different drafts.

Contributors
Besides the authors of this report, the following members of the NLAFET Team have made
important contributions to the software presented and available at GitHub/NLAFET:

• Björn Adlerborn, Mahmoud Eljammaly, and Angelika Schwarz, UMU.

http://www.nlafet.eu/ 1/26

http://www.nlafet.eu/

NLAFET NLAFET library software

• Jonathan Hogg, STFC.

• Mawussi Zounon, NAG.

• Alan Ayala, INRIA.

We also recognize important contributions by the following collaboration partners.

• The Innovative Computing Laboratory (ICL), the University of Tennessee.

• Jim Demmel at the University of California Berkeley.

Copyright

This work is c©by the NLAFET Consortium, 2015–2019. Its duplication is allowed only
for personal, educational, or research uses.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the grant agreement number 671633.

http://www.nlafet.eu/ 2/26

http://www.nlafet.eu/

NLAFET NLAFET library software

Table of Contents

1 Introduction 4
1.1 NLAFET repositories on GitHub . 4

2 Dense factorizations and solvers 5
2.1 BBLAS . 5

2.1.1 Installation . 5
2.1.2 Testing . 6

2.2 plasma and PlaStar . 6

3 Dense eigenvalue problems—tools and solvers 7
3.1 MPI based eigenvalue solvers . 7
3.2 StarNEig library . 8

3.2.1 Documentation . 9
3.2.2 Installation . 9
3.2.3 Usage . 10
3.2.4 Distributed memory . 11
3.2.5 ScaLAPACK compatibility layer . 13
3.2.6 Computational interface functions 13
3.2.7 Test program and an example . 15

4 Sparse direct factorizations and solvers 16
4.1 SpLLT . 16
4.2 SyLVER . 17
4.3 ParSHUM . 17
4.4 BC . 19

5 Communication optimal algorithms for iterative methods 19
5.1 preAlps library . 19

6 Cross-cutting tools 21
6.1 The experimental PCP runtime library . 21
6.2 One-sided factorizations with algorithm-based fault tolerance 23

7 Summary and future contributions 23

List of Tables
1 NLAFET GitHub public repositories . 5
2 Current status of the StarNEig library for standard eigenvalue problems. . 9
3 Current status of the StarNEig library for generalized eigenvalue problems. 9

http://www.nlafet.eu/ 3/26

http://www.nlafet.eu/

NLAFET NLAFET library software

1 Introduction
The Description of Action (DoA) document states for deliverable D7.8:

“Release of the NLAFET library
First complete release of the NLAFET library and associated User’s Guide.”

This deliverable is in the context of Task 7.3 (Open source activities) and extends on
the deliverable D7.5 Beta release of the NLAFET library with subtitle Prototype soft-
ware – Part 1. Moreover, the deliverable D7.8 is based on the software, with some new
contributions and further improvements, described in the following 13 deliverables:

• D2.4 Final prototype software for different versions of the BLAS (M36)

• D2.6 Prototype software for eigenvalue problem solvers (M30)

• D2.8 Bidiagonal factorization (M18)

• D2.9 Novel SVD algorithms (M42)

• D3.3 Software for symmetrically structured factorizations (M39)

• D3.5 Software for highly unsymmetric factorizations (M30)

• D3.7 Software for hybrid methods (M40)

• D4.1 Prototype software, phase 1 (M12)

• D4.3 Prototype software, phase 2 (M24)

• D4.5 Integration (M36)

• D5.2 Software integration (M30)

• D6.1 Prototypes for runtime systems exhibiting novel types of scheduling (M18)

• D6.7 Prototypes for tiled one-sided factorizations with algorithm-based fault tole-
rance (M42)

1.1 NLAFET repositories on GitHub
The codes developed and distributed in the context of the NLAFET project are hosted
on the GitHub platform and available via the link https://github.com/NLAFET/. In
Table 1, the public repositories that together constitute the NLAFET library software
are listed. The description of these repositories is organized according to the following
topics:

• Dense matrix factorizations and solvers (Section 2).

• Solvers and tools for standard and generalized dense eigenvalue problems (Section 3).

• Sparse direct factorizations and solvers (Section 4).

• Communication optimal algorithms for iterative methods (Section 5).

• Cross-cutting tools (Section 6).

http://www.nlafet.eu/ 4/26

https://github.com/NLAFET/
http://www.nlafet.eu/

NLAFET NLAFET library software

Table 1: NLAFET GitHub public repositories

Repository name WP Brief description
BBLAS-ref WP2 Batched BLAS reference implementation
plasma WP2 Snapshot of PLASMA library
PlaStar WP2 Some StarPU implementations
SEVP-PDHSEQR-Alg953 WP2 Standard eigenvalue problem solvers
GEVP-PDHGEQZ WP2 Generalized eigenvalue problem solvers
StarNEig WP2 StarPU nonsymmetric eigenvalue problem solvers
SpLLT WP3 Sparse LLT solver for A = AT , positive definite
SyLVER WP3 Symmetrically stuctured factorizations
ParSHUM WP3 Sparse LU solver for highly unsymmetric matrices
BC WP3 Hybrid solver based on block Cimmino

for square and rectangular systems
preAlps WP4 Preconditioned iterative methods and enlarged Krylov methods
PCP-runtime WP6 Parallelizing the critical path
ABFT-factor WP6 Tiled factorizations with ABFT

2 Dense factorizations and solvers

The NLAFET public repositories for dense factorizations and solvers are:

• BBLAS: Final batched BLAS reference implementation.

• plasma: Snapshot of PLASMA library routines for dense factorizations and solves.

• PlaStar: Some StarPU implementations of dense factorizations and solves.

2.1 BBLAS

The specifications for the level 1, 2 and 3 BLAS have been very successful in providing
a standard for vector [26], matrix-vector [17], [16], and matrix-matrix [15] operations
respectively. Vendors and other developers have provided highly efficient versions of the
BLAS, and by using the standard interface have allowed software calling the BLAS to be
portable.

With the need to solve larger and larger problems on todays high-performance com-
puters, the methods used in a number of applications such as tensor contractions, finite
element methods and direct linear equation solvers, require a large number of small vec-
tor or matrix operations to be performed in parallel. So a typical example might be to
perform

Ci ← αiAiBi + βiCi, i = 1, 2, 3, . . . , k,
where k is large, but Ai, Bi and Ci are small matrices. A routine to perform such a
sequence of operations is called a Batched Basic Linear Algebra Subprogram, or Batched
BLAS, or BBLAS. In the BBLAS repository we provide a reference implementation of the
BBLAS standard for the four standard precisions.
2.1.1 Installation
The following software must be installed on the target architecture:

• CMake 3.12 or latest.

http://www.nlafet.eu/ 5/26

http://www.nlafet.eu/

NLAFET NLAFET library software

• Intel Math Kernel Library (MKL), or Netlib BLAS or Netlib LAPACK.

• Doxygen for documentation.

After the configuration of make.inc, the software can be compiled using one of the
following options

• make [all] – compiles lib test

• make lib – generates library files in lib/libbblas.{a,so} lib/libcore.{a,so}

• make test – generates tester files in test/test

• make docs – generates documentation docs/html

• make generate – generates routines of various precisions

• make clean – removes objects, libraries, and executables

• make distclean – removes above, Makefile.*.gen, and anything else that can be
generated

2.1.2 Testing
At the end of the compilation, test routines (in four precisions [c,d,s,z]) will be available
in the folder BBLAS/test. The main testing driver is the binary ./test. It should be
used with the kernel to test as the first parameter followed by the kernel arguments. For
example ./test dgemm_batch will run the double precision version dgemm_batch with
default arguments. For help ./test -h will display the list of kernels available for testing,
while ./test dgemm_batch -h will display all the possible more help and details on how
to test dgemm_batch; this holds for all the kernels. We use random matrices for the tests.
All the implementation and technical details can be found in the NLAFET deliverable
report D7.6 Batched BLAS Specification.
2.2 plasma and PlaStar

The PLASMA numerical library (Parallel Linear Algebra Software for Multicore Architec-
tures) is a dense linear algebra package tailored for multicore computing. It was developed
as a response to the advent of multicore processors, as the standard state of the art sol-
vers such as LAPACK [8] and ScaLAPACK [9], which proved to be inefficient on these
new architectures. Initially PLASMA was developed based on the QUARK scheduler,
along with Pthread-based routines. Since the OpenMP standard adopted the superscalar
scheduling, PLASMA library has been ported into OpenMP. This work was carried out
as a part of NLAFET project, and the software is available in the plasma repository.
Installation and testing procedure is same as for the BBLAS software. However in addition
to MKL, OpenMP is also required for installation. All the technical details can be found
in the NLAFET deliverable report D2.1 One-Sided Matrix Factorizations.
In the PlaStar repository we provide LU, Cholesky, and QR factorization routines in
the PLASMA library built on StarPU runtime system. We would like to emphasize that
StarPU based PLASMA was purely exploratory, and was not intended to be a complete
dense linear algebra software on its own.

http://www.nlafet.eu/ 6/26

http://www.nlafet.eu/

NLAFET NLAFET library software

3 Dense eigenvalue problems—tools and solvers

The NLAFET public repositories for the tools and solvers of dense standard and genera-
lized eigenvalue problems are:

• SEVP-PDHSEQR-Alg953: Nonsymmetric standard eigenvalue problems—distributed
memory package for computing a real standard Schur form S = QTAQ.

• GEVP-PDHGEQZ: Nonsymmetric generalized eigenvalue problems—distributed me-
mory package for computing a real generalised Schur form (S, T) = QT (A,B)Z.

• StarNEig: Task-based library including a full suite of software for solving non-
symmetric standard (Ax = λx) and generalized (Ax = λBx) eigenvalue problems,
respectively.

Since, the task-based library StarNEig has not been presented in any earlier NLAFET
deliverable, this motivates the longer description compared to other repositories.
The parallel distributed algorithms and software contributions for computing Schur forms
of standard and generalized eigenvalue problems, and available in the first two listed re-
positories above, represent the front line of research using the common MPI based pro-
gramming model. Within the NLAFET project, we provide new contributions that both
improve on and extend the functionalities to be able to efficiently compute eigenvec-
tors corresponding to an arbitrary user selection of eigenvalues. Moreover, in our effort
of addressing extreme scale systems we are developing task-based counter parts of the
functionalities already available in the SEVP-PDHSEQR-Alg953 and GEVP-PDHGEQZ reposi-
tories. The main new contributions are available in the StarNEig library, which is built
on top of the StarPU runtime system [1] and targets both shared memory and distributed
HPC systems. Some components of the library also support GPUs.

The two first repositories are briefly presented in deliverable D7.5. For easy access and
completeness some information is repeated below. The focus here is on an introductory
presentation of the task based StarNEig library. For details we refer to the GitHub on-line
documentations.
3.1 MPI based eigenvalue solvers

SEVP-PDHSEQR-Alg953: The repository contains a clone of ALGORITHM 953 of the
Collected Agorithms of ACM authored by Robert Granat, Bo Kågström, Daniel Kressner
and Meiyue Shao, which is a state-of-the-art package of library routines for computing a
standard Schur decomposition S = QTAQ, where A is a general square matrix with real
entries and Q is an orthogonal transformation matrix. The associated scientific paper is
published by ACM Transactions of Mathematical Software [22].

The main routine PDHGEQR() is based on our parallel multishift QR algorithm with
aggressive early deflation for computing the standard real Schur decomposition S. The real
and complex conjugate pairs of eigenvalues appear as 1× 1 and 2× 2 blocks, respectively,
along the diagonal of S and can be reordered in any order. Typically, this functionality is
used to compute an orthogonal basis for an invariant subspace corresponding to a selected
set of eigenvalues. The parallel algorithms and software are developed by the Umeå team
in collaboration with EPFL. The software is MPI based, written in Fortran 90 for double
precision real arithmetic, and targets distributed memory HPC systems.

http://www.nlafet.eu/ 7/26

http://www.nlafet.eu/

NLAFET NLAFET library software

The software is complemented by a PDHGEQR User’s Guide, available in the reposi-
tory, which includes sections on installation, compilation and usage of the parallel library
routines. The Guide also contains instructions and scripts for tuning of parameters.
GEVP-PDHGEQZ: The repository contains a state-of-the-art package of library routines for
computing a generalized Schur decomposition (S, T) = QT (A,B)Z, where A and B are
general square matrices with real entries and Q and Z are orthogonal transformation
matrices. The real and complex conjugate pairs of eigenvalues appear as 1× 1 and 2× 2
blocks, respectively, along the diagonals of (S, T) and can be reordered in any order.
Typically, this functionality is used to compute orthogonal bases for a pair of deflating
subspaces corresponding to a selected set of eigenvalues. The parallel algorithms and
software are developed by the Umeå team in collaboration with EPFL (Daniel Kressner)
and based on our scientific work published by SIAM Journal on Scientific Computing [2].
The software is MPI based, written in Fortran 90 for double precision real arithmetic,
and targets distributed memory HPC systems.

The main routine PDHGEQZ() is based on our parallel multishift QZ algorithm with
aggressive early deflation for computing the generalized real Schur form of a matrix pair
(A,B) in Hessenberg-triangular (HT) form [2]. A novel parallel algorithm for identifying
and deflating infinite eigenvalues such that they do not inflict damage to other eigenvalues,
due to round-off, is part of the software.

The software is complemented by a User’s Guide, namely NLAFETWorking Note WN-
2 PDGEQZ User Guide [3]. The calling sequences for the main driver routines with input
and output parameters are described in detail. In addition, a set of tunable parameters
and their usage with default values are discussed. During the build process, internal tests
are performed to ensure the software works as intended. Both sequential and parallel
tests are performed, with validation of the computed results.

The package also includes our MPI-based implementation, PDGGHRD(), for the re-
duction of a real general matrix pair (A,B) to Hessenberg-triangular form (H,T), which
is the first main step in the computation of a generalized Schur form (S, T) of (A,B).
PDGGHRD is a one-stage distributed algorithm with wave-front scheduling. The static
scheduler addresses the problem of underutilized processes caused by two-sided updates
of matrix pairs based on sequences of rotations. For more details see the NLAFET Wor-
king Note WN-1 Distributed One-Stage Hessenberg-Triangular Reduction with Wavefront
Scheduling [5] and the recent SIAM Journal of Scientific Computing article [4].
3.2 StarNEig library
The StarNEig library aims to provide a full suite of algorithms for solving non-symmetric
standard and generalized eigenvalue problems. In practice a matrix pencil A−λB is trea-
ted as a matrix pair (A,B) and both concepts are used in the descriptions. As mentioned,
the library is built on top of the StarPU runtime system and targets both shared memory
and distributed memory machines. Some components of the library support GPUs. The
four main components of the library are:

Hessenberg(-triangular) reduction: A dense matrix (or a dense matrix pair) is redu-
ced to upper Hessenberg (or Hessenberg-triangular) form.

Schur reduction: An upper Hessenberg matrix (or a Hessenberg-triangular matrix pair)
is reduced to (generalized) Schur form. The (generalized) eigenvalues can be deter-
mined from the diagonal blocks of the matrices in (generalized) Schur form.

http://www.nlafet.eu/ 8/26

http://www.nlafet.eu/

NLAFET NLAFET library software

Table 2: Current status of the StarNEig library for standard eigenvalue problems.

Component Shared memory Distributed memory Accelerators (GPUs)
Hessenberg Complete ScaLAPACK wrapper Single GPU
Schur Complete Experimental Experimental
Reordering Complete Complete Experimental
Eigenvectors Complete Integration ongoing Not planned

Table 3: Current status of the StarNEig library for generalized eigenvalue problems.

Component Shared memory Distributed memory Accelerators (GPUs)
Hessenberg LAPACK wrapper ScaLAPACK wrapper Not planned
Schur Complete Experimental Experimental
Reordering Complete Complete Experimental
Eigenvectors Complete Integration ongoing Not planned

Eigenvalue reordering: Reorders a user-selected set of (generalized) eigenvalues to the
upper left corner of an updated (generalized) Schur form.

Eigenvectors: Computes (generalized) eigenvectors for a user-selected set of (generali-
zed) eigenvalues.

The library is currently in a beta state and supports real arithmetic, which indeed is the
most challenging case since matrices and matrix pairs with only real entries can have both
real and complex conjugate pairs of eigenvalues and associated eigenvectors. In addition,
some interface functions are implemented as LAPACK and ScaLAPACK wrappers. The
overall status of the library is summarized in Tables 2 and 3. In NLAFET deliverable
D2.7 Eigenvalue solvers for nonsymmetric problems, the StarNEig library routines are
evaluated both with respect to performance (scalability) and accuracy and compared
with corresponding state-of-the-art MPI-based routines.
3.2.1 Documentation
The User’s Guide can be generated independently from the rest of the library. This
assumes that the target HPC system has the following software dependencies installed:

• CMake 3.3 or newer, Doxygen, and Latex + pdflatex

It is recommended that a user builds the documentation in a separate build directory:
1 $ mkdir build_doc
2 $ cd build_doc/
3 $ cmake . . / doc/
4 $ make

The HTML documentation is available in the build_doc/html directory. The PDF docu-
mentation, consisting of around 130 pages, is copied to build_doc/starneig_manual.pdf.
3.2.2 Installation
The library assumes that the machine has the following software dependences, including
libraries and run-time systems, installed:

http://www.nlafet.eu/ 9/26

http://www.nlafet.eu/

NLAFET NLAFET library software

• Linux

• CMake 3.3 or newer

• Portable Hardware Locality (hwloc)

• StarPU 1.2 or 1.3

• BLAS

• LAPACK

• MPI (optional)

• CUDA (optional)

• ScaLAPACK (optional)

• pkg-config (test program and exam-
ples)

• MAGMA (test program, optional)

It is recommended that a user builds the library in a separate build directory:
1 $ mkdir bu i ld
2 $ cd bu i ld

The library is configured with the cmake command. In most cases, it is not necessary
to give this command any additional arguments:

1 $ cmake . . /
2 . . .
3 −− Conf igur ing done
4 −− Generating done
5 −− Build f i l e s have been wr i t t en to : / . . . / bu i ld

However, the library can be customized with various options. Please see the User’s Guide
for further information. The library (and other components) are compiled with the make
command:

1 $ make
2 Scanning dependenc ies o f t a r g e t s t a r n e i g
3 [1%] Bui ld ing C ob j e c t s r c /CMakeFiles/ s t a r n e i g . d i r /common/combined . c . o
4 [2%] Bui ld ing C ob j e c t s r c /CMakeFiles/ s t a r n e i g . d i r /common/common . c . o
5 . . .

The library and the related header files are installed by executing:
1 $ sudo make i n s t a l l

3.2.3 Usage
In order to use the interface function provided by the library, a user can simply include
all header files as follows:

1 #inc lude <s t a r n e i g / s t a r n e i g . h>

Each node must call the starneig_node_init() interface function to initialize the library
and the starneig_node_finalize() interface function to shutdown the library:

1 s tarne ig_node_in i t (cores , gpus , f l a g s) ;
2

3 . . .
4

5 s t a rne i g_node_f ina l i z e () ;

The starneig_node_init() interface function initializes StarPU (and cuBLAS) and
pauses all worker threads. The cores argument specifies the total number of used CPU
cores. In distributed memory mode, one of these CPU cores is automatically allocated for
the StarPU-MPI communication thread. The gpus argument specifies the total number of
GPUs to be used. One or more CPU cores are automatically allocated for GPU devices.

http://www.nlafet.eu/ 10/26

http://www.nlafet.eu/

NLAFET NLAFET library software

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

Figure 1: Matrix divided into rectangu-
lar blocks of uniform size.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

02 2 1 3 1 3

23 0 2 2 0 0

31 2 1 1 2 0

10 2 3 2 0 3

Figure 2: Example of a block mapping:
the rank 0 owns blocks (0,1), (1,2), (1,5),
(1,6), (2,6), (3,0) and (3,5).

The flags argument can provide additional configuration information. A node can also
be configured with default values:

1 s tarne ig_node_in i t (−1 , −1, STARNEIG_DEFAULT) ;

This argument combination tells the library to use all available CPU cores and GPUs.
Notice, the StarPU performance models must be calibrated before the software can
function efficiently on heterogeneous platforms (CPUs + GPUs). The calibration is trig-
gered automatically if the models are not calibrated well enough for a given problem
size. This may impact the execution time negatively during the first run. Please, see
the StarPU handbook for further information: http://starpu.gforge.inria.fr/doc/
html/Scheduling.html

3.2.4 Distributed memory
The STARNEIG_HINT_DM initialization flag tells the library to configure itself for distributed
memory computation. The flag is indented to only be a hint and the library will automati-
cally reconfigure itself for the correct computation mode. A user is allowed to mix shared
memory and distributed memory functions without reninitializing the library. The library
is intended to be run in a hybrid configuration (each MPI rank is mapped to several CPU
cores). Failing to do so leads to CPU core oversubscription. It is generally a good idea to
map each MPI rank to a single node or a NUMA island / CPU socket. The library assu-
mes that the MPI library is already initialized when the starneig_node_init() interface
function is called with the STARNEIG_HINT_DM flag or when the library reconfigures itself
for distributed memory after a user has called a distributed memory interface function.

Distributed matrices are represented using two opaque objects:

• Data distribution

• Distributed matrix

Each matrix is partitioned into rectangular blocks of uniform size (excluding the last
block row and column) as illustrated in Figure 1. The blocks are indexed using a two-
dimensional index space. A data distribution encapsulates an arbitrary mapping from this
two-dimensional block index space to the one-dimensional MPI rank space as illustrated

http://www.nlafet.eu/ 11/26

http://starpu.gforge.inria.fr/doc/html/Scheduling.html
http://starpu.gforge.inria.fr/doc/html/Scheduling.html
http://www.nlafet.eu/

NLAFET NLAFET library software

in Figure 2. Naturally, a data distribution can describe a two-dimensional block cyclic
distribution which is commonly used in ScaLAPACK subroutines.
A data distribution can be created using one of the following interface functions:
• starneig_distr_init() creates a default distribution (row-major ordered two-

dimensional block cyclic distribution with a squarish process mesh).

• starneig_distr_init_mesh() creates a row-major or column-major ordered two-
dimensional block cyclic distribution with desired number of rows and columns in
the process mesh.

• starneig_distr_init_func() creates an arbitrary distribution defined by a function.
For example,

1 s ta rne i g_d i s t r_t d i s t r =
2 s tarne ig_dist r_in i t_mesh (4 , 6 , STARNEIG_ORDER_DEFAULT) ;

creates a two-dimensional block cyclic distribution with 4 rows and 6 columns in the
process mesh. Alternatively, a user can create an equivalent data distribution using the
starneig_distr_init_func() interface function:

1 s t r u c t b lock_cyc l i c_arg {
2 i n t rows ;
3 i n t c o l s ;
4 } ;
5

6 i n t b lock_cyc l i c_func (i n t i , i n t j , void ∗ arg)
7 {
8 s t r u c t b lock_cyc l i c_arg ∗mesh = arg ;
9 re turn (i % mesh−>rows) ∗ mesh−>co l s + j % mesh−>co l s ;

10 }
11

12 void func (. . .)
13 {
14 . . .
15

16 s t r u c t b lock_cyc l i c_arg arg = { . rows = 4 , . c o l s = 6 } ;
17 s ta rne i g_d i s t r_t d i s t r =
18 s ta rne i g_d i s t r_ in i t_ func (&block_cycl ic_func , &arg , s i z e o f (arg)) ;
19

20 . . .
21 }

A distributed matrix is created using the starneig_distr_matrix_create() interface
function. The function call will automatically allocate the required local resources. For
example,

1 s ta rne i g_d i s t r_t d i s t r =
2 s tarne ig_dist r_in i t_mesh (4 , 6 , STARNEIG_ORDER_DEFAULT) ;
3 starne ig_distr_matr ix_t dA = starne ig_dis t r_matr ix_create (
4 m, n , bm, bn , STARNEIG_REAL_DOUBLE, d i s t r) ;

creates an m × n double-precision real matrix that is distributed in a two-dimensional
block cyclic fashion in bm× bn blocks. Or,

1 starne ig_distr_matr ix_t dB =
2 s tarne ig_dis t r_matr ix_create (n , n , −1, −1, STARNEIG_REAL_DOUBLE, NULL) ;

creates an n × n double-precision real matrix with a default data distribution (NULL
argument) and a default block size (-1, -1).

http://www.nlafet.eu/ 12/26

http://www.nlafet.eu/

NLAFET NLAFET library software

3.2.5 ScaLAPACK compatibility layer
The library provides a ScaLAPACK compatibility layer. This allows a user to easily inte-
grate our library with their existing ScaLAPACK compatible software. A two-dimensional
block cyclic data distribution can be converted to a BLACS context and vice versa. Si-
milarly, a distributed matrix that uses a two-dimensional block cyclic data distribution
can be converted to a BLACS descriptor (and a local buffer) and vice versa. The conver-
sion is performed in-place and a user is allowed to mix StarNEig interface functions with
ScaLAPACK style subroutines/functions without reconversion.

For example,
1 starne ig_distr_matr ix_t dA = starne ig_dis t r_matr ix_create (. . .) ;
2

3 . . .
4

5 // convert the data d i s t r i b u t i o n to a BLACS context
6 s ta rne i g_d i s t r_t d i s t r = starne ig_dis t r_matr ix_get_dis t r (A) ;
7 starne ig_blacs_context_t context = starne ig_dist r_to_blacs_context (d i s t r) ;
8

9 // convert the d i s t r i b u t e d matrix to a BLACS de s c r i p t o r and a l o c a l bu f f e r
10 s tarne ig_blacs_descr_t descr_a ;
11 double ∗ l oca l_a ;
12 starne ig_distr_matr ix_to_blacs_descr (
13 dA, context , &descr_a , (void ∗∗)&loca l_a) ;
14

15 . . .
16

17 // a ScaLAPACK subrout ine f o r reduc ing gene ra l d i s t r i b u t e d matrix to upper
18 // Hessenberg form
19 extern void pdgehrd_ (i n t const ∗ , i n t const ∗ , i n t const ∗ , double ∗ ,
20 i n t const ∗ , i n t const ∗ , s tarne ig_blacs_descr_t const ∗ , double ∗ ,
21 double ∗ , i n t const ∗ , i n t ∗) ;
22

23 pdgehrd_(&n , &i l o , &ih i , local_a , &ia , &ja , &descr_a , tau , . . .) ;

converts a distributed matrix dA to a BLACS descriptor descr_a and a local pointer
local_a. The descriptor and the local array are then fed to a ScaLAPACK subroutine.
3.2.6 Computational interface functions
The interface functions for the main components of the standard eigenvalue problem Ax =
λx, targeting shared memory (SM) and distributed memory (DM), are briefly described
below.

Hessenberg reduction: Given a general matrix A, the interface functions

• starneig_SEP_SM_Hessenberg() and
• starneig_SEP_DM_Hessenberg()

compute a Hessenberg decomposition A = UHUT , where H is upper Hessenberg
and U is orthogonal. On exit, A is overwritten by H and Q (which is an orthogonal
matrix on entry) is overwritten by Q← QU .

Schur reduction: Given a Hessenberg decomposition A = QHQT , of a general matrix
A, the interface functions

• starneig_SEP_SM_Schur() and

http://www.nlafet.eu/ 13/26

http://www.nlafet.eu/

NLAFET NLAFET library software

• starneig_SEP_DM_Schur()

compute a Schur decompositionA = Q(USUT)QT , where S is upper quasi-triangular
with 1×1 and 2×2 blocks on the block diagonal (Schur matrix) and U is orthogonal.
On exit, H is overwritten by S and Q is overwritten by Q← QU .

Eigenvalue reordering: Given a Schur decomposition A = QSQT of a general matrix
A and a user selection of eigenvalues, the interface functions

• starneig_SEP_SM_ReorderSchur() and
• starneig_SEP_DM_ReorderSchur()

attempt to reorder the selected eigenvalues to the top left corner of an updated
Schur matrix Ŝ by an orthogonal similarity transformation A = Q(UŜUT)QT . On
exit, S is overwritten by Ŝ and Q is overwritten by Q← QU .

Combined reduction and reordering: Given a general matrix A, the interface functi-
ons

• starneig_SEP_SM_Reduce() and
• starneig_SEP_DM_Reduce()

compute a (reordered) Schur decomposition A = USUT , where S is upper quasi-
triangular with 1 × 1 and 2 × 2 blocks on the block diagonal (Schur matrix) and
U is orthogonal. Optionally, the interface functions attempt to reorder selected
eigenvalues to the top left corner of the Schur matrix S.

Eigenvectors: Given a Schur decomposition A = QSQT of a general matrix A and a
(user) selection of eigenvalues, the interface functions

• starneig_SEP_SM_Eigenvectors() and
• starneig_SEP_DM_Eigenvectors()

compute and return an eigenvector for each of the selected eigenvalues.

The library provides a similar set of interface functions for the generalized eigenvalue
problem, both for shared and distributed memory, respectively:

• starneig_GEP_SM_HessenbergTriangular() and

• starneig_GEP_DM_HessenbergTriangular(),

• starneig_GEP_SM_Schur() and

• starneig_GEP_DM_Schur(),

• starneig_GEP_SM_Reduce() and

• starneig_GEP_DM_Reduce(),

• starneig_GEP_SM_Eigenvectors() and

• starneig_GEP_DM_Eigenvectors()

http://www.nlafet.eu/ 14/26

http://www.nlafet.eu/

NLAFET NLAFET library software

One main difference between the two cases is that for the standard eigenvalue pro-
blem the reduction operations in the main components are by similarity transformations
of type QTAQ, where Q is an orthonormal matrix, while for the generalized eigenvalue
problem the corresponding reduction operations work on matrix pairs (A,B) via equi-
valence transformations of type QT (A,B)Z, where both Q and Z are orthonormal. In
both cases, the matrices are modified both (block) rowwise and (block) columnwise which
lead to complex data dependencies and challenges in the design of task based algorithms
aiming at extreme scale.
3.2.7 Test program and an example
The StarNEig test program

1 $. / s ta rne i g−t e s t (opt ions)

provides a unified interface to test all software components. Most command line argu-
ments have default values and in most cases it is not necessary to set more than a few.
The overall design of the test program is modular. Each experiment module is built on
initializers, solvers and hooks. Each experiment module contains several of each allowing
a user to initialize the data in various ways and compare different solvers with each other.
Each of these building blocks can be configured with various parameters. However, in
most cases only the problem dimension –n (num) needs to be specified. Hooks are used
to test and validate the output of the software components. For details see the Test
program and Examples sections in the User’s Guide.

Using a shared memory HPC system, below is a slightly stripped-down example of how
to call StarNEig routines for solving a generalized eigenvalue problem. Outgoing from a
matrix pencil A − λB, the entire chain of the main component algorithms for matrix
pairs (A,B) is used to calculate all eigenvalues with positive real part and associated
eigenvectors.

1 // a p r ed i c a t e func t i on that s e l e c t s a l l f i n i t e e i g enva lu e s that have
2 // a p o s i t i v e r e a l part
3 s t a t i c i n t p r ed i c a t e (double r ea l , double imag , double beta , void ∗ arg)
4 {
5 re turn beta != 0 .0 && 0.0 < r e a l ;
6 }
7

8 void main ()
9 {

10 double ∗A, ∗B, ∗Q, ∗Z , ∗X;
11 i n t ldA , ldB , ldQ , ldZ , ldX ;
12

13 . . .
14

15 // I n i t i a l i z e the StarNEig l i b r a r y us ing a d e f au l t number o f CPU
16 // co r e s and GPUs. The STARNEIG_HINT_SM f l a g i n d i c a t e s that the
17 // l i b r a r y should i n i t i a l i z e i t s e l f f o r shared memory computations
18 // and the STARNEIG_AWAKE_WORKERS i nd i c a t e s that the l i b r a r y should
19 // keep StarPU worker threads awake between i n t e r f a c e func t i on c a l l s .
20

21 s tarne ig_node_in i t (−1 , −1, STARNEIG_HINT_SM | STARNEIG_AWAKE_WORKERS) ;
22

23 // reduce the dense−dense matrix pa i r (A,B) to Hessenberg−t r i a n gu l a r
24 // form
25

26 starneig_GEP_SM_HessenbergTriangular (

http://www.nlafet.eu/ 15/26

http://www.nlafet.eu/

NLAFET NLAFET library software

27 n , A, ldA , B, ldB , Q, ldQ , Z , ldZ) ;
28

29 // reduce the Hessenberg−t r i a n gu l a r matrix pa i r (A,B) to g en e r a l i z e d
30 // Schur form
31

32 starneig_GEP_SM_Schur (
33 n , A, ldA , B, ldB , Q, ldQ , Z , ldZ , r ea l , imag , beta) ;
34

35 // s e l e c t s a l l f i n i t e e i g enva lu e s that have a p o s i t i v e r e a l part
36

37 i n t num_selected ;
38 starneig_GEP_SM_Select (
39 n , A, ldA , B, ldB , &pred i cate , NULL, s e l e c t , &num_selected) ;
40

41 // compute e i g env e c t o r s cor re spond ing to the s e l e c t e d s e t o f
e i g enva lu e s

42

43 starneig_GEP_SM_Eigenvectors (
44 n , s e l e c t , A, ldA , B, ldB , Q, ldQ , X, ldX) ;
45

46 // de− i n i t i a l i z e the StarNEig l i b r a r y
47

48 s t a rne i g_node_f ina l i z e () ;
49 }

More detailed examples including validation via accuracy residual tests are presented
in the User’s Guide.

4 Sparse direct factorizations and solvers

We gave details of the library software for sparse direct factorizations and software that
were developed by 30 April 2017 in Deliverable D7.5. This work is part of Task 3.2 of
workpackage WP 3.

The NLAFET public repositories for sparse direct factorizations and solvers are:

• SpLLT: Sparse LLT solver for A = AT , where A is positive definite.

• SyLVER: Symmetrically structured factorizations.

• ParSHUM: Sparse LU solver for highly unsymmetric matrices.

• BC: Hybrid solver based on block Cimmino for square and rectangular systems.

We now discuss the software in these four repositories using the earlier deliverable as our
baseline.
4.1 SpLLT

As discussed in Deliverable D7.5, the supernodal sparse Cholesky solver SpLLT, is im-
plemented as a task-based algorithm and has STF versions using OpenMP and StarPU
and a PTG version using ParSec. The use of runtime systems means that the code is
easier to port between different architectures and we showed that there was very little
overhead to using the runtime systems. Indeed on large problems our code outperformed
similar state-of-the-art solvers that just used OpenMP. Since then there have been very
significant enhancements to the SpLLT solver.

http://www.nlafet.eu/ 16/26

http://www.nlafet.eu/

NLAFET NLAFET library software

A major improvement was to develop a blocked parallel implementation of the rou-
tines that use the Cholesky factorization to solve the sparse symmetric positive definite
system. This work was presented in NLAFET Working Note WN-20 Parallelization of
the solve phase in a task-based Cholesky solver using a sequential task flow model [13].
This is particularly important when solutions of several different equations are required,
for example in optimization. This is also true if the direct solver is used in an iterative
method, and we show an example of this in Section 4.4. This solve code was also up-
graded for a block of right-hand sides and got a significant performance enhancement by
vectorizing across the right-hand sides.
4.2 SyLVER

The SyLVER repository contains codes for the factorization of sparse symmetrically struc-
tured matrices and the solution of equations with these as a coefficient matrix.

The codes are task-based and use the multifrontal approach that is based upon an
elimination tree representation of the sparse factorization. The matrix is ordered using
a standard sparsity reducing ordering such as nested dissection that is performed on
the structure of the matrix |A| + |A|T and this ordering is used to build the tree where
parallelism can be exploited at two levels. At the tree level, when operations on different
branches of the tree can proceed in parallel and, at the node level, when dense kernels are
used. Since the tree is based on the symmetrized pattern of A, it is specifically designed for
symmetrically structured matrices although any unsymmetric matrix could be factorized
by including explicit zeros so that the pattern is symmetric.

If the matrix is symmetric positive definite then numerical pivoting is not required
and the code provides an alternative to the supernodal code described in Section 4.1.
The two approaches have their own strengths and weaknesses and one might perform
better than the other depending on the structure of the elimination tree. Our experience
is that the multifrontal approach is both easier to implement and more suited for a
GPU implementation but requires more memory. For background information on these
approaches to the direct solution of sparse equations, we refer the reader to the book [19].

However, for matrices that are not positive definite, we require numerical pivoting to
ensure numerical stability. This is done during the numerical factorization and requires
dense kernels to be coded to accommodate this. The main algorithmic work, in Task 3.2,
has been on designing kernels that maintain high levels of parallelism while maintaining
numerical stability. This work is described in NLAFET Working Note WN-21 A new
sparse LDLT solver using A Posteriori Threshold Pivoting [18] and uses 2-D blocking,
speculative execution, and a fail-in-place approach to enable most of the computation to
proceed in parallel.

Details for the installation of the codes in SyLVER are presented in the Delivera-
ble D3.3.
4.3 ParSHUM

The ParSHUM repository contains codes for the solution of matrices that are highly unsym-
metric. We define a highly unsymmetric matrix as a matrix whose structure is not well
approximated by the structure of |A| + |A|T . Various authors have defined a measure of
the asymmetry of a matrix and here we use that defined in [21] which is the proportion
of off-diagonal entries for which there is a corresponding entry in the transpose, viz.

si(A) = numberi 6=j{aij ∗ aji 6= 0}
nz{A}

,

http://www.nlafet.eu/ 17/26

http://www.nlafet.eu/

NLAFET NLAFET library software

where si is called the symmetry index and nz{A} is the number of off-diagonal entries
in the matrix A. A symmetric matrix will thus have a symmetry index of 1.0. Matrices
with symmetry indices of less than 0.9 can be considered highly unsymmetric and these
are the main target of the ParSHUM package developed within Task 3.3.

One of the main algorithmic challenges in this work was to design parallel algorithms
for implementing a right-looking factorization, which is described in NLAFET Working
Note WN-22 Design and implementation of a parallel Markowitz threshold algorithm [14].
The code in the repository based on this algorithm outperforms all other codes for this
class of matrices on multicore CPUs.

In order to solve such systems on distributed memory machines, we first perform
a block partitioning of the matrix to a form shown in Figure 3. The blocks on the

Figure 3: A singly bordered block diagonal form.

diagonal are distributed and the core ParSHUM multicore code is used to factorize these
rectangular blocks as we show in Figure 4a. When all blocks are factorized, the remaining
Schur complement shown red in Figure 4b is factorized using a parallel dense factorization.

(a) (b)

Figure 4: Factorization of SBBD form.

The performance of this approach depends on having a small border and in our ex-
tensive numerical experiments on this we have shown that for highly symmetric matrices
particularly from applications where the matrix is very sparse this border is indeed small.

http://www.nlafet.eu/ 18/26

http://www.nlafet.eu/

NLAFET NLAFET library software

It increases when we increase the number of partitions but still tends to remain very small
relative to the size of the original matrix.

We use Zoltan [10] to effect the partitioning and ParSHUM to factorize the blocks on
the diagonal. Thus we combine distributed memory parallelism (using MPI) with shared
memory parallelism (using OpenMP).

We have used this code when solving systems from Power System applications and
have described this work in Deliverable D5.3.

Details for the installation of the codes in ParSHUM are presented in the Delivera-
ble D3.6.
4.4 BC

The codes in the BC repository implement a hybrid approach to solving sparse equations.
They can solve sparse systems with unsymmetric or even rectangular matrices using both
distributed memory and shared memory parallelism. The codes are based on the ABCD
code1 [20] and much of this work in Task 3.4 has been done in collaboration with our
colleagues in Toulouse, France. We described this work in Deliverable D3.7 submitted in
February 2019 (M40).

In practice, the code detects if the matrix has more rows than columns. If it does, the
matrix is partitioned into block columns and distributed. Each block of columns forms
a subsystem that is then used to create an augmented system which is solved by using
SyLVER (see Section 4.2). The local solutions are concatenated into a vector that is used
in an CG-like iterative method. Otherwise, when the number of rows is not greater than
the number of columns, we use a block row partitioning so that the local solution of the
augmented systems is now summed rather than concatenated. We give details of these
two algorithms in Deliverable D3.7.

The performance of the code relies on the parallel implementation of CG and the
efficiency of the SyLVER solver, but also on a good partitioning of the matrix. The con-
vergence of BC is improved by using a numerically aware partitioner [29]. Experimental
results have shown that, depending on the problem, this partitioner is able to reduce
the number of iterations by a factor of up to 5 over a partitioner that does not respect
numerical values. This numerically aware partitioning is the default in our package.

Details for the installation of the codes in BC are presented in the Deliverable D3.7.

5 Communication optimal algorithms for iterative methods

In Deliverables 4.3 and 4.4 we have introduced a preconditioned Krylov subspace solver
which aims to reduce communication when solving large sparse linear systems of equations.
The NLAFET public repository for communication optimal algorithms for iterative met-
hods is:

• preAlps: Preconditioned iterative methods and enlarged Krylov methods.

5.1 preAlps library
In Deliverable 4.5 we have described the preAlps library which integrates a highly parallel
and efficient implementation of enlarged CG Krylov subspace methods and the multilevel
LORASC preconditioner. Their performance has been assessed in Deliverables 4.4, 4.5,
and 5.3.

1http://abcd.enseeiht.fr/

http://www.nlafet.eu/ 19/26

http://abcd.enseeiht.fr/
http://www.nlafet.eu/

NLAFET NLAFET library software

The library depends on a few external libraries that need to be installed and linked
with preAlps before it is ready to use:

• BLAS and LAPACK [7]: BLAS is a standard library for performing basic vector and
matrix operations. LAPACK is a standard software for numerical linear algebra.
Although any library providing BLAS and LAPACK can be used, we recommend
MKL [30].

• METIS[24] and ParMETIS [25]: sequential and parallel graph partitioning tools.
METIS is required in order to use ECG, while ParMETIS is required in order to use
LORASC. We recommend to install ParMETIS as it already contains all METIS
routines. preAlps was tested with METIS 5.1.0 and ParMETIS 4.0.3. These partiti-
oning tools can be downloaded from http://glaros.dtc.umn.edu/gkhome/metis/
metis/overview and http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.

• PARPACK [27]: a parallel library used to solve eigenvalue problems. PARPACK
is required in order to use LORASC. A latest version can be downloaded from
http://www.caam.rice.edu/software/ARPACK/download.html . At the moment,
only PARPACK is supported in preAlps, but we plan to use other eigenvalue solvers.

• MUMPS [6]: a distributed parallel sparse direct solver. MUMPS is required in order
to use LORASC. preAlps was tested with MUMPS 5.1.2. It can be downloaded
from http://mumps.enseeiht.fr/

• PARDISO: a sequential and multithreaded sparse direct solver. This library is
optional if MKL is already provided. If MKL is not provided, PARDISO from
http://pardiso-project.org/ should be installed.

The complete installation of preAlps is described in Deliverable 4.5 and in the RE-
ADME file of preAlps repository. The directory example of preAlps contains several
standalone examples for testing ECG and LORASC. The -h option details the usage of
these example codes.

For completeness we recall here the different routines available. Our implementation
of ECG is based on Reverse Communication Interface [23] and written in C and MPI.
Following this scheme we provide four routines:

• preAlps_ECGInitialize(ECG_t* ecg, double* rhs, int* rci_request): initi-
alize the underlying structure,

• preAlps_ECGIterate(ECG_t* ecg, int* rci_request): used within a loop to
perform the iterations of the method,

• preAlps_ECGStoppingCriterion(ECG_t* ecg, int* stop): compute and check
the convergence of the method,

• preAlps_ECGFinalize(ECG_t* ecg, double* solution): retrieve the solution and
free the memory.

LORASC preconditioner can be built separately and used in any sparse iterative solver.
The implemented routines are briefly described below:

http://www.nlafet.eu/ 20/26

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.caam.rice.edu/software/ARPACK/download.html
http://mumps.enseeiht.fr/
http://pardiso-project.org/
http://www.nlafet.eu/

NLAFET NLAFET library software

ALGORITHM 1: Tiled algorithm for solving Ax = b.
for j = N, N − 1, . . . , 1 do

xj ← A−1
jj bj ;

for i = 1, 2, . . . , j − 1 do
bi ← bi −Aijxj

end
end

• preAlps_LorascAlloc (preAlps_Lorasc_t **lorasc) : creates an object of the
type preAlps_Lorasc_t. The resulting object can be used by the end-user to replace
the default parameters such as the deflation_tolerance.

• preAlps_LorascBuild (preAlps_Lorasc_t *lorasc, CPLM_Mat_CSR_t *A,
CPLM_Mat_CSR_t *locAP, MPI_Comm comm) : constructs LORASC preconditioner
from an input matrix A and stores all the required internal workspace in the object
lorasc. First, it partitions and permutes the matrix A into a block arrow structure,
then distributes it to each processor. After this distribution, each processor stores
in the output matrix locAP its block from a 1-D block row distribution of the
permuted matrix A. Finally it constructs the preconditioner itself.

• preAlps_LorascApply (preAlps_Lorasc_t *lorasc, double *x, double *y) :
applies LORASC preconditioner on a vector x and returns the result in the vector
y.

• preAlps_LorascApplyMat (preAlps_Lorasc_t *lorasc,
CPLM_Mat_Dense_t *X, CPLM_Mat_Dense_t *Y) : applies LORASC preconditioner
on a dense matrix X, and returns the result in a dense matrix Y . This routine does
the same computation as preAlps_LorascApply routine with the difference that it
applies the preconditioner on a dense matrix.

• preAlps_LorascDestroy (preAlps_Lorasc_t **lorasc) : frees the internal me-
mory allocated by LORASC preconditioner and destroys lorasc object.

6 Cross-cutting tools

The NLAFET public repositories for cross-cutting topics are:

• PCP-runtime: Parallelizing the critical path.

• ABFT-factor: Tiled factorizations with ABFT.

6.1 The experimental PCP runtime library
Many of the task-based parallel algorithms explored in the NLAFET project have task
graphs which depend on one or more parameters, e.g., tile sizes and algorithmic block
sizes. Consider for example a tiled algorithm (Algorithm 1) for solving a triangular linear
system of equations 

A11 · · · A1N

.
ANN



x1
...
xN

 =


b1
...
bN

 .
http://www.nlafet.eu/ 21/26

http://www.nlafet.eu/

NLAFET NLAFET library software

By creating a task for each tiled solve A−1
jj bj and each tiled update bi−Aijxj, one obtains

a task graph GN with N(N + 1)/2 tasks. The total amount of work/arithmetic is inde-
pendent of N , which implies that N determines the task granularity. Large N results in
many small tasks and a high degree of concurrency. Small N results in a few large tasks
and barely any concurrency.

Task-based implementations of parallel algorithms commonly work under the assump-
tion that each task runs sequentially on one core, which is here referred to as regular
scheduling. Suppose regular scheduling is used when solving a triangular system of size
n × n. The performance can be optimized for a particular machine and problem size by
tuning N . The execution time, as a function of N , tends to decrease before eventually
increasing. The initial decrease stems from an increasing degree of concurrency, and the
eventual increase is the result of a decrease in task efficiency and increase in scheduling
overhead.

If the degree of concurrency is too low, then the execution time will be determined
by the execution time of the critical path. In such situations, increasing the number of
cores will not help. However, some improvement might be possible by running some or
all tasks in parallel instead of sequentially. This is clearly the case for some fixed values
of N , but are improvements possible also for optimal2 values of N?

Within the NLAFET project, the idea of parallelizing (only) the tasks on the critical
path, here referred to as parallel critical path scheduling, has been extensively investigated
and reported in the NLAFET deliverable reports D6.1 Prototypes for runtime systems
exhibiting novel types of scheduling and D6.3 Evaluation of software prototypes. To use
parallel critical path scheduling, the user selects a path in the graph, ideally but not
necessarily a path which is critical under regular scheduling. Then the user supplies
parallel implementations of all types of tasks on the selected path. Finally, the user sets
the number of cores q to use for the parallel execution of critical tasks.

A runtime system supporting parallel critical path scheduling behaves as follows. Be-
fore execution begins, q cores are set aside for the critical tasks and the remaining p− q
cores are reserved for the non-critical tasks. (Note that regular scheduling essentially
corresponds to q = 0.)

Since parallel critical path scheduling generalizes regular scheduling, one would expect
that by optimizing both N and q one can achieve comparable or superior performance
compared to regular scheduling. In order to properly test the idea, an experimental task-
based runtime system (called PCP-runtime) was developed. The objective was to enable
a fair comparison of parallel critical path scheduling with regular scheduling. At the time
when D6.1 was delivered, no runtime systems were optimized for parallel critical path
scheduling. The source code for the experimental runtime system, including a couple of
examples of its use, is available for download in the PCP-runtime repository3.

As reported in the M42 deliverable D6.3, parallel critical path scheduling can now
be implemented (albeit not with minimal overhead) on top of StarPU. No modification
of the StarPU source code is necessary. New results presented in D6.3 suggest that
the performance impact of parallel critical path scheduling is modest. The main benefit
appears to be the possibility to avoid using very small tiles — tiles so small that the
overhead in the runtime system (StarPU in this case) ruins the performance.

2The optimal value of N using regular scheduling is likely to be different from the optimal value using
some other form of scheduling.

3https://github.com/NLAFET/PCP-runtime

http://www.nlafet.eu/ 22/26

https://github.com/NLAFET/PCP-runtime
http://www.nlafet.eu/

NLAFET NLAFET library software

6.2 One-sided factorizations with algorithm-based fault tolerance
The ABFT-factor repository contains prototype software for tiled one-sided factorisations
with algorithm-based fault tolerance. Fault tolerance methods aim to provide a mecha-
nism for detecting and correcting errors, such as memory bit-flips, data corruption, or
intermittent hardware faults that can be expected to occur during large-scale linear alge-
bra computations [28]. ABFT implementations seek to exploit algorithmic structure in
order to minimise the computational cost of detecting and correcting such errors within
parallel systems. The increasing parallelism of modern HPC architectures inevitably leads
to an increase in the frequency of such errors [11], and therefore places increased impor-
tance on their efficient detection and correction. The ABFT prototype software contained
within the repository uses the PaRSEC framework [12], which provides a task-based en-
vironment on which to run shared- or distributed-memory computations. The ABFT
implementation is demonstrated using Cholesky factorisation, with a dual-checksum ap-
proach, allowing the location of faults to be identified and corrected efficiently. Details on
the implementation used, and operation of the software, can be found in the associated
report for deliverable D6.7. Performance tests demonstrate a low overhead in computa-
tional cost and memory utilisation for the inclusion of ABFT, strengthening the case for
its use to allow high-performance error mitigation within dense linear algebra routines.

7 Summary and future contributions

We have presented the current 13 public repositories which together make up the public
release of the NLAFET library. In addition to source codes, each repository include docu-
mentation that describes installation, usage, and testing of the main software components.
In most cases the documentation is provided in Users’ Guides generated via the Doxygen
system.
In comparisons with existing state-of-the-art library software, NLAFET shows outstan-
ding results in terms of performance, scalability and accuracy. Such comparisons and
results concerning all NLAFET repositories are presented in several NLAFET delivera-
ble reports and NLAFET Working Notes, all available via the NLAFET web-site4. For
example, the M42 NLAFET deliverable report D5.3 Validation and evaluation describes
efforts on validation and integration of NLAFET library components in some challenging
applications.
Altogether, the software components of the NLAFET library release for solving fundamen-
tal and important numerical linear algebra problems provide novel task-based algorithms
using various programming environments (MPI, OpenMP, ParSEC and StarPU) and con-
tribute to the development of parallel numerical linear algebra for future extreme scale
systems. For the future, we plan to update and integrate new progress concerning software
components in the NLAFET library.

Acknowledgements
We thank the High Performance Computing Center North (HPC2N) at Umeå University,
which is part of the Swedish National Infrastructure for Computing (SNIC), for providing
computational resources and valuable support.

4http://www.nlafet.eu/public-deliverables/ and http://www.nlafet.eu/working-notes/

http://www.nlafet.eu/ 23/26

http://www.nlafet.eu/

NLAFET NLAFET library software

References
[1] StarPU — A Unified Runtime System for Heterogeneous Multicore Architectures.

http://starpu.gforge.inria.fr/.

[2] B. Adlerborn, B. Kågström, and D. Kressner. A Parallel QZ Algorithm for Distri-
buted Memory HPC Systems. SIAM J. Sci. Comput., 36(5):C480–C503, 2014.

[3] Björn Adlerborn, Bo Kågström, and Daniel Kressner. PDHGEQZ User Guide. NLA-
FET Working Note WN-2, May, 2016. Also as Report UMINF 15.12, Dept. of Com-
puting Science, Umeå University, SE-901 87 Umeå, Sweden.

[4] Björn Adlerborn, Lars Karlsson, and Bo Kågström. Distributed one-stage hessenberg-
triangular reduction with wavefront scheduling. SIAM J. Scientific Computing, 40(2),
2018.

[5] Björn Adlerborn, Lars Karlsson, and Bo Kågström. Distributed One-Stage
Hessenberg-Triangular Reduction with Wavefront Scheduling. NLAFET Working
Note WN-1, May, 2016. Also as Report UMINF 16.10, Dept. of Computing Science,
Umeå University, SE-901 87 Umeå, Sweden.

[6] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal.
Appl., 23(1):15–41, 2001.

[7] Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, Jack Dongarra,
Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, A. McKenney, and D. Soren-
sen. LAPACK User’s Guide, volume 9. SIAM, 1999.

[8] Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, Jack Dongarra,
Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, Alan McKenney, and D So-
rensen. LAPACK Users’ guide, volume 9. SIAM, 1999.

[9] L Susan Blackford, Jaeyoung Choi, Andy Cleary, Eduardo D’Azevedo, James Dem-
mel, Inderjit Dhillon, Jack Dongarra, Sven Hammarling, Greg Henry, Antoine Peti-
tet, et al. ScaLAPACK users’ guide, volume 4. SIAM, 1997.

[10] Erik Boman, Karen Devine, Lee Ann Fisk, Robert Heaphy, Bruce Hendrickson, Cour-
tenay Vaughan, Umit Catalyurek, Doruk Bozdag, William Mitchell, and James Te-
resco. Zoltan 3.0: Parallel Partitioning, Load-balancing, and Data Management Ser-
vices; User’s Guide. Sandia National Laboratories, Albuquerque, NM, 2007. Tech.
Report SAND2007-4748W http://www.cs.sandia.gov/Zoltan/ug_html/ug.html.

[11] George Bosilca, Aurélien Bouteiller, Elisabeth Brunet, Franck Cappello, Jack Don-
garra, Amina Guermouche, Thomas Herault, Yves Robert, Frédéric Vivien, and Dou-
nia Zaidouni. Unified model for assessing checkpointing protocols at extreme-scale.
Concurrency and Computation: Practice and Experience, 26(17):2772–2791, 2014.

[12] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack J Dongarra. Parsec: Exploiting heterogeneity to enhance scalabi-
lity. Computing in Science & Engineering, 15(6):36–45, 2013.

http://www.nlafet.eu/ 24/26

http://starpu.gforge.inria.fr/
http://www.nlafet.eu/wp-content/uploads/2016/01/NLAFET-WN2-Adlerborn-Kagstrom-Kressner-161111.pdf
http://www.nlafet.eu/wp-content/uploads/2016/01/NLAFET-WN1-Adlerborn-Karlsson-Kagstrom-161111.pdf
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html
http://www.nlafet.eu/

NLAFET NLAFET library software

[13] Sébastien Cayrols, Iain Duff, and Florent Lopez. Parallelization of the solve phase in
a task-basedCholesky solver using a sequential task flow model. NLAFET Working
Note WN-20, October, 2018. Also as Technical Report RAL-TR-2018-008, Science
& Technology Facilities Council, UK.

[14] Timothy Davis, Iain S. Duff, and Stojce Nakov. Design and implementation of a
parallel Markowitz threshold algorithm. NLAFET Working Note WN-22, February,
2019. Also as Technical Report RAL-TR-2019-003, Science & Technology Facilities
Council, UK.

[15] Jack J Dongarra, Jermey Du Cruz, Sven Hammarling, and Iain S Duff. Algorithm
679: A set of level 3 basic linear algebra subprograms: model implementation and
test programs. ACM Transactions on Mathematical Software (TOMS), 16(1):18–28,
1990.

[16] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J Hanson. Al-
gorithm 656: an extended set of basic linear algebra subprograms: model implemen-
tation and test programs. ACM Transactions on Mathematical Software (TOMS),
14(1):18–32, 1988.

[17] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J Hanson. An
extended set of fortran basic linear algebra subprograms. ACM Transactions on
Mathematical Software (TOMS), 14(1):1–17, 1988.

[18] Iain Duff, Jonathan Hogg, and Florent Lopez. A new sparse symmetric indefinite
solver using A Posteriori Threshold Pivoting. NLAFET Working Note WN-21, De-
cember, 2018. Also as Technical Report RAL-TR-2018-012, Science & Technology
Facilities Council, UK.

[19] Iain S. Duff, Albert M. Erisman, and John K. Reid. Direct Methods for Sparse
Matrices. Second Edition. Oxford University Press, Oxford, England, 2017.

[20] Iain S. Duff, Ronan Guivarch, Daniel Ruiz, and Mohamed Zenadi. The augmented
block Cimmino distributed method. SIAM J. Scientific Computing, 37(3):A1248–
A1269, 2015.

[21] A. M. Erisman, R. G. Grimes, J. G. Lewis, W. G. Poole Jr., and H. D. Simon.
Evaluation of orderings for unsymmetric sparse matrices. SIAM Journal on Scientific
and Statistical Computing, 7:600–624, 1987.

[22] R. Granat, B. Kågström, D. Kressner, and M. Shao. ALGORITHM 953: Parallel
Library Software for the Multishift QR Algorithm with Aggressive Early Deflation.
ACM Trans. Math. Software, 41(4):Article 29:1–23, 2015.

[23] Dongarra J., Eijkhout V., and Kalhan A. Reverse communication interface for linear
algebra templates for iterative methods. UT, CS-95-291, May, 1995.

[24] George Karypis and Vipin Kumar. METIS –unstructured graph partitioning and
sparse matrix ordering system, version 2.0. 1995.

[25] George Karypis, Kirk Schloegel, and Vipin Kumar. Parmetis: Parallel graph parti-
tioning and sparse matrix ordering library. Version 1.0, Dept. of Computer Science,
University of Minnesota, 1997.

http://www.nlafet.eu/ 25/26

http://www.nlafet.eu/

NLAFET NLAFET library software

[26] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T. Krogh. Basic
linear algebra subprograms for fortran usage. 1977.

[27] R. B. Lehoucq, D. C. Sorensen, and C. Yang. Arpack User’s Guide: Solution of Large
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, 1997.

[28] Bianca Schroeder and Garth A. Gibson. A Large-Scale study of failures in high-
performance computing systems. IEEE Transactions on Dependable and Secure
Computing, 7(4):337–351, 2010.

[29] F. S. Torun, M. Manguoglu, and C. Aykanat. A novel partitioning method for acce-
lerating the block Cimmino algorithm. SIAM J. Scientific Computing, 40(6):C827–
C850, 2018.

[30] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and
Yajuan Wang. Intel Math Kernel Library. In High-Performance Computing on the
Intel R© Xeon Phi, pages 167–188. Springer, 2014.

http://www.nlafet.eu/ 26/26

http://www.nlafet.eu/

	Introduction
	NLAFET repositories on GitHub

	Dense factorizations and solvers
	BBLAS
	Installation
	Testing

	plasma and PlaStar

	Dense eigenvalue problems—tools and solvers
	MPI based eigenvalue solvers
	StarNEig library
	Documentation
	Installation
	Usage
	Distributed memory
	ScaLAPACK compatibility layer
	Computational interface functions
	Test program and an example

	Sparse direct factorizations and solvers
	SpLLT
	SyLVER
	ParSHUM
	BC

	Communication optimal algorithms for iterative methods
	preAlps library

	Cross-cutting tools
	The experimental PCP runtime library
	One-sided factorizations with algorithm-based fault tolerance

	Summary and future contributions

